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Yeah before we begin today let me answer  a question that was raised which had to  do with the

erotic sampling and ergodicity the statement made was that if you have a time average you  could

in principle convert it to an  ensemble average if you have a god city  in the system and this is

used in  practice in sampling in experiments in  physical practice it is used all the  time and let

me  give  an  analogy  for  this  suppose  we wanted  to  measure  we  have  a   long  roll  of  wire

homogeneous uniform  everywhere and we wanted to measure the  resistance of this wire of one

meter of  this wire the two ways of doing this one  of them would be to say .
(Refer Slide Time: 00:58) 



I have available to me a single piece a meter long and I measure its resistance and I do this over

and over and over again and each time .I makes this measurement under identical conditions. I

get a slightly different answer various fluctuations and I take the arithmetic average of all these

measurements and that would be the time average of this resistance and it gives me a certain

number we are as ng here that this wire does not in any way change its characteristic due to these

measurements it does not become old it does not get heated up it does not get aged and so on and

so forth the other way to do.

This to measure get an  accurate value or average value for one  meter long wire would be to take

this  long spool of wire and make a  measurement for each of those pieces so the next piece is

like this and the next piece is like that and so on and I measure each one of these guys and ask

what the average value is this would be like an ensemble average and ensemble just means a

collection a whole set of these identical copies and it is again  assume that these pieces are all

identical to each other and that gives  me one average value and that may not  always be practical

to do you may have available just one meter and no more.

In which case to get an accurate  value you would repeatedly measure the same thing under

hopefully identical conditions and  then assume that the  .I am average that you get by measuring

the resistance of one meter of wire a single specimen over and over again is  the same as the

ensemble  average so this  would be an illustration  of ergodicity   in the  sense that  you have

replaced a  time average by an ensemble average now what is implied in this whole business  in



some sense what is implied is that  there are certain sources of  fluctuations which lead to an

answer which is slightly different each time.

When you make this measurement over and over again some random processes are operating

internal external we do not care such that there are fluctuations in the answer when you make

this  measurement here the assumption is that the system as time goes along runs through all the

realizations  of  that  random process  is  leading to  the  fluctuations  which would otherwise  be

reflected by the small differences in the different samples in other words whatever fluctuations

are going on in  time here that is already captured at the same instant of time in the different parts

in the different copies or members of the ensemble which is why you equate the two and in

dynamical  systems as you can see when a system is ergodic.

It  says  instead  of  replacing  instead  of  computing  time  averages  long  time  average  over  a

trajectory at a given instant of time. I compute a phase space averaged over different portions  of

phase space with some given measure and that is again the same ergodicity so  it is precisely the

same thing that is  being done in both places and the hope  is that under suitable conditions the

random process or whatever else is  determining the fluctuations here is  such that a time average

could be  replaced by an ensemble average and this  is at the root of all our goddess City  yeah

yes yeah this is a good question so deep  question how do we know a given system  is regarding

first of all you have to  specify a system much more accurately to  do this given a dynamical

system given  the rules of evolution in our context.

 We can certainly test if a system is a God it or not we can run a typical  trajectory through or we

can use other  criteria for a goddess it if you know  something about the dynamics if you know

something in detail about whether it is  expanding in one direction contracting  and another and

so on we may be able to  prove a goddess City prove a goddess  city in a rigorous sense of the

word but  in practice coming to this experimental question of no I am as ng that we  have a

dynamical system for which the  equations are given to you the dynamical  system is ah without

an explicit  solution yes oh yes you can still do  that, yeah you do not need to be able to  solve

this system completely.
 
You can still prove that it is ironic you can still show that it is psychotic you do not necessarily

need to solve the equations explicitly in fact in most cases. I cannot solve things explicitly so that

is not the problem proving a guard city  for a given the complicated dynamical  system is not a



trivial matter but it  can be done in principle in most cases  on the other hand what are you okay,

the  next question how do. I know how do I do  this is going to involve something  called coarse

graining in phase space  and then looking at what happens as the  system visits different parts of

phase space.

I will talk a little more about it  a little later so it involves other  criteria other quantifiers for

ergodic  behavior which we have not yet considered  such as I break up the phase space into

cells  sufficiently small  cells and keep  track of where a representative point is I can do that

numerically  without   actually  solving  the  equations  of  motion   and  then  depending  on  the

statistics of  how different parts of the phase space  are visited and filled up I can decide  whether

the system is ergodic or not I can see what the dependence of various visits the statistics of

recurrences to various cells and how they change how  this thing changes as a function of the

cell size that will give me another.

Indication or whether the system is a  gothic or not so there are quantifiers  for a God city on the

other hand for a  purely experimental question such as  this the resistance of a piece of wire  so I

am talking about in practice it is  clear you do not have a large copy you do not have a very large

sample you certainly do not have two kilometers of  wire to play with if you did then the  ideal

thing to do would be to cut it  into one meter pieces and measure for each one of them what the

resistances and take the arithmetic average since you do not have that you take it as an  article of

faith that whatever fluctuations are currently remaining portions are all present.

In a given sample over a period of time given  enough time and therefore you use just  one

sample but you repeatedly make  measurements in order to find an average value and then the

hope is that these  two averages are exactly the same thing  if the system is ergodic if it's got it

so this is the point of what it in fact  when you do statistical mechanics or thermodynamics you

are using a coda City essentially because what is going on is  that you put a macroscopic system

under  given experimental  conditions such as  for instance in contact  with the heat  path in

thermal fluctuations a thermal  equilibrium.

In contact with the heat bar  and then you assume that the system is  ergodic in other words a

statistical  average over a given ensemble with a certain probability distribution is  enough to

give you long time averages  for the system because you cannot follow the trajectories of a

complicated set of  interacting particles in time but you  assume that whatever information you



would have got by doing the time average  is already there when you do the  ensemble average

and then it only  remains to write down the correct  measure the correct probability  distribution

and that is the task of  equilibrium statistical mechanics so  once again you do precisely that now

what is the reason why you are able to do this again.

You do not have an  infinite number of copies of an ideal  gas in a  container although when you

derive  statistical mechanics or the rules of  statistical mechanics you assume you  pretend you

do and you have a infinite  number of copies to take averages over  but a given system a single

system the  gas  in  this  room for  example  runs   through all  the realizations  of the  random

processes  involved given enough  time  so this  is  the  whole  point  for   instance  in  different

samples the  molecules would be at different positions at the same instant of time  the assumption

is given enough time the  molecules of a single specimen would run  through and assume all

those positions.

So you certainly have to do an averaging  for a sufficient amount of time that you  think you've

got a satisfactory enough  long time average which could then be  compared with the ensemble

average now since equilibrium shun time in systems  like this is very short this is  actually true in

most  cases  in  practice   need  not  always  be  true  if  the   relaxation  times  in  the  system are

extremely small then this is no longer  true if the system is extremely sluggish  and there are time

scales for equilibrium  shin or the running through of all the  realizations which are much larger

than  the time scale on which you make  measurements then the system could get  stuck.

In one or two preferred  configurations then it is no longer a  true average this happens in many

systems it's called glossy dynamics it  is again happens once again when you  have extremely

sluggish systems  with very complicated what are called  very complicated or rugged energy

landscapes so you do not have clear free  energy minima but you have minima on all  local

minima on all scales and then the  system could get locally trapped in some  place and take a

long time to get out of  it.

And then of course it is not easy to  take averages after that in such  situations so they do these

situations  do occur in physics everywhere but for  us in the study of dynamical systems the

equations themselves specify everything  so in principle that is all the  information you have and

everything  has   to  be  derived  from  there.  So  let  us  go  back  now  and  consider  what  one

dimensional maps had to tell us we looked at the logistic map.



(Refer Slide Time: 11:14)   

We looked at it at fully developed chaos  and we discovered that it had an  invariant measure and

invariant density  which was non-trivial and had a kind of  square inverse √ shape so for  the

logistic map at μ = 4 this  was a map f of X = 4x times 1  = X we had fully developed chaos the

Lyapunov exponent λ was =  log to the same as for the Bernoulli map  and the invariant density

this was =o 1 √ x times 1  -X  k so this is where we have got once you  have this then it is not

hard to compute  various physical quantities because the  average value of any function of X is

simply its weighted average with this  invariant density and that is guaranteed  to be the long

time average and of  course you know that apart from a set of  points of zero.

Measure all points in the  unit interval lie on chaotic orbits and  these orbits wander back and

forth  without settling down anywhere and they  fill up the interval according to this  density

which looks like this  ok  now there are certain universality is  about this map which are common

to all  one hump maps of the unit interval we  will talk about some of these but there  is another

phenomenon.  I  would like  to  talk  about  today and that  is  the  phenomenon of  intermittency

comes in many varieties and very roughly speaking it is the phenomenon by which a chaotic

system  displays periodic behavior.

In between or  apparently periodic behavior instead of  being fully chaotic for long intervals  of

time and then it is followed by  bursts of chaos followed by bursts of lamanrity  which is regular



behavior of some kind or approximately periodic  behavior so if you look at the time  series of

any  variable  such  as  X  it   would  not  show  the  truly  chaotic  up  and  down  motion  in  an

intermittent  situation it would actually show long  bursts of periodic behavior and then all  of a

sudden once again you have chaotic  behavior now how does this phenomena arise several routes

to intermittency as  I pointed out.

But the simplest one of these is the following they can draw in pictures and show you what

happens.

(Refer Slide Time: 14:03)  

Suppose you had a chaotic one  dimensional map here is the bisector which looked like this and

this was the  map function it is easy to see that in this case you have an stable fixed point  here

and an unstable fixed point here  where the slope is >1 so  if you start with points in between

they  would end up at this point you have  started points here it would end up in  this stable fixed

point now suppose you varied a parameter such that this map  function as the parameter very

moves up  and there comes a stage when it is got a  tangency at that place so the slope is 1 at the

point of tangency and then as you  vary the parameter further the thing  moves out and goes off

like that there may be other portions.



To this map  function but locally in the neighborhood  of this point where of tangency suppose  it

looks like this as you tune a parameter and  an example shortly what would happen and  here is

an example right away suppose  you consider xn + 1 = some  constant  μ + xn +s X and 2 for

instance near the origin so I have  shifted this point to the origin and the map looks like that what

would happen  well clearly if you had the map near the  origin if mu is 0 then 0 then it is xn  +X

N 2 and it looks exactly  like this there is a point of tangency  with slow plus 1 and then it takes

off  like an X 2 so this would correspond to μ = 0 and this  would correspond to positive values of

μ.

But it just moved off from there  completely and this would correspond to  negative values of μ

so as you cross μ =0 from left to right the  picture would go like this from here to  there now at

this place at this in this  situation there is no problem this thing  here is a stable fixed point things

get  attracted to it at this point you have something that is marginally indifferent  marginally

indifferent marginally slope  = 1 so the fixed point is  marginal here as you come in here things

would flow into this point but if you  started off on this side things would  flow out so you would

have a behavior like this in here could go in but if you started here things would get out  in this

situation if I start here I go  to this function.

I come here, I go here, I  go take the staircase route and then I am off as you can see if this is

infinitesimally close to this point the  time the bisector there is a tunnel  region where the system

takes a long  time to get out of this tunnel region  and then eventually it does and does  chaotic

motion elsewhere and then once  it gets trapped in this region again for  a long amount of time

there is again  approximately period regular behavior it is not really going anywhere it is  stuck

in this tunnel and the moment.

It  clears the tunnel it goes off gets out  and comes back we can even estimate how  long it would

take to cross this tunnel  behavior this tunnel region and  this is type 1 min intermittency the

simplest type of intermittency  we can easily estimate how long it would  take to get out of this

tunnel region as  a function of this parameter mu which is  supposed to be infinitesimal here so

mu  just a little bigger than 0 μ =  0 and this was new <0 so let  us look at this map here and say

is xn  + 1 is μ  +  xn + X 2  so it is clear that xn +1 - xn  μ+ X 2 and in this  region the dynamics is

essentially  differential dynamics because it is  making ever.



So small steps and I can replace the difference equation by a differential equation in time and it

is clear this thing here is just the first derivative so it looks like DX over DT is approximately μ

+X  2 itself  in  this  region  which  have  drawn very  exaggerated  way  but  the  solution  that  is

obvious.

(Refer Slide Time: 18:57)  

Because it says √of 1 /√  μ can  inverse x over √ of μ =t as ng that i start near  0 at the odd at T

=0 and I  move out it is of this form so that  immediately says that X is like √ μ and T roomier  in

other words to reach a point X to the  right of the origin you need a time  which is related to the

space X by this  relation here and what happens to this  when T hits T root μ hits π/2  becomes

infinite.

So essentially it says  that to cross this tunnel region the  time of crossing T is of the order of 1  /

√of μ that is the time  it takes to get out of this tunnel  region in an order of magnitude way that

is the reason why if μ is infinitesimal  and you get closer and closer it is going  to take longer and

longer in other words  the laminar interruptions the laminar regions in this chaotic time series are

going to become longer and longer and it  looks like the system is not chaotic at  all but in reality

it  is  except  that for  long bursts  of intervals  of time you would SC see essentially  periodic

behavior  or  regular  behavior  now this  kind  of  thing  is  seen  in  experiments  in  a  variety  of

situations in liquids for  instance very well known.



That there are  models of liquids dynamics of liquids  fluid dynamics this appears all the time

there  are  many other  areas  in   semiconductor  physics  chemical  reactions   and so on where

intermittency has been  seen different types of intermittency  have been seen the reason I said

this is  called type 1 let me mention this very  briefly and perhaps we will come back to  this little

later is the slope at this  point becomes 1 this is in marginal  fixed point but in higher dimensions

if  you have maps in more than one dimension  then the marginality appears not when  the slope

hits one alone.

But in the eigenvalue plane of the local Y acoubian  matrix every time I glen values cross  the

unit circle you have this kind of  behavior you have marginality  the three ways in which I glen

values  can cross this unit circle one of them  is to cross the value one which is what  happens

here in a one dimensional map  they could also cross - 1 this  direction and then you have what is

called type 3 intermittency which  perhaps. I will come back to later and then  you could have a

pair of Eigen values crossing at complex conjugate points and  this will only happen in 2 or

higher  dimensional maps and then you have what  is called type 2 intermittency we will  try to

come back to this.

When we do  higher dimensional maps but right now in  one-dimensional maps the slope crosses

the value 1 and this is type 1  intermittency and what you need to know  is that this phenomenon

is very common  and it is part of chaotic dynamics and  the travel time through the tunnel  region

can increase scales like this  parameter μ like a 1 over square root  of μ now let us try to study

this in a  little more detail and see what happens  in a map which we perhaps could solve  and see

the effect of this marginal  fixed point.

(Refer Slide Time: 22:57)  



So let me do a map a map exhibit yeah there is no chaos everything gets attracted there yeah ,I

said that  the time that I evaluated was for μ >0 the situation > C when it was <0 it just got stuck

there that is the end of  it what good will it to when eventually  things are going to fall into the

fixed  point right but as I am interested in  finding out what the time scale or the way this the

intermittent region scale  as a function of the parameter in a chaotic situation in a chaotic night

when you have a fixed point it just  falls in so it is not upgrade interested  in the stable region it

will fall in  yeah so that oh but that integral is not  true anymore right and this is not true  I mean

DX / μ + x 2 is = 1 over √ μ tan  inverse x √ μ if μ is negative right then it becomes logarithms

and so on so it is of course.

The tan inverse  function and the log function are  essentially the same by analytic  continuation

right but the interpretations are very different  altogether so it is not just the same  tan inverse

function okay ,let us look at  a map exhibited intermittency let us  call it the cusp map  again this

is a map of an interval this  time say for convenience I will take it  from - 1 to 1 and it looks like

this  xn + 1 = f of X sub n =  1 -2 √ modulus x n  and x 0 is an element of yeah  between mu

equal to 32 for the logistic map has regions of values of μ where  the intermittency is displayed

once  again but the intermittency is not in the map function itself that does not  have a slope but

you will easily recognize that iterates of this could  have this behavior.

(Refer Slide Time: 25:34) 



So again a digression the logistic map itself perhaps look  like this at a value μ < 4 for  instance

on the other hand the iterates of the map would start looking like this so the plenty of opportunity

for reasons  like this to be set up there is plenty of opportunity for regions of that kind  to be set

up which could then lead to  intermittency because it is not just the  map function that determines

the  dynamics but all it is a traits as well  so that is why the map does exhibit  intermittency in

between not at fourth  at four it is fully developed chaos it  is not intermittent between 1 +√8 not

quite up to 4 1 + rotate  to another value numerically determinable the map has stable period

three cycles has a stable period 3 cycle.

So this is actually periodic it is not intermittent it is actually periodic it  is not chaotic in that

region at all so  the chaos disappears and then it comes  back so now you could ask how does this

happen we will do a little more. I will bring we will talk about it numerically let me show you

the exact bifurcation diagram for the logistic map when you this has been well studied what

happens is at certain parameter values they could be collisions between the chaotic attractor and

unstable fixed points and these could lead to things..

to four because  it is not an on to map unless mu is for  it does not fill up it does not map the

called  crises  so that  with  different  kinds  of  crises  there  are  boundary  crisis  there  are  inside

interior crises and so on and they could lead to sudden changes in the nature of that tractor and

that is what happens in the logistic map.



So to sum K yeah < four yeah yes there is when I say fully developed chaos what I mean is the

following the entire unit interval is the attractor that is not true unless μ is = 4 because it is not an

on to map unless μ is for it does not fill  up it does not map the unit interval to the full unit

interval but rather to a point which is < that. Something like μ/4 it maps it from zero to μ over

four and unless μ is one you do not hit the full interval.

So let us look at this map and see what happens yeah is another question pardon me yeah yes

yeah the system gets stuck so the stickiness if you like many dynamical systems of this kind

including some Hamiltonian systems, where you do not quite have this kind of phenomenon but

you have stickiness of some kind and we will talk a little bit about that too and here you see the

mechanism by which it gets stuck as you can see.

And so very when μ is small you could see it is really could get stuck for very long periods of

time but there is no doubt that it will escape eventually and then the system becomes chaotic

again. So it is laminar bus occur in chaotic bursts occur in the middle of laminar regions and vice

versa, so that is really what intermittency is. So let us look at this map this will fix many ideas of

intermittency clearly it is a map which is solvable where you can actually write down solutions

and so on explicitly in the following sense.

(Refer Slide Time: 29:15)



So let us first draw it and the let me draw it here and then I come back there this map is from - 1

to 1 so let us draw a little square here from - 1 - 1 1 and 1 here and this is f of X or if you like xn

+ 1 as a function of X of N and that is the origin. Now this is the bisector once again and it is

clear from here that this is =1 - y √- xn for X and negative and it is =1 - y √x n for x and positive

and the slope at any point if i differentiate this.

And compute this f  of x is =- 2 over twice √ - x and then a - 1 again, so this is =1 over √ - x forʹ

x <0 and for x >0 it is 1 over f  of x =- 1 over √ x x >0. So the slope diverges at the origin fromʹ

both sides this is a sort of cusp air and the slope at x =- 1 is + 1 and x =+ 1 is – 1, so it is

immediately evident that this graph goes like this is infinite at that point at that point and then it

is symmetric and falls back there in this fashion and this slope here is exactly one and for any

point X >- 1 it increases.

So this is the region of the marginal fixed point where you could get stuck for a long period of

time and in fact what would happen is that you do this staircase thing here and eventually go up

go there and then you get re injected and so on and so forth. So this map oh by the way the fixed

point here is unstable the slope is >1 it is easy to check now what would iterates of this map look

like.

Yeah they would even be even steeper than this for example the first iterate would look like this

go up like this and come back the slope here would always remain one for those maps. So they

would always be this marginal fixed point but then you have unstable periodic points and all the



periodic  points  are  unstable  and the  map is  actually  chaotic  but  you have  the effect  of  this

marginal fix marginally unstable fixed point here and therefore you have the phenomenon of

intermittency.

In this case we could write the Fresenius Peron equation down for this, so let us do that we need

to be able to solve this guy right down the two √s and then compute what the invariant measure

is would you like me to do that or do I take it that you will do it yeah you can also try it.

(Refer Slide Time: 32:38)

All you have to do is to write the provenance para equation - 1 to 1 dy, so let us write this as - 1

to 0 ∆ of X - F of Y but f of y 4 y negative is x - 1 + twice - y in this fashion ρ of y + = 0 to 1 dy

∆ of X - 1 + 2 √ y. Now you have to convert this to a δ functions in y find the slope of the

functions at that point divided by the magnitude of the slope and you get a functional equation

for ρ of X so this is =some functional equation which is fairly complicated on this side.

And the question is does this equation have a solution or not it is non-trivial again the functional

equation but this solution has been found and the exact answer in this case and the normalized

distribution is 1 - x over 2 which is quite remarkable because it is an explicit function of X the

linear function of X looks quite simple and if you sketch this function, since ρ of X must be non-

negative, so let us plot ρ of X here versus X it runs from - 1 to 1 and at - 1 it is =1 and at one it is

=0.



So it is simply a linear function of this kind so this is a half and this is one that is what the

invariant measure looks like. Now in your terms in crude terms why do you think the map is

symmetric about the origin, but why do you think the invariant density is piled up on the left

rather than on the right rather than being spread out uniformly. Yeah there is sort of this thing

here is doing it this marginal fixed point it is unstable it is marginally unstable but because of this

intermittency because of the fact that the system spends long periods of time here.

Remember  the  measure  in  any  region  is  proportional  to  the  fraction  of  the  time  a  typical

trajectory spends in that region and it is clear that the typical trajectory chaotic trajectory would

spend a lot of time here. So that is reflected in this fact here but unlike the logistic map where

you actually had unbounded invariant density and very little at the middle here it is not like that

it is actually quite bounded its linear goes down in this fashion and the area under the curve is

one.

I might add that this stickiness is actually sufficient to prevent you from having an invariant

density of this kind in fact you would have just a δ function here things will get stuck here the

only normalize able solution would be a δ function here unless you had this ∞ here for reasons I

will not go into here you need to have some point in the map of other than the fixed point where

the slope actually becomes ∞ infinitely shock, then under suitable conditions you can have an

invariant measure of this kind.

So what I would like you to appreciate although I am not proving this is that the behavior here

and the behavior here are related to each other you need to have yeah, suppose you do suppose or

you instead of cutting it off suppose, you did something like this suppose you came along like

this and did this or something like that so it is an then it is not an on to map I would like to have

a non to map I would like to have - 1 to 1 map down to - 1 to 1.

No not at all you do not need to have it yeah oh yes yeah okay you need not have an invariant

measure of this kind you need to have an invariant measure, for example if you took a map like

this then there is no guarantee that you have a map an invariant measure of this kind you could

just end up with a δ function here and nothing more yeah, the behavior will change the invariant

measure will change.



There is no normalize able solution which is non negative of this kind at all you could just have a

Dirac measure here you could just have a δ function here and the system gets stuck because what

would happen in that case is that instead of chaos, the maps Lyapunov exponent would drop to

zero because the effect of this stickiness is so strong it prevents the chaos from happening it

actually makes the Lyapunov exponent zero.

And you need to have some place here with infinite slope unbounded slope in order for it to

actually  be chaotic  yes they may not  young.  So the statement  is  there  is  no normalize  able

invariant measure which would do this, there is no normalize able invariant measure you need

this  thing  to  be  normalize  able  this  density  to  be  normalize  able  it  should  not  get  singular

suppose for argument is sake the density went like 1 over X + 1 what would happen then?

You cannot normalize that you cannot integrate from - 1 upwards because it is not it is it not as a

integral singularity at all, so this can happen yeah because you cannot decouple the two because

anything that comes here is bound to also go there sooner or later does not matter. Now we are

talking about what happens about reinjection we are talking about the entire dynamics not a

single  passage  talking  about  it  has  to  once  it  gets  re  injected  here  then  that  differential

approximation I made would be a reasonably good approximation.

Provided it gets re injected in a finite amount of time right, so it is the map is actually exploring

the entire phrase space it is not that trajectories are just exploring the neighbored of this in which

case the behavior is trivially determinable but you need to know what is happening everywhere

else what sort of collection region do you have, what sort of reinjection do you have and so on all

of them play a role.

And the statement I am making is that in order to have a normalize able density like this you

need to have and I am not proving this statement you need to have something which has an

infinite slope the slope has to become unbounded at some other point. I urge you to verify that

this is indeed a solution to this equation you have to first convert it to a functional equation and

then verify that this is a solution.

And as I said if you have a non-negative normalize able solution you are guaranteed by certain

theorems that the solution is unique. Now where does that get us we need to know what kind of



we have the invariant measure we need to know whether it is chaotic or not so the first thing we

do is to find out what the Lyapunov exponent is let us do that for this map.

(Refer Slide Time: 40:43)

So the λ for this map is integral - 1 to 1 DX 1 - x over 2 times log of the slope of F  of X theʹ

modulus of that and that is =log of 1 over the √ modulus x because the slope was 1 over √ - X for

ex- and - 1 over √ x for x positive neither case by took the modulus it is just this number here, so

it is mod x to the - half modulus x in this fashion of course it is an even function and that is an

odd function.

So that portion goes away and you are left with just an integral half log mod X it is easy to do

and I usually do this and the answer will turn out to be a half notice this is negative in the region

of integration so that cancels the - sign and you end up with a half, so this is certainly >0 implies

chaos but it is intermittent chaos. In fact finding this finding this invariant measure invariant

density numerically is non-trivial.

You do this by finding a taking a long time series and drawing a histogram and this thing takes a

long time to build up here so you really have to run for a very long time you have to run a

trajectory and you have to leave out the initial transient switch would be specific to the initial

current given initial conditions and then eventually you end up with this but this is an analytic

solution. You can easily check that this is an exact solution to this okay.



So we have a chaotic map with a chaotic map you still have intermittent behavior and this is

exactly solvable so it is like a paradigm it is like a model like the logistic map, now of course

you could make this uniform you could make this density uniform without changing any other

properties of this map by taking this portion of it and doing exactly what we did for the Bernoulli

shift instead of the 10th map in other words do this it is in this fashion.

So this map function would be f of x =1 - twice √ - x for x negative but it will be twice √ x - 1 for

x positive and that is sufficient to make all the difference because, now you have a marginal

fixed point here and you have a marginal fixed point here too and they compete with each other.

So you do not have any right to expect an invariant density of that kind you can write down the

functional equation once again I you to do this for this map and verify that in fact the invariant

density is a constant.

So for this new map the invariant density is simply this, so the area under the curve is again one

and it's just a constant. So ρ of x is just = 1/2 for this anti symmetric map the earlier map was

symmetric but the invariant density was not symmetric on the other hand here the map is anti-

symmetric  but  the  invariant  density  is  symmetric.  In  the  logistic  map  and the  10th  map at

parameter value to with slope to the map function was symmetric about the midpoint and the

invariant density was also symmetric.

This does not pardon me at well it will have intermittency, why not why not necessarily true not

necessarily true, because what has happened in the crude sense is that these regions have kind of

overlapped in this case. So once again it is easier to handle than the other map simply because

the invariant density, so I do not have to take weight it with any function of X everything is

uniform here yeah but the way it jumps from point to point is not necessarily periodic.

Whereas here once you are here I am drawing this in an exaggerated way but once you are here

there is a long staircase behavior that behavior is lost in this middle region and again out here

there is a long staircase behavior which is lost in the intermediate region. So definitely it would

look very periodic but not with the constant amplitude slowly increasing maybe something like

that when you are in these regions, so that is what intermittency is it is not as if it's strictly

periodic any a function which is monochromatic or periodic would just go on forever - ∞ to ∞.



So the periodicity stops definitely and if you look at it with infinite accuracy certainly it is not

periodic there is no single pleaded discernible, yeah the same oh yes I agree I agree because of

this because of this once you have a density then the time the fraction of the time T over a long

trajectory the fraction of the time that it spends in any interval is in fact proportional to a to be

pro of x of x for a normalized invariant density.

So this is certainly true this is a fraction, so if you took a long orbit and you asked how much of

the time does spend in given region that is measured directly by the integral of the invariant

density the measure of that region measured it is given directly by that that is certainly true. So

this map has interesting properties so does the other one but the other one has this extra feature

that the map is symmetric whereas this one does not.

Now you could ask why did I choose why did I choose something which went like X + perhaps x

squared here if we expand the map near X = - 1 the map function would have a leading term like

X + 1 and a term which goes like X + 1 whole 2 and so on and so forth so let us see if we can

generalize that a little bit and let me shift it to the origin.

(Refer Slide Time: 47:52)

So let us suppose your income it and maps are like this here and this map function f of X near the

origin is like X that is the leading term + something or the other so + some constant may be

multiplied by X α let us take out an X 1 + this thank you this is typically what would happen near



the origin α if it is a constant, if α is 0 first of all the nothing interesting happens it just is a map

which is going to look like this straight away linear with the slope >1 because it is slope is 1 + C.

But if α is not 0 but a positive number generically if you have a function which is expandable

smoothly around this point α would start with one and then higher powers go on like in the case

of these maps this map can be written in the neighborhood of this point as X + 1 + a term which

is X + 1 whole2 and so on in this neighborhood but in principle you could have an α which is

positive does not have to be 1.

Could be >one could be even <1, so the degree of stickiness of here as you can see is measured

directly by α and for such maps you can actually plot the Lyapunov exponent as a function of the

parameter α and it turns out that if you plot it λ versus α. Then if you are if you start at some

point like that which is certainly positive because if α 0 this is this map with slope 1 + C and this

is unstable and the assumption is the map is chaotic by its behavior elsewhere.

So it start with some Lyapunov exponent and as α increases it is getting more and more sticky

here and therefore the Lyapunov exponent actually drops in this fashion and it turns out at α =1 it

drops to zero and the map is no longer chaotic some kind of phase transition takes place. On the

other hand we also know that in the cast map for example there is a Lyapunov exponent which is

non zero which is positive and that happens because of the infinite slope elsewhere.

So you actually get rid of this stickiness of this point by having a sharp spike somewhere else in

the matter, so they do not fall in this class these maps do not fall within the purview of this

general statement here this is a technical aside I want to get too deep into this but let me go back.

You could also ask can I construct maps of this kind can I construct a map where for example I

have not a square √ cusp up there and the square √ behavior in the map function which had √ x.

And so on what about x 1/3rd or x to any other power cube √s and so on the answer is yes you can

construct whole families of these maps and whatever exponent α you have here you need to have

a 1 over α type behavior  on the slope up there roughly you need to have something which

becomes unbounded.  And therefore the nature of this stickiness here can be related to the nature

of the cast spells where to get a finite point in fact you could construct an infinite family of such

maps.



For which you have invariant  densities  which are all  sorts  of  prescribed functions  of X not

necessarily linear functions this is the inverse Fresenius Peron problem if you give me a smooth

function. As an invariant density can I construct a map of which this is the invariant density that

problem can be solved modulo certain concern qualifications and it turns out a huge variety of

such functions ρ of X you can actually find you can tailor make a map whose invariant density

the given function would be.

So that is actually done turns out we are non not too difficult problem yeah yes because of where

yeah pardon me I can find the map function yeah I can find the map function, it is a non-trivial

problem but it is doable after all the Fresenius Peron equation is an eigenvalue problem. So in

some sense you are saying you are given me the eigenvector and now you go back and construct

the colonel this is yes the whole thing is to only for certain class of chaotic systems absolutely

and in one-dimensional max.

So things are restricted to one dimension very much, so I do not know how these things I do not

offhand have direct statement about how this generalizes to higher dimensions I am not too sure

so for one-dimensional maps a great deal is known much is known about these chaotic maps.

Yeah the whole thing is we are dealing only with chaotic systems. Now let me go on to we will

come back a little bit later to understanding what coarse graining in phase space is and so on but

let me go on to a two dimensional map such maps exist too.

And let me give you in particular an example of a very simple two-dimensional map which is

invertible  and yet  exhibits  chaos  and this  is  in  fact  a  model  which  is  used  as  a  model  for

Hamiltonian systems, where as you know things are conservative. So we will look at an area

preserving map where you have chaotic behavior unlike the case of the Bernoulli map or the

logistic map and so on they do not model conservative systems but now we are going to talk

about a map which models a conservative system and yet exhibits chaos.

(Refer Slide Time: 54:12)



And the map is the following it is called the Baker's transformation or the Baker's map because it

is supposed to mimic the way in which bakers make bread from dope, Baker is not a proper

name it is common noun and it is supposed to model the wave bakers make dough which is take

the dough to stretch it and fold it back and they keep folding it back and this mixing is what is

producing  chaotic  behavior  eventually  we  saw on  the  Bernoulli  shift  or  the  10th  map  you

stretched and you folded you stretched and you fold it in one dimension.

Now let us do this in two dimensions so the map looks like this you have two variables X N and

Y n at time n and each of them runs between 0 & 1 0 & 1 and the map function looks like this, so

here's X n here is why n 0 to 1 and you take this square and do the following manipulation on it

stretch this 2 by a factor of 2 in the X direction and compress it simultaneously in the Y direction

by a factor of 2.

So at the next stage this becomes like this so this is X and that is why and 0 1 this is 2 and that is

a half and then cut this piece exactly as you did in the Bernoulli shape and put it on top here so

this goes off to this and this is xn + 1 Y n + 1. So just to see what we have done let us do the

following let us take this map and shade this region the other half so I keep track of where it is

gone and when I extend it that shaded region has come here.

Now I content put it back and that shaded region has gone there every point on the square has

been mapped onto some other point on the square but this is the transformation,  what is the



actual function and it is also clear the area has been preserved we have not done anything at all

you stretch this side by a factor of 2 but you also compress the other one by a factor of 2 and you

put the square back onto the square but you mixed up things here.

So a point here we will go somewhere else a point there we will go somewhere else and so on in

this map and what is the map function look like.

(Refer Slide Time: 56:59)

Well it says xn + 1 =2 Xn modulo 1 right because you are  going to extraction then you are going

to put things back YN + 1 is =1/2  YN brought it down provided xn was between zero and a half

otherwise you added a half to it, so you compressed it but then you cut and pasted it back so you

actually added a half to it right so this was =this so provided xn is < a ½  but it was =half + half x

n xn was >a half and the whole thing is modulo 1 everything is modulo 1.

The map is invertible it is definitely invertible because i can tell you precisely we where each

point came from there is no 221 business here every point has a unique reimage, if i started at

some point here i stretched. So it went to double this and it came to half its height on this point

here if i started at some point here, then when I stretched it came down somewhere here and then

I cut it and put it back so it went up somewhere here so certainly you can identify the pre image

of every point and the area is preserved.



So it may mix a conservative system on the other hand there are two Lyapunov exponents, one

corresponding to the stretching or contracting in the X direction than the other in the Y direction

so you have to lay open of exponents and let us call them λ sub X and λ sub y and these are easy

to write down by inspection. What would these be what would be the stretch factor in the X

direction it is the original Bernoulli shift.

So this is log 2what would λ Y be log a half absolutely right and it is clear that the area must

remain the same because after all under this map what is happening is that dx dy is going to DX ʹ

the y  this  is the area element  if you like and this  is supposed to go like any area elementʹ

expands, so it goes like e to the power λ X + λ Y t dx dy that is the whole point about the

Lyapunov exponent and it does not change, so this cancels that so the map is area preserving.

But it is definitely chaotic definitely losing information because what happens to the next what

happens to the next iterate of this rate once more and I do the same thing then it is not hard to see

but you are going to have something like this region is good get scrambled up a bit it is going to

look like this you increase it a little more it is going to get even more striated and so on. So you

are going to have a you take a cross-section here you are going to have a sort of fractal structure

this whole thing.

So certainly mixing up the entire thing so if this is pulling and cutting and putting it back cutting

and putting it back is like a baker transformation and the fact that it has one positive Lyapunov

exponent this is enough to show that it has chaos. Yes but now I pointed out that this map and I

will stop with this but this map is invertible so you should really be able to recover you are  not

losing any information in the sense that you should be able to say where you came from is that

really true or not.

We saw in the Bernoulli shift the way to understand the shift was to write x not a zero point a

naught a 1 a 2 etcetera in which case you ended up with X 1 is zero point a1 a 2 a 3 not because

you x 2 and throw away the integer part which means you got rid of the knowledge of a zero.

What would you do for the bundle for the Baker transformation? One of those goes to the y

coordinate.

So there is a clever way of doing this and I will stop with this in the clever way is to say suppose

X 0 is this and suppose why not the initial is zero point B 0 b1 b2 or not right the pair X0Y 0in the



following strange way, so put a dot here and write a not a 1 a 2 and write this guy backwards V

naught b1 b2 in this fashion represent the pair X 0 Y 0 by this strange number and then in the next

shift all it does is precisely what it did earlier.

So you have B to B 1 B 0  a 0 dot a1 a2 so if this is X 0Y0 it is represented by this then x1 y1 is

represented by that half which was sitting here and is moved over to this side so you haven't lost

anything in other words you can tell precisely where you came from so this in fact establishes

that the map is invertible you are not losing anything at all and yet you have chaos.

So it is important to remember that chaos does not imply always shrinkage of volume and loss of

information you still  have exponential sensitivity to initial  conditions but yet you could have

something which is  invertible  in  the sensor completely solvable if  you like and still  display

exponential sensitivity. So I stop here this time and then we will take up some other aspects such

as course next time you.
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