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Yeah, let me go over once again some points regarding recurrence that we discussed with regard

to maps and coarse-grained maps. And then give an example using the asymmetric tent map

which we have already studied in some detail. 
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As an illustration of the general principles involved recall that we had a phase space whose total

measure was 1 and in this phase space I define cells let us say this is some cells some particular

cell C. And then we were looking at the statistics of the recurrence of a typical phase trajectory to

this cell in coarse grain dynamics. And just to recall to you what results the sort of results we had

proved we discovered that if μ(C) is the invariant measure of this cell.

We asked for the measure of that set of events where a typical trajectory starts in this cell at time

0,  and then returns  to  this  cell  for  the first  time at  time N, and we call  that  the recurrence

distribution. This we found was given by a certain formula in terms of a quantity Wn which was

the measure of all  those events where you started in the compliment of cell  C at 0 and you

remained in this complement till time n-1.

And then going to this cell in terms of this quantity W and ~ we discovered that the probability

and now I will use the word probability itself for recurrence namely to return to the cell for the

first time. And let me call that f return probability of return for the first time at time n to cell C

given that you started and C at time 0, this was what I denoted by are the last time, but this is a

more expressive notation it says you started in cell C at time zero and who returned to sell C at

time n for the first time without having come there before.

After the sojourn the rest of the time in between in the complement to the cell C. So we are

looking at statistics of things which know this start here and end up back there at a specific time

in this is the random variable here is N and we are trying to find the distribution in this n. This



was given by1 over the measure of the cell C multiplied by Wn - 1 ~ minus twice Wn ~ + Wn +

1, this was the formula we derived on very general considerations.

And there were just two assumptions made in this derivation the first was that there exists an

invariant measure that the system has settled down to some stationary probability distribution

denoted by μ here, and the second assumption was that the system is ergodic namely if you

started  anywhere  the  system  walked  around  everywhere  in  phase  space  and  came  back

eventually to this point.

And it does so repeatedly it keeps repeating itself over and over again the system is not periodic

that would be trivial kind of recurrence its ergodic and therefore, we speak not of recurrences

back to exactly the same phase space point as the starting point, but to some neighborhood of it

to some cell in which this initial point is. Notice that this has the structure of a second derivative

in time it is a second difference in.

And this  itself  is  like  a  stay probability, because  you start  in someplace  and you stay there

without moving out of it into the cell C. So it is essentially telling you that and this is typical it is

a  general  sort  of result  that  the first  derivatives  of stay probabilities  would give you escape

probabilities and the second derivatives would give you return probabilities. So in order to start

at C and recur return back to C return to see you have to first leave and then you come back.

So it  is  pardon me,  it  is  like  the  second derivative  in  time is  not  it  this  is  just  the  second

difference.  The first difference in time would be something like Wn ~ - Wn - 1 ~. And the

difference of the difference is like a second derivative in time. So it is a second finite difference

of course this can be formalized, but intuitively it is clear what is happening you have a certain

cell C and you would  like to find the statistics of return to this cell for the first time.

Well you have to go out and you stay there for some time and then you come back, and this is

like the sojourn outside this cell. So you start here, you escape, you stay out, and then you come

back and that is so it is not surprising that exit time distributions or escape time distributions are

like the first difference of stay distributions and return distributions or recurrence distributions

are like the second derivative in time like the rate of change of exit time distributions or escape

time distributions.



So this structure is not surprising post facto after the end by hindsight it is quite physically quite

appealing. Now of course remember also that we had defined W ~ = 1 and W1 ~ was simply

equal to the set N equal to 1 here it is just the invariant measure of C ~ itself. So μ(C~) = 1-μ(C)

okay. I would like to know apply this problem apply this general formula to a specific problem.

And the problem we look at  is  the tent  map a one dimensional  map a symmetric  tent  map

because I would like to play with this parameter a make it as small or large IP’s. 
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So the  example  we are  going to  look at  is  the  asymmetric  tent  map for  which  we already

discovered that a coarse-grained dynamics into two cells this is a, this is 0, this is 1 and 1 there,

the coarse graining into two cells namely a left cell from 0 to a and a right cell from a to 1 this

led to a transition matrix W which was the probability that I start and the left cell so this is L that

is R and let us complete the diagram by writing an L here and an R there as well.

So I start here and then I moved to I remain in L at 1, the other probability was (L, 1, R, 0) P(R,

1, L, 0) and P(R, 1, R, 0) this is what I call the transition matrix W and this was easily worked

out to be equal to a and a here a 1 – A and a 1-a okay. And the claim was that this is a Markov

partition; in the sense that this probability that I mean either sell L or R let me just denote these

by I, J and so on.

 So I am in the cell J at time n given that I start at cell I at 0 so let us put that 0 explicitly here this

quantity here if it  is a Markov partition then you are guaranteed that this is equal to the JI th



element of the nth power of the one-step transition probability. So this is a one-step in one time

step these are the probabilities of jumps, and if I take this matrix raise it to its nth power and then

compute the matrix elements corresponding matrix elements that should give you the N step

transition probability.

Of course you can independently compute this conditional probability by just writing this out as

a joint probability, and then dividing by the absolute probability of starting at cell in cell I at time

0. And that will involve a Δ function which involves the nth iterate of this map asymmetric tend

map.  So it  is  a  non-trivial  problem to compute  this  nth  iterate  and then  find  out  what  this

probability is.

But I leave it to you to verify and this is not difficult to do here, that this probability is indeed

given by nothing but the corresponding matrix element of the nth power of this matrix which

proves that it is a Markov partition, and this is a consequence of the Markov property. Once you

have this we can now start computing what these probabilities are that is very straightforward

here.

And what happens in this case and we can in fact compute what this number is, because I just

have two cells. Now so C is let us say L and C ~ is R just a part Markov partition into two cells,

and we can very easily compute what these probabilities are what is this so joint probability for

instance what is this, what is the most interesting property of W as I have written there. What are

the Eigen values of W.

Yeah the some of the as you can see the sum of each column is equal to unity what does that tell

you, yeah that there is a uniform left eigenvector which is  11 and the eigenvalue is one what is

the other Eigen value of this matrix. What is the determinant of this matrix it is zero so what is

the other what is the other Eigen value 0 has to be the other Eigen value there is just two Eigen

values here.
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Therefore, it is immediately clear that for this matrix at any rate we have an extremely simple

property which is W2 equal to what is W squared equal to square this matrix 1 and 0 of the

eigenvalues. So the characteristic function right 1 and 0 are the eigenvalues of this matrix. So it

is clear is λ is an eigenvalue this must be true it is 2 by 2 matrix. So this is the characteristic

polynomial of this matrix.

So it immediately implies that W2-W0 or this must be equal to that yeah therefore, it implies at

all powers of this matrix, this matrix is idempotent all its powers are itself. Independent of A

whatever be a the matrix on raising it to any power gives the same matrix for all n, because that

at once tells you that the probability of being in L at time n starting at L at time 0 is just the nth

power it is just the 11 element of this raised to the n which is the same thing as that so this is

equal to A etcetera.

So it is extremely simple in this case and we can compute these numbers what is W and ~ then,

you can write this in terms of these probabilities and work it out etcetera. So but you can see this

almost intuitively 0 to a is L in this case are this is our cell C let us say. So this is the C and this is

C ~ that is for illustration take I see I take C ~ to the left cell and C ~ to be the right and then

what is Wn ~ are going to work out to be in this problem.

This corresponds mine due to the complement so you have to be in our and it is a stay probability

in R it is 1-a to a certain power so this thing is equal to (1-a)n. So you are going to start at zero

and up to n -1 you are going to stay there it is just this. So what is the second difference, this



thing in this problem first of all 1/μ(C) that is just a, because the uniform the invariant measure in

invariant density is uniform.

So the measure of the cell on the left is just a, the length of that interval multiplied by 1 –a to the

power n - 1 – 2(1 – an) + (1-an+1) that gives you there is something I have left out, that is fine. So

this is equal to (1 – a)n-1/a and multiplied by (1 –a)2. So it is an extremely simple formula and it

tells you something interesting, it says the probability of return to this cell C at time n for the first

time starting at cell C at 0, the first the recurrence probability is given by this geometric factor it

is a times (1-a)n-1.
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Similarly we can ask for recurrence so the right so let us go back let us write this F(L, n, L, 0 ) =

a times (1 – a) to the n – 1. And similarly F(R, n, R, 0), but this is not hard to guess what this is

going to be yeah a n-1 is just interchange between left and right. So this is equal to (1-a)a n-1. And

now let us check normalization because the system is ergodic we have to be sure that there is a

recurrence that is going to happen.

So if I sum this over n I better get one and indeed I do as you can see if I sum from 1 to ∞ yeah,

the invariant density is one yes, oh no, no, no, this is not a question of no that is not true. The



chance of it coming back the probability that said L given this does not diminish this is still equal

to a, it is still equal to a. And what is this correspond to this is equal to the probability that it will

start in L at zero you come back to L for the first time at time n for the first time.

And of course you will keep coming back over and over again. So this probability summed over

n must give you unity, if the return is sure event we know it is a proper random variable and

indeed so, because if I sum this from n=∞ this is just a geometric series. So it is a/1-1a which is

unity. 
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So it is certainly normalized, this is certainly true summation n = 1 to ∞ F(L, n, L, 0) = 1 as

required. What is the mean time of return what is the mean time that it takes to get back n L say

to the left this is equal to a summation n = 1 to ∞ n times F(L, n, L, 0) now what does this work

out to. So it is a summation n = 1 to ∞ n times (1 – a)n-1 so what is that equal to it is just an

arithmetic or geometric series so it is nx to the n-1.

So it is just the derivative of xn right, so it is a times d/dx if I have xn here let me differentiate it

from 1 to ∞ the sum is x/1-x and I have to set x=1-a. So what does this give you if I differentiate

this I get 1-x, so it is 1-x+x/(1-x)2, so that is 1/(1-x)2 so that is 1/a2= 1/a right. This is 1/(1-x)2 and

put x=1/a. So I get 1/a2 and I multiply by 8 that is 1/a. And indeed that is exactly what it should

be because we know that this must be equal to the measure 1 over the measure as required.



The smaller a is it is intuitively clear that the longer the mean time of return for the first time is

going to be. So that was the reason for my choosing a here rather than ½, so that I can tune this

and you can see immediately that it takes longer and longer if they become smaller and smaller.

The mean time I have written to a specific point which has set up which is the set of measure 0

will diverge and that is exactly what is happening.

And similarly nR=1/μR which is 1/1-a okay. But then once you have this distribution you can do

more you can find the variance of the time of return or for a first offer occurrence or first return,

and  then  all  its  statistics  completely  what  sort  of  distribution  is  this,  this  is  some  kind  of

geometric distribution, I could also write this as an-1 log1-a so since log1-a is a negative number,

you can see that is exponentially decaying in time.

And this is very typical of these processes whenever you have a hyperbolic system, whenever

you have no stable fixed points nothing I mean the map has got a non slope greater than unity

everywhere this thing is said to be uniformly high it is supposed to be hyperbolic expanding

everywhere  at  all  points.  Then it  is  a  characteristic  of  such systems that  the  distribution  of

recurrence is going to decay exponentially in time.

And  that  is  exactly  what  this  does,  because  I  could  write  this  as  a-nlog1/1-a,  and  it  is  an

exponential decay. We can do more we can go further and do this, we can even find limit loss

and let us see what I mean by that. You could ask alright if it comes back once will it keep

coming back that is the first question, and if so what is the statistics of such successive returns.

And the other question you could ask is I said this is a mark of partition.

And I left it to you to verify that the probability that you start in cell I at time 0 and you return to

it and you are back there in cell I at time N or you are in some other cell J at time n it is just the

jith matrix element of W to n the one-step probability to the power n. What is the guarantee that

this is Markov one explicit verification, but do we have any general rules. Well in this case if the

map is piecewise linear in one dimensional maps of this kind if the map is piecewise linear as

this is.

And if your cells in phase space are such that the boundary points of these cells are either fixed

points everything is unstable of course, or around periodic orbits if they are on periodic orbits or

their pre images of periodic points, then the partition is guaranteed to be Markov that is true in



this case, but me yeah where are the boundary points for this where are the end points for this

partitioning 0 is 1, a is 1 and 1 is 1 right.

And the partition was simply L = 0 to a and R = 1 a so no, something like this. Now zero is

already an unstable fixed point of this map and where does the point 1 the point a go, where does

this point go, if I start at this point after one iteration you get to this and I am here and in the next

iteration I am at 0 which is an unstable fixed point. So the point a is a pre image of the unstable

fixed point at zero.

And the statement is if you take us an interval of this kind and you partition it not necessarily

into two if you partition it and you call this cell c1, c2, c3, c4, and c5, then if these points these

points which are the endpoints of the cells the boundaries between the cells, if they are either

unstable periodic points, or the part of unstable periodic orbits, or they are pre images of such

points.

Namely after a few iterations they fall into such points then you can prove that the partition is a

Markov partition of course, you can refine this  partition further I can make this smaller  and

smaller I could look at points which fall into a after one iteration and so on and so forth. And if I

partition it further in this fashion it is called refining the Markov partition you guaranteed that the

partitioning stay is Markov.

So it is useful piece of information to try, it is useful to try and partition a phase space into a

Markov  partition,  because  then  you  can  use  the  machinery  of  Markov  partition  of  Markov

change in order to analyze the dynamics as we did here indirectly in some sense. Because once

you have  a  Markov process  you have  another  property  which  I  did  not  mention  a  renewal

property which is the following.
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If I want to compute the probability of reaching some cell J some state J of a Markov chain

starting at some state I at 0 let us assume it is a stationary Markov chain. And this quantity is

equal to we can write a chain condition for it as follows so you start at cell Л at 0 move to a cell

K for instance at time n’ for the first time. And then start and cell K and move in the remaining

time.

So if it is a stationary distribution, but stationary we only that K n – n’ to state J P and this is

equal to summation over n’ = 1 to n. That is a renewal condition it says start here at zero move to

some set some other state K for the first time at time n’ and then you start at that state K and in

the remaining time you end up at the state J. And then you sum over all the intermediate times

here.

And this is the first passage first time you pass from I to J, so first passage time probability. So

you should not have reach this K from I ever before until time n’ and then in the remaining time

you do this and you sum over all the n’ and you get this probability. Now the theory of Markov

processes gives you a formula for this, because you tell me the one-step transition probability I

can find the N step transition probability by just raising that to some power n right.

Now how do I find these quantities those are precisely the quantities we want in recurrences the

first passage them the first return probabilities. So I would like to have in our case what happens

if I start at C, and come back to C here. So I would like to put I in K equal to each other. What



does this suggest to you, is it possible for me to find this quantity this set of quantities given

something for this set of quantities what does it suggest to you, think of n as time.

And then this is a function of T’ and it is summed over T’ and you have T – T’ here. So what

does it suggest, how would you solve this sort of equation, it is like an integral over T’ right. So

we have something which says let me just use P here you have P(t) it is going like ⌠dt’ up to T

from zero because you can discrete steps if you make the steps small enough times P(t-t)’, and

then this is some F(t)’.

So what does this suggest how do you solve for F(t)’ in an equation pardon me, it is convolution

exactly you take Laplace transforms. So that is the natural way to solve this problem. Therefore,

if you took Laplace transforms here in this case in discrete-time then you have a formula for this.

And that is in this case it would lead exactly to the formula which we wrote down under general

considerations here, the second difference term that we wrote down.

So you have such a renewal equation this is called a renewal equation it is an example of a

renewal equation for a Markov chain. It is a very convenient way of finding first passage time

distributions and that is exactly what we are interested in the first return time distribution. So this

is one more way of doing it instead of going through the general formulas that we could have

done it this way as well in this case because the partitioning was a Markov partition yeah.

Yes, that is exactly the statement I made there is a general way of proving that if you have a

piecewise  linear  chaotic  map,  then  if  you Markov partition  the  interval  if  you partition  the

interval such that the boundary points are either on periodic unstable periodic orbits or the pre

images of such points you are guaranteed that the partitioning is Markov, this can be established

on general terms.

Once you have established that the partitioning is Markov, then you use this the machinery of

Markov chains to solve the problem you do not have to go back to the dynamics the actual map

itself. All I have to do is to compute the transition probability in the transition matrix the W for

such a situation. And everything else is given in terms of W yeah, yes, not that you can solve it,

but a great deal of information about the system is being is obtained.

Once you have did not manage to find a Markov partition, but there is no guarantee that for

higher dimensional maps, other maps non piecewise linear maps etc it is trivial to find such a



state a partition not true. So it goes one way is that if you have a Markov partition then you are in

good shape, this is what it implies. But how to find such a partition is not known in general. So it

is not that we chanced upon the Markov partition here.

It  is  just  that  I  know that this  map the tent  map is  symmetric  or asymmetric  it  is  a  sort  of

paradigm of chaos in a certain sense it is like the Bernoulli shift, it is a paradigm of chaos. And

for such systems then we can see that a great deal of information can be obtained. Now most of

the rigorous results that are proved in ergodic theory have to do with systems which are formally

something called axiom A systems.

Namely at every point in the phase space first of all there is an invariant measure, and at every

point in phase space almost everywhere you have an expanding direction, you have something

which is where you have I should say in more technical terms where the stable and unstable

manifolds intersect transversally they are not tangential to each other. So these are technicalities

mathematical technicalities.

But what we are trying to do is at a much lower level is simply look at some very, very simple

low  dimensional  models,  one-dimensional  models  specifically.  And  use  a  little  bit  of  the

machinery of Markov chains to show that the actual dynamics can be removed can be you know,

you can cover it up, you can subsume it in the dynamics of a coarse grain Markov partition. So

this is our modest aim here okay.

Yeah absolutely, absolutely yeah, yes let me rephrase what he is saying, he is saying if I refine

this partition further and further which I can by taking this map taking the pre images of this

point and writing it in terms of more cells, then in principle I can go to a limit where I can

perhaps even mimic the actual dynamics itself yes, yes that is eventually that is of course the

eventual aim in principle to do this.

But it is not true in practice it is not easily achievable in practice except in model systems of this

kind, but if you can prove something is true in principle then at least you have some idea that the

results you get by studying this kind of analysis by this kind of analysis are reliable in some

sense. So this is at that level no more than that. In fact let us answer this question directly what

happens  if  I  have  successive  recurrences,  what  does  it  look like  can  I  gather  some general

information from this.



And let us look at that and ask what is the probability we have seen the probability that you come

back for the first time at time N, we will ask the following question now.
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So we keep this in mind that this is an exponential distribution geometric or exponential okay. So

let us ask the following question what is the probability that I returned if I started L at time 0 that

I returned to L for the first time at some time n1, so let me call that N 1 just for ease of notation

let me say this is the first this is the probability of return to L at time n1. And then after that the

next return is at some time n2.

And the return after that the first  time is at  n3. So this  is now asking for the probability  of

successive returns to L or references to L at these instance of time there are such recurrences.

And I can ask what is the probability of this how do I compute this, well this is not hard to do

because once we have this machinery that this thing is acting exactly like a stationary Markov

chain, and it is not hard to show that this thing here is again or precisely the same point same

kind.

It is a times (1 – a)nr-r  multiplied by ar I think. And it is not hard to see that this is equal to F(n1)

times F(n) and call it F(n), F(n2-n1) … F(nr-nr-1). So simply factors in this fashion and what

does that suggest to you, what does it suggest to you if I say that the probability of a recurrence

in the sense we have defined at  the instance  n1,  n2,  n3 … nr the probability  of R of these



recurrences at these specific times is just the probability of a recurrence at time n1 multiplied by

a probability of a recurrence in a time interval n2 - n1… up to here.

What does that suggest to you about these successive recurrences they are independent of each

other they are independent statistically independent that is the reason these probabilities simply

factor in this fashion. So that is telling you how random this system is in a sense that this has

completely factored out. And it is just a function of those time intervals nothing more, so it is

telling  you that  in  these systems successive recurrences  are  statistically  independent  of  each

other.

Not going to be always true, but in this instance. And so exactly it is essentially due to the lack of

memory in the Markov chain, in the Markov process, well in this case the Markov chain that is

essentially what it is due to. You could ask what is the probability given a certain amount of time

n what is the probability that I have R recurrences.
(Refer Slide Time: 40:22) 

Probability of R recurrences in a given time interval what is that given, what is that equal to,

what would that be. Well we already have a problem an expression there, so what would this be

right.  So you have given this,  now you are asking what  is  the probability  of R recurrences

appearing. So what would that be, this is already suggesting what the answer is going to be.

Absolutely it s ar(1-a)n-r.



But you do not care in what sequence this is going to happen right. So there is an nr, that is the

binomial  symbol where nCr. It is the binomial distribution and now we could ask now final

question, we could say suppose the time becomes very long n tends to infinity and let us say a

becomes  smaller  and smaller. What  do you think  happens  to  this  distribution,  it  becomes  a

Poisson distribution.
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So in a limit in which n tends to ∞, a tends to 0, this distribution nCr a r(1-a)n-r, n becomes ∞, a

goes to 0 such that the product of n times a is finite, this tends to the Poisson distribution r. So in

fact let us make it such that limit na = λ say, so what does this go to then, in that case this goes to

λr/r! e-λ, the Poisson. You should not be surprised at this, because the first one the first recurrence

as you can see is essentially a geometric distribution; it is the first term in that. 

And then successive recurrences would be passed on distributed because they are independent.

So this is the reason for saying that if you have an ergodic dynamical system in which there is

chaos for  example  and you are on the  attractor  or  on the  invariant  set  with  some invariant

measure, then if you take a sufficiently small cell in this system and ask what is the distribution

of recurrences to this cell that is passed on distributed this much.



And this is generic, this is typical behavior, it changes drastically once you have stickiness in the

system like we looked at intermittency, then of course you can intuitively see this whole thing

will go out of the window, because the system would tend to stay in a cell  where there is a

marginal fixed point, if it is just marginally unstable. And then the recurrence time distributions

would be very different from this exponential behavior.

In fact it would start leaking like power loss various power laws here the limit distributions are

not possible anymore they could become Gaussians, they could become other stable distributions

and  so  on.  And  this  is  a  characteristic  way  in  which  you  detect  the  existence  of  such

intermittency or such stickiness in the dynamics, because after all everything depends finally on

the  behavior  if  you  look  at  what  we  wrote  for  F(n)  this  went  like  this  sequence  Wn  ~  -

2Wn~+Wn+1~.

And there was a 1/μ(C) we are looking at the long time behavior of this in this simple case it was

not e-n times something or the other we are asking what this does. So you can easily see what

would you say if Wn ~ went like 1/n2 for example, what would this go like for large n, it is like

the second derivative right. So it should go like 1/n4 in that case. On the other hand if this meant

like a 1/n, then this goes like a 1/n3 and so on.

So  you  immediately  have  the  possibility  of  very  slow  decay,  then  of  course  you  are  not

guaranteed that you have a Markov chain, or you have Markov partition or anything like that you

have a general formula, and it could be as correlated as you like which is what happens in the

case of intermittency or in the case of systems which do not which is not hyperbolic everywhere,

which are the more typical cases which in practice would be the typical cases.

So  the  final  comment  one  can  make  on  this  is  that  while  we  have  these  beautiful  generic

properties for classes of systems dynamical systems, in practice in real life in a given dynamical

system  you  do  not  have  this  beautiful  mathematical  behavior,  the  system  is  not  uniformly

hyperbolic  everywhere  in  general.  And  then  you  would  have  different  kinds  of  recurrence

statistics, you would have slow decays, you would have power laws and so on which will give

you some indication of what kind of sticky points are there in the phase space.

So this is where I would like to end this little discussion of recurrence statistics per se. And of

this kind of coarse-grained dynamics we look at some other examples subsequently. And now we



move on to other topics we talked a little bit about Markov chains, and we defined some of the

properties of Markov chains, in particular we looked at Markov processes in continuous-time

itself more than Markov chains. 

But then we revert it to Markov chains when we came to this course plane dynamics, because it

wasn't  discrete  time  here.  But  essentially  the  property  the  essential  property  you  need  to

remember that is that it is one step memory just the preceding step nothing more than that. 
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And then the statement I made was that the probability density that the variable is between x and

x+dx say in a continuous case state space case starting at some x0 this conditional probability for

a stationary Markov process determines everything, it determines the process completely. If you

take the limit of this as T tends to ∞, then this is T tends to ∞ tends to a stationary probability

distribution  function  P(x)  which  gives  you  the  mean  value,  the  mean  square  value  all  the

moments which are all independent of time.

So in general for example the nth moment of this would not depend on time this would be equal

to dx xn P(x), but all two time and higher time probabilities joint probabilities are all given by

this function in terms of this function. Then the question is what do you write for this equation

what kind of information or what kind of equation does this quantities satisfy. And we saw that

this satisfies under suitable conditions.



It satisfies a chain condition to start with the Chapman-Kolmogorov equation, but in addition

under suitable  conditions we saw that this  thing satisfied a master equation let  us write  this

master equation now. 
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So I said that Δ/Δt P(x, t) let me for the moment drop this x0 will impose it as an initial condition

an arbitrary initial  condition. So this thing here satisfies an equation of the form dx’ P(x’, t)

multiplied by a transition probability density per unit time which was x’ – P(x, t). This was the

master equation we wrote down. Now I did not mention ways of solving this master equation it is

not trivial, because it is an integral differential equation as you can see.

And then the initial condition on this P(x0) could for instance be some Δ(x-x0) that takes care of

this conditional probability okay. Now how do we solve this kind of equations not trivial you

have to know what this kernel is like this transition density is like, but there is one case in which

you can reduce this to a differential equation which is not generally easier to solve in some sense

then different difference equation then an integral equation of this kind. 

Well suppose you say W(x, x’) which we call is the probability density per unit time, but if you

start  in  the  state  x’ you reach a  value between x and x + dx per  unit  this  is  the transition

probability density per unit time. This quantity here what could this be a function of in general it

is a function of the starting state and the end state as well. But we could say well suppose this is a

function of I write this as some function of the starting state x’ and the jump x-x’. 



So let us write that as Δx which is x-x’, it is a function of this and a function of that in general.

Well it is equivalent to saying it is also a function of x and x-x’ entirely equivalent. And now let

us assume that as a function of this jump here all the moments of this W exist. 
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So let us assume that all these quantities ⌠d(Δx) (Δx)n W(x, Δx), suppose you assume that these

moments exist let us give them some names and they would of course be functions of x. Suppose

for all non-negative integer N. Then under those conditions you can reduce this equation here

this equation here implies Δ/ΔT P(x, t) becomes in a differential equation. So all we have to do is

to substitute for that here in here, and then there is an integration which is doable.

And you end up with this is equal to the following a summation from n = 1 to ∞ unfortunately it

is again an infinite sum here you have to pay that price -Δ/Δxn An(x) P(x, t), you have to worry

about convergence and so on I am going to slur over those points, but you can show that this is

equivalent to this differential equation. But it is an infinite order differential equation, because

you have their partial derivatives with respect to the state variable x of all orders.

This expansion from this master equation this is called the Kramers - Moyal expansion you will

see in a minute that you are actually familiar with this expansion at least part of it. Now let us

make a further assumption these moments what would you expect physically for any process in



general grounds, you would say well this here is a function of a starting state for example and the

jump.

And  the  higher  and  higher  moments  of  this  could  be  expected  to  get  smaller  and  smaller.

Therefore,  you  could  say  suppose  these  ends  as  n  increases  becomes  smaller  and  smaller

numerically, then I could perhaps truncate this equation at some stage I could approximate this

equation at some stage maybe the first stage second stage and so on. It turns out that there is a

systematic way to do this, and turns out that the most common truncation is at the second stage. 
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So you end up with an equation which reads Δ/Δt P = -Δ/Δx (A1, P) + (d2/dx2) (A2, P) okay.

This is typical of what you get for such Markov processes and this is called the Fokker-Planck

equation or the forward Kolmogorov equation there are several names for this equation. It is a

first order in time and second order in the state variable different partial differential equation.



Now you are familiar with one example of such an equation what is that which is that equation

by the way this is called the drift term, nd that is called the diffusion term. 

And the ordinary diffusion equation that you write down for P is an example of such a case

situation. That equation if you recall was this, and that corresponding to the case where you had

no drift here in a free diffusion of some kind and this was a constant that came out, and then you

had this equation. So they begin to suspect that Brownian motion which leads to this diffusion

equation is a Markov process indeed it is it is called a wiener process.

And it is a special case of a more general situation. So processes where the master equation can

be reduced from that level to this level they are called in the mathematics literature they are

called diffusion processes as a generalization of this original diffusion equation. And you could

ask where do these equal can I write an equation for x itself, yes you can write what is called a

stochastic  differential  equation  for  x  which  is  equivalent  to  this  master  equation  for  the

corresponding probability density.

If I look at the motion of particles in this room at some constant temperature T, and I assume

these are classical particles undergoing random collisions with each other nothing else, then it

turns out you can write such an equation for the probability distribution of the velocity of the

particle. And that equation looks like this Δ/ΔT P(v, t) for one component of the velocity any

Cartesian component can be written as γ Δ/Δv (vp) + /n P/ Δv2.

I will explain what γ is in a minute, but this is Boltzmann's constant there is the mass of a particle

and this the absolute temperature. And this is what this distribution is for the probability density

that the velocity of a particle is between d and dv at a time T. You have to give me some initial

condition, and the initial condition on this problem would be an arbitrary one. 
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So you could start by saying that P(v, 0) = Δ(v-v0) for example and I can plot P as a P(v, t) which

is the solution to this equation. It is a Markov process, it is a diffusion process, and it obeys a

master equation of this kind here. Now what would you say is the distribution at T=0 well it is

some Δ function at v0, and what is the distribution as time goes on this γ here is the friction

constant in the system it is related to the viscosity of the medium.

What would you say happens as time goes on at T tending to ∞, what would you say would

happen to this. Well again remember that the probability distribution is v, t starting with some v0

which is what we have written this with that initial condition what do you expect will happen to

this as T tends to ∞. Well I have this gas in equilibrium at some absolute temperature T, and now

I look at some particle and suppose it is velocity at T=0 is v0 and let time evolve.

And I ask what is its probability density point, but what would you expect as T tends to ∞, it

would certainly lose memory of v0 what do you think will become pardon me, what do you think

will happen to P(v, t) it should go to the Maxwell distribution, it should go to the Maxwell in

equilibrium distribution once again right. And what would that be, P equilibrium of V, but what

should this what is this distribution this is one Cartesian component of the velocity. So this is

equal to e-mv2/2kt, e to the minus the energy over KT for a free particle the energy is 1/2mv2 and it

should be normalized so there is an √m/2ЛktM factor which normalizes this distribution.

So I would expect that this distribution at T = 0 goes into this at T tends to ∞, so this is T=0 and

it should drift back and go into this. Let us check if that is true that is easily done, because that



distribution at T goes to ∞ is independent of time, and I can write this as a total derivative for the

equilibrium distribution. So let us do that quickly I expect 0 equal to this now let us convert this

to d/dv and make this d2/dv2.

And this is P equilibrium (vp) equilibrium now the γ cancels out we could take out d/dv and

write it in this fashion. So this is 0, it implies this thing as a constant, what can this constant be

well I know this P equilibrium must have finite moments. Therefore as V tends to ∞ it must

vanish faster than any power of V or inverse power of V. So as T tends as V tends to ∞ plus or

minus infinity I want this to go to 0, and I want this to go to 0, so the constant is 0.

Because it must be zero at V = ∞ and independent of V therefore the only constant you can have

a  0.  Well  that  is  an  trivial  equation  to  solve  it  says  dP equilibrium over  dv. So it  says  dP

equilibrium over dv = -mv/kt equilibrium, what is the solution to that this is the solution that is

the solution. So indeed this is happening this is tailored to happen. So we have an example of

such a Markov process namely the molecules in this room.

Their velocity represents a Markov process a diffusion process over on top of it. And it is in

continuous time. So that is the simplest physical example direct physical example of a Markov

process. Under suitable assumptions we have made a large number of assumptions here, this is a

specific model of randomness we assume but it is a very satisfactory one to us. 

Online Video Editing / Post Production

K. R. Mahendra Babu
Soju Francis
S. Pradeepa
S. Subash

Camera

Selvam
Robert Joseph
Karthikeyan
Ramkumar
Ramganesh

Sathiaraj

Studio Assistance

Krishnakumar



Linuselvan
Saranraj

Animations

Anushree Santhosh
Pradeep Valan. S. L

NPTEL Web & Faculty Assistance Team

Allen Jacob Dinesh
Bharathi Balaji

Deepa Venkatraman
Dianis Bertin

Gayathri
Gurumoorthi
Jason Prasad

Jayanthi
Kamala Ramakrishanan

Lakshmi Priya
Malarvizhi

Manikandasivam
Mohana Sundari
Muthu Kumaran
Naveen Kumar

Palani
Salomi
Senthil

Sridharan
Suriyakumari

Administrative Assistant

Janakiraman. K. S
Video Producers

K. R. Ravindranath
Kannan Krishnamurty

IIT Madras Production

Funded by
Department of Higher Education

Ministry of Human Resource Development
Government of India



www.nptel.ac.in

Copyrights Reserved

http://www.nptel.ac.in/

