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We saw some properties of the Bernoulli map in the Bernoulli shift last time let me introduce you

to another map which is similar to the Bernoulli map which has similar properties and is closely

related to it and it is perhaps a little easier to understand because it is not a discontinues map and

this is the so-called tenth map.

(Refer Slide Time: 00:32)



Which looks like this it is given by the function xn + 1 is twice xn doubling map as before

provided 0 ≤ s Xn ≤ 1/2 and it is 2 - 2 xn for a 1/2 ≤X n ≤1. So again the map of the unit interval

specified by this piecewise linear function we can draw this map very easily.

(Refer Slide Time: 01:09)



So here we have X n and then xn + 1 and it is 0 to 1 on both sides and this goes up there and

comes down here at a point 1/2 the map changes slope from + to 2-2 again it is an on to map of

the interval no point is left uncovered, it is not one to one because it is clear the map is not

invertible for every value of xn there is a unique x and + 1 but the converse is not true for every

xn + 1 there are two values of X sub n and therefore if you give me a final point X sub n there

are 2 to the n possibilities for x0, from which this final point could have arisen.

So it is not invertible and it leads to chaos for very obvious reason because the phase space is

bounded this is the bisector there is a fixed point here at the point 2 thirds, so the coordinate of

this is two-thirds as you can easily check and it is unstable because the slope has magnitude to at

this point the fixed point at the origin is also unstable, again the slope is 2. What are the iterates

of this map look like well the first iterate of this map if i plot x versus f2 (X).

This would be something like slope 4 goes up and comes down and now you have once again

you have, the fixed point of the map and then you have a period to cycle between these two

points  and then an unstable  fixed point  here as  before.  And as you take further  and further

iterates of this map you have many more spikes up and down and the slope at every one of those

points is > one in magnitude and therefore not only the fixed points of this map but also all the

periodic orbits of this map are unstable periodic orbits.

It is easy to check once again that the points which lie on periodic orbits and a set of measure 0

they dense everywhere on the unit interval and they are a set of measure 0 once again and the



map is fully chaotic, it is completely chaotic in the sense that any typical initial condition from

the set of irrational values of x would lead to an orbit that does not settle down to any final point

and it wanders uniformly over the entire interval. We still have to find out how a ergodic is this

system on the unit interval.

It  is  an  ergodic  system that  is  clear  because  typical  initial  points  sooner  or  later  go  to  the

neighborhood of every point on the interval. So by our earlier definition of ergodicity this is an

ergodic system, it is in fact a system which is exponentially unstable in the sense that it has a

positive Lyapunov exponent in this case and the Lyapunov exponent is again log 2 we will verify

that will prove that rigorously in a little while but it is exactly the same in magnitude and value

as the Bernoulli shift.

In fact in physical terms in the Bernoulli shift what we did was to take the unit interval 0 to 1 we

stretch this interval by a factor of two, so it really got doubled when you do it to X n so it went

from 0 to 2, 2 and what did the Bernoulli shift amount to it amounted to taking this part of it

cutting this if you like and putting it right back on top of this, so you ended up with something

that looked like this, just pictorially between 0 & 1.

So this thing was snipped off here cut and put back onto this in this fashion and this is what led

to the non inevitability of the map because you really have to pre images, for every point and

then for pre images if you go to iterates backwards and so on this non invertibility is what led to

chaos eventually led to the complicated properties of this map. So you  μ st not get deceived by

the piecewise line rarity of the map it is only piecewise linear but it is a nonlinear function of the

same.

Because we saw that a linear map was very trivial it had a single fixed point in general and that

was it, on the other hand a nonlinear map has these very strange properties the fixed point is

unstable in this current of these conditions all the periodic orbits are unstable and the entire unit

interval becomes the attractor in this case a completely chaotic attractor because a the phase

space is bounded, B there is exponential sensitivity to initial conditions and C there is a dense set

of unstable periodic orbit buried in this phase space.

So all the conditions we laid down for the existence of chaos are met and these are fully chaotic

maps both the Bernoulli shift as well as the tent map completely chaotic maps. We could try to



trace  the origin of this  chaotic  behavior  in  the following way we could say well  instead of

looking at this particular map, the tent map which code which becomes an onto map suppose we

did the following.

(Refer Slide Time: 07:01)

Yeah still in the job yeah it is simply the same thing because what he is pointing out is that in the

Bernoulli map you started with this and then you sort of speak stretched it like a rubber band you

stashed it all the way from 0 2 to 1 and then you cut and put it on top in this fashion, this is what

you did, so this portion was cut and placed on top right on top of the unit interval between 0 and

1.

In the 10th map on the other hand you started with 0 to 1 and then you stretched it by a factor of 2

all the way and then instead of cutting and pasting on top you bent it for backwards. So in that

sense what you did was to go here and then bend it backwards, so this was flipped over and bent

backwards and again you produce this 221 effect and once again all the periodic orbits were

unstable and so on.

So you can do it in many ways in phase space you do the stretching and then you cutting pasting

cutting and putting it back or you stretch it and bend it back in this fashion, so these are typical

mechanisms by which chaotic attractors are produced we will see if some more examples of this

in higher dimensions so coming back to the tent map suppose we look at it as a member of a

whole family of maps of the following kind.



(Refer Slide Time: 08:28)

So here is the map function here 0 to 1 there is the bisector and suppose the map function is of

this kind it is a line with some slope are up to a 1/2 and then it folds back to one on this side here,

let us write this map down so we have xn + 1 or f of X in this case the map function is = depends

on what you would like to call our so let us call this to our X with slope to our at the origin for X

0 ≤x ≤1/2 and what is the rest of this = you would like it to vanish when X =1 right.

So it is to our x 1 - x for a 1/2 ≤x ≤1 and it is continuous because when x is =a 1/2 it is just our

the maxi μ m value is just R and that is true here too, so this point here corresponds to our the

slope at the origin which is the only fixed point in this case is to our, so when is this fixed points

stable? When to R is < 1, so the fixed point at X =0 is stable for two are < one or are < a 1/2 what

happens at r =a 1/2 there are =a ½.

Exactly = 1/2 it is evident that this map goes right up to 1/2 and comes back in this fashion, so it

falls  on the bisector and then comes back here,  so this  corresponds to our < a 1/2 this map

corresponds to R = 1/2 and where are the fixed points of the map at r =a 1/2 everywhere this map

is degenerate everywhere all these points remain exactly where they are. What if I started with a

trial value ≥ a 1/2 for this map at r =a 1/2 what would happen?

Well let us  start here by this staircase construction and in the next step I would go here and that

is the end I stay there, so it is clear that this map is degenerate the entire set of points from 0 to



1/2 is a fixed point, so to speak what happens as soon as our exceeds a 1/2 well here is a typical

value our exceed > a 1/2 and it looks like this, so in this map 1/2 is < R is < 1, remember the

peak is at r.

What sort of fixed points do you have now you have a fixed point here but you have another

fixed point there and the slope in each of these cases is two r in magnitude and that is > 1,

therefore these are unstable fixed points definitely and it is easy to see that the iterates of this

map would all lead to unstable fixed points and therefore all periodic orbits are also unstable

immediately. What happens at r =1 it becomes the original 10th map it is called the symmetric

10th map at fully developed chaos.

Because we will see why it is fully developed chaos in a second, so this is the map for r =1 this is

the original 10th map and the entire unit interval is now covered it is an on to map and you have

a chaotic attractor, which runs all the way from 0 to 1 but now let us try to draw a bifurcation

diagram for this for all the equilibrium points in X as a function of the parameter r. 

(Refer Slide Time: 12:54)

So if you did that so let us call these fixed points let me just call them equilibrium points just to

have our idea straight as a function of r here 0 and here is r =1 what would this figure look like

till r is < as long as r is < r 1/2 there is only one fixed point and that is at 0 and it is a stable fixed

point, so by r normal ways of drawing the bifurcation diagram this is stable here nothing else

happens what happens as soon as our exceeds a ½.



Well at r =1/2 it is clear this entire set of points if you like is fixed points degenerate map and

notice if our takes on a value between 01/2 and one there is no way you are going to reach any

values > R because the function never takes you beyond the point of itself. So the unit interval is

not covered wherever you start eventually you are going to fall into a window between 0 and r

and in fact what you do is fall into a window and at r =1 the entire unit interval is an attractor.

It is a chaotic attractor but in between in between till a 1/2 this is one in between after this there

are no stable fixed points there are no stable periodic points either, the system starts becoming

chaotic and the region into which the iterates fall gradually expands till eventually it sort of falls

into  the  unit  interval  here.  But  what  happens  here  is  very  interesting  a  little  band  emerges

numerically one can explore this and the system falls to this region here.

There  is  a  little  window in  X which  is  never  covered  as  importantly  you  never  reach  that

eventually so that factor is in two bands, there is a band here and there is a band here and beyond

a certain value of R which you can discover numerically, these two bands merge once again and

the entire you will interval here is a single band which continuous goes on all the way till this

point and in between you do not have any periodic cycles of any kind which are stable at all.

We will explore this numerically I will bring a figure which or demonstrate this on a computer

which will show you how this attractor gets built up, so chaos actually starts beyond a 1/2 but it

is not fully developed chaos because you do not have complete the entire interval is not k a part

of the chaotic attractor this portion and this portion those values of X alone correspond to the

attractor and as you go along that gets bigger and bigger till eventually there is one continuous

set all the way till 1.

These curves are not as smooth as I have indicated here it turns out this curve is a fractal curve in

itself one of these is a fractal curve and there is a fair amount of intricate numerical complexity

that goes on here, even though the map looks extremely simple. So even in this extremely simple

map this  bifurcation  diagram is  fairly  intricate  we are going to see many more complicated

examples but this itself already tells you that very simple one-dimensional dynamics all you are

doing is a piecewise linear map of this kind.

In graphical terms all you are doing is to iterate this function over and over again for r > a 1/2

and you end up with this very intricate kind of dynamics automatically. What do you think is a



Lyapunov exponent for this map, we saw its log to when r was =1 but what is the Lyapunov

exponent for this map for an arbitrary value of r, exactly it is just two are because the slope is

uniform everywhere and in these one-dimensional maps, remember that this quantity F  of Xˋ

modulus is the local stretch factor it is the cobian of a transformation as you can see.

If you change from X to f of X this is in fact the air cobian of the transformation you take its

modulus  and you take the log of this,  gives you the local  stretch factor  the local  Lyapunov

exponent if you like and of course once you have a constant piecewise linear map with a constant

value of mod f  of X, everywhere that is the Lyapunov exponent for the map. We are going toʹ

shortly come across a map where this is not a uniform it is not piecewise linear this curvature in

the problem.

And then this will not any longer be true but right now we see that this is in fact the Lyapunov

exponent everywhere so let me write that down for this pardon the log yes Lyapunov exponent is

log so my statement was mod F  of X gives you the local stretch factor and its logarithm givesʹ

you the Lyapunov exponent. So this map has λ the Lyapunov exponent λ =log to. What happens

if R is < ½?

If R is < 1/2 you have this figure yes the Lyapunov exponent is in fact negative what does that

suggest to you that is going towards the entire phase space is shrinking towards the fixed point.

So even that works out as you can check and when this chaos happen when the chaos or start off

at what is what is the onset of chaos in this problem at exactly a 1/2 slightly infinite simply to the

right of a 1/2 you have a positive Lyapunov exponent because log to r when r becomes > 1/2

becomes log of a number > 1 and becomes positive.

So chaos is characterized by a positive Lyapunov exponent that is what I meant by exponential

sensitivity to initial conditions if the largest layup and off exponent in a system happens to be 0,

you have no chaos in this problem it has to be at least one positive Lyapunov exponent. Now we

talked about one dimensional phase space X is a single scalar variable, so there is only one way

up and off exponent but in a D dimensional phase space or an N dimensional phase space there

are n directions.

And therefore in principle you could have n lay upon of exponents but you need to have at least

one of them positive in order to have chaotic behavior you could have more than one positive



and this can happen even in cases where the phase space is bounded, even in cases where the

volumes are preserved because there could be some directions in which you have stretch and

some directions in which of contraction and as long as you have a direction which you have a

stretch you have chaotic behavior under these conditions have specified.

You could even have a system in which there is an attractive and you could have chaos in the

sense that you could have a three dimensional system, in which the attractor falls into maybe a

two dimensional  manifold  or  even some fractal  manifold  dimensionality  < 3 but  they could

always be a stretching direction.

(Refer Slide Time: 20:58)

So in sort of heuristic terms think of it in this fashion if I start with points which are kind of close

together in a circle like this and suppose this way space area shrinks to a line but suppose it

shrinks in this fashion and becomes a line finally. So in this direction things are shrunk we have

gone to a line but in this direction they have expanded to system size in this fashion and therefore

initially neighboring points could have expanded arbitrarily far to system size itself, that itself

implies loss of information and possible chaotic behavior.

So this is typically what happens even though the phase space is bounded, even though the whole

thing is compact even though the system could be dissipative. So that space volumes actually

shrink with time they could still  be chaos in the problem because you still  lose information



initially  arbitrarily  close  points  could  diverge  exponentially  fast  with  a  positive  Lyapunov

exponent, at least one positive Lyapunov exponent that sufficient to produce chaos.

So in this figure in this particular map we see that the system proceeds very rapidly to chaos it

goes straight away from a stable fixed point to some kind of degenerate map and followed by

chaos at once no periodic orbits this is not very generic this happened because of the particular

shape of this map that we happen to take, we can take other maps where this will not happen and

you might expect a slightly more gradual approach to chaos.

And there  are  several  routes  to  chaos  and  dissipative  systems,  is  this  system dissipative  or

conservative?  How  would  you  classify  this  what  would  you  say  I  would  classify  it  as  a

dissipative system we make will  come back to this and I will  point out why this is really a

dissipative system in that sense in us in a certain specific sense. We look at conservative systems

conservative maps which still have chaotic behavior yeah.

I really verified as far as the system itself it has to be dissipated absolutely this kind of thing has

to be dissipated but we will look at a map an artificial map no doubt we will look at an example

of slightly higher dimensional Bernoulli shift in which you do not have dissipation, in the sense

that the map is invertible, the area is preserved and yet you have chaotic behavior so we will get

back to this okay.

So now the next thing I want to do is take another prototypical map where things become a little

more complicated and this has to do with the logistic map.

(Refer Slide Time: 23:59)



This was one of the first maps but perhaps the first map, where many of these features were

elucidated to start with. It is a very simple-looking map but at the same time it can become very

intricate indeed let me show you what happens here this map is parabolic, it is just a parabola

and it looks like this. So the map function is given by xn + 1 is =xn x 1 - x n  μ ltiplied by a

certain constant here and many names for this constant let me call it μ.

μ is a real number a positive number and when are the fixed points of this map, where 0 is

obviously a fixed point and this perhaps one more fixed point we have to draw this thing here, so

let us look at it. One is not a fixed point now 1 - 1 over μ is a fixed point clearly one is not

because at one this vanishes but this side does not here.

(Refer Slide Time: 25:13)



So the map looks like this in fact we should draw the full map and then we will see why I am

going to restrict myself to the unit interval, so let us put x here and f of x which is μ times x

times 1 - X μ is positive, the map vanishes this quantity vanishes at both 0 and as well as one. So

here is one and this map perhaps looks like this it is a parabola it goes up and comes down in this

fashion.

The largest value is at a 1/2 that is obvious because x times 1 - x has the maxi μ m value at a ½,

now I start with μ a small positive number and if this is the 450 line here it is evident that this is a

fixed point and it is stable because the slope near the origin is just μ and as long as μ is <1 this

slope this magnet this fixed point is stable every point is going to get attracted to it by the way

this map it goes off like this and then quadratically.

So it is quite clear that is going to intersect at some other point here and this fixed point is going

to be unstable and this is the figure from μ < 1, we are not really going to be interested in points

outside this unit interval because if you start with some point here, it is going to get flow into this

and if you start with points out here beyond this fixed point they are actually going to disappear

to ∞and similarly on the other side things are going to escape to ∞.

What happens when μ becomes =1 at μ exactly =1 this fixed point becomes tangential in this

fashion, I have drawn this badly this value is actually 1/4th because that is the maxi μ m value of

x times  1 -  x  between 0 and a  ½,  so it  is  not  drawn to scale  but  this  fixed point  becomes



marginally stable at μ =1 what happens beyond μ =1 it crosses. So let us draw that separately and

now let us start focusing on points in the unit interval.

(Refer Slide Time: 28:03)

So here we r 0 to 1 that is the bisector and I am plotting f of x versus x and f of x is μ x times 1 –

x 6, so originally from μ < 1 I had something like this perhaps at μ =1 I have this is a marginal

fixed point and it is immediately clear that as soon as μ exceeds 1 it does this the slope here has

exceeded 1 but the slope at this fixed point is <1, so it becomes stable and this fixed point at 1-1

over μ that becomes stable we can easily compute what the value of that slope at that point is.

Now what is the value of the slope at this point let us compute that, so f  of x is = μ  - 2μx soʹ

what is the value of the slope at this fixed point. The slope at the origin is μ of course as we

know very well what is the value at that point it is 2 –μ.

(Refer Slide Time: 29:52)



So it is evident that the fixed point at μ=0 is stable form you <1 at μ=1 it becomes unstable and a

new fixed point gets in which is given by this as soon as μ exceeds 1 from you <1 remember this

followers on the negative side. As soon as μ exceeds 1 you get a new fixed point in this unit

interval and it is slope the fixed point at sorry X =0 at x =1 - 1 over μ f  at this point 1 - 1 over μʹ

is =2 –μ.

So the mod of this is this prime, so where is this thing stable till what value of μ is this table till

three because we want the mod of this, so from μ=1 2μ=3 this fixed point is stable right at μ=3

this map is out here till three quarters. So you have this and the slope here becomes =1 at μ=3, in

fact we can start writing down the Lyapunov exponents now because if you have a stable fixed

point then the Lyapunov exponent is simply the log of mod F  at that fixed point because if youʹ

wait long enough the iterates all the iterates fall into this point and therefore if you look at the

definition of the Lyapunov exponent.
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Which remember was = λ by definition was =limit n tends to ∞1 over n summation j = 0 to n - 1

log mod F  of the iterates XJ and now it is clear that if there is a fixed point then all these logsʹ

are going to this XJ is going to be dominated by the value at the fixed point and that is going to

come out and that is going to divide this n is going to divide that and give you that as the fixed as

the Lyapunov exponent itself. 

So the Lyapunov exponent is log μ as long as μ is <1 between one and three the Lyapunov

exponent is log mod 2 –μ and it is again negative showing that there is a stable fixed point, so let

us write this down λ for the logistic map =log μ four μ <10 <new <1 <1 it is =log mod 2 –μ again

for one <μ is <3. So you can see what is going to happen when μ becomes =1 then this lay open

of exponent vanishes and you think the fixed point has become unstable and therefore the system

is going to go chaotic like the earlier 10th map but that does not happen.

This fixed point takes over and it is log is <1 here and there for you again have stability, now let

us draw the bifurcation diagram and see what happens.
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So we need a long graph here μ eventually I will run out of space but here is 0 till one which is

not very interesting view itself is the fixed point is at 0 and it is got a Lyapunov exponent is

negative,  so you have this as a function of X equilibrium and then this fixed point becomes

unstable so you should draw the bifurcation diagram the dotted line here and you have the other

fixed point which is that one - 1 over μ, which turned out to have negative values at μ=1 it is 0 it

crosses this.

And then takes over from here and this fellow becomes unstable earlier that was unstable what

kind of bifurcation do we had at μ=1 exchange of stability bifurcation right and then you have a

fixed point which goes along and this goes along till you have till you hit the value free. At three

this guy here becomes 0 and you would expect okay maybe now we are going to have a chaotic

behavior. B

But what happens at three is that the map looks like this but what is the iterate of this map look

like what would the first iterate look like if you trade this map this map here at μ=3.
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I am not going to be able to draw it to accurately but it starts looking like this let us draw it a

little better than this starts looking like this and you have this behavior this was the fixed point at

1 - 1 over μ, but then you have two other fixed points for the iterate this is F2 the fixed point of

the origin continuous  is unstable of course and this fixed point also becomes unstable μ=3 but

then you have this and that and that is what sort of point orbit is that?

It is a period to cycle it is a period to cycle, so the system bifurcates to a stable period to cycle

which you discover by solving the equation f of f of x =x this is a fourth order equation because f

of x is quadratic and therefore f of f of x is a quarter and you have a fourth order equation but

you can solve it easily because x =0 is a root which you do not want it corresponds to this and x

=1 - 1 over μ is this route and you do not want that.

So factor out x times x - 1 + 1 over μ and the rest is a quadratic which will tell you what these

two roots are simple exercise and these two points form a period to cycle which is stable and the

system falls into that or into this flip-flop between these two. So the bifurcation diagram now has

a new kind of bifurcation this becomes unstable but then it bifurcates into a period to cycle this is

not a pitch fork bifurcation, looks like a pitch fork but it is not.

Remember in a pitch fork bifurcation a stable fixed point became unstable and created a pair of

stable fixed points or critical points, here a stable fixed point bifurcated by exchange of stability

to another stable fixed point and now it bifurcates into an unstable fixed point and a stable period



two  orbit  cycle.  So  this  guy  here  this  and  this  is  a  stable  period  to  cycle  and  the  system

asymptotically flips between this value and that and this kind of thing is called a flip bifurcation.

So at μ=three you have a flip or a period doubling bifurcation because a period has doubled what

would the λ be here suppose these two points which are some functions of μ. Let me call this

alpha  of  μ  and  this  point  here  made  of  new the  functions  of  μ  of  course  what  would  the

Lyapunov exponent be in this region? It would start at 0 but then it would become negative

because you have now found a period to cycle which is stable.

And what happens to the Lyapunov exponent by this definition you have two values here in this

summation is not it. So what would the Lyapunov exponent be in this case, so it would just be

log modulus F  of α F  of β will just be that right but me it is corn because eventually wait longʹ ʹ

enough this thing becomes a constant at this value superior to cycle and then the end here divides

this under the limit it would just be this product of logs that is <1.

So it  is  stable  mod this  product  is  <1 because  the  period  to  cycle  is  stable  once  again  the

Lyapunov exponent drops to negative values and this happens for three ≤ μ  ≤1 + √ 6 and that is

easy to verify all you have to do is to find out when this number here hits one and it hits one at

root 1 + √6 here. So that happens somewhere here this is no longer to scale this is 1 + √ 6 when

matters begin to happen very fast as you change μ at this point this period to cycle becomes

unstable.

And you have a period for cycle coming out that becomes stable, so it is not this iterate but you

have the iterate with a period for cycle as well as this these points and these are unstable now

that becomes stable so this is a period for cycle a little more change in μ and it becomes a period

8 cycle. So the next bifurcation happens here and this period doubling cascade of bifurcation

starts  happening, so you have cascade as μ increases and it happens for smaller  and smaller

intervals in μ.

So  eventually  what  happens  is  that  you  have  2  to  the  N  period  cycle  where  n  becomes

unbounded and that happens at a finite value of μ this is called μ ∞and it is =0.5 66 etc what 3.56

this is known to 15 decimal places for this map one can compute the value of μ ∞ numerically

there are lots of scaling properties that happen here which I will not go into right now. But you

have the end of the period doubling bifurcation cycle this one at any rate etcetera.



So you have a whole lot of points which form part of this our tractor not a full interval it is not a

continuous interval at all, the limit points of all these period 2 to the N cycle out here is a set of

points which is got a fractal dimensionality between 0 and 1 it is of the order of point 57 or

something like that. So it is a dust to set of particles a set of points on the unit interval yeah I will

come back and explain what fractals are so when I do that to remind me to go back and tell you

this.

It is not a continuous interval at that point at that point the Lyapunov exponent again hits the

value 0 and then after that it has nowhere to go it is actually exhausted stable fixed point, theory

a two cycle period for cycle period eight cycles etcetera all these are exhausted and the system

becomes chaotic. You might ask it never went through period six it never went through a period

nine and so on it went period 1 to 2 2 2 q 4 and so on up to 2 ∞.

So it still has surprises in store at this point the system becomes chaotic and after that you have a

whole band in which the system dress exactly as in the case of the tent map beyond r =1 but it is

not the full interval as yet however. In this case the system has further surprises in store and now

let us draws the Lyapunov exponent and sees what happens.
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So I plot as a function of μ I plot the Lyapunov exponent lambda there is no chaos as long as μ is

<1 there is a fixed point here and it is some negative value it is at log μ and as μ=0 of course is

that - ∞ but then it comes up and does something like this it is negative. At μ=1 it is hitting the

value 0 but then it starts becoming negative once again because it is now given by log mod 2 –μ

and this goes on till the point 3 where again it hits 0.

And incidentally in between one and three at μ =2 something interesting happens, let us draw the

map for μ=two. So I would like to draw you = 2 the map function f of X is twice X into 1 – x.

The fixed point is at a 1/2 because it is at 1 - 1 over μ and what is the slope at that point it is two

–μ right, so the slope is 0the log of that is - ∞. So what has happened is that exactly at μ=2 the

map looks like this and the slope here is 0.

Remember that the stability of a fixed point was determined by the modulus of the slope at that

point if that slope was <1 in magnitude then we said it  was stable and if it  was > 1 it  was

unstable =1 it was marginally stable but at μ=2, the slope here is 0 that is the least value the mod

of the slope can take and it is evident whenever you start that in this case how would you get to

this point I mean it is quite clear that this is the smallest magnitude you could possibly have and

in fact the map becomes super stable.

At that point this fixed point becomes super stable the log of that plummets to - ∞, so this goes

off to - ∞ and that is because at μ=2 the fixed point is super stable, so the Lyapunov exponent

goes all the way to - ∞but me the significance is that it is the it is the best stability you can have

cannot have anything beyond that because in this map if I start with any point here I hit this and

then I hit this the approach to this is extremely rapid not here because it does not really wander

around at all.

That  was simply degenerate  that was simply degenerated yeah that was simply degenerate  I

mean the entire map function lay on the bisector itself, so nothing moved in that case yeah I

agree that is the sort of degenerate case is very unusual but here when the slope now I am not

saying this is more stable or less stable i am simply saying it is a matter of terminology that when

the slope becomes 0 then the map is the fixed point is said to be super stable. It is stable if the

slope  is  <1  in  magnitude  and  when  it  is  0  which  is  the  least  value  it  is  super  stable  the

significance is that the corresponding Lyapunov exponent goes to - ∞tends to - ∞.



So the local stretch factor or a contraction factor is the biggest it can have yeah yes I am not

saying lambda is an indicator of stability and saying λ if it is positive as an indicator of instability

but when you have isolated fixed points then λ tells you in some sense what the contraction rate

is and the contraction rate here is a largest. And that is because it is directly measured by the log

of this modulus of this slope here.

There is another measure it says more precisely how contraction occurs in phase space as you

move forwards in time or expansion occurs we move backwards in time and that is measured by

something called the kolmogorov entropy, I have not introduced that as yet and when the system

is super stable then the cone maker of entropy also behaves has a very specific kind of behavior

that is the reason I called it super stable at the moment, but for the moment let us  leave this as

just a matter of terminology we'll come back and see what it is significant signifies.

But it is easy to see that in this case the Lyapunov exponent we actually go to - ∞ here then it

comes back crosses this at free and then because now at this point a period to cycle takes over it

falls  back  once  again.  And  then  there  could  be  possibilities  that  these  the  periodic  cycles

themselves become super stable if any one of them if the point 1/2 if this point becomes a fixed

point or part of a periodic cycle then you can see immediately.

Since the slope there is 0 if the peak becomes always any of the peaks becomes of the extreme a

of  this  map  or  its  iterates  becomes  part  of  a  periodic  cycle  you  have  super  stability  there

immediately. So this could happen over and over again and then again at the point 1 + √ 6 it

climbs up to 0 but once again a period for cycle takes over and it keeps doing this till it hits μ ∞

μ∞ it is exhausted this and the Lyapunov exponent crosses over finally to positive values.

And the system becomes chaotic, so this here is the start of this chaos here at μ =4 that is the

largest you can have here, so let us jump straight to μ=4 which is here so the maxi μ m occurs

exactly at one it becomes an on to map then it displays properties very similar to that of the 10

pipe. Because now at this stage you have 0 to 1 and 0 to 1 here this fixed point is at three

quarters and is unstable all the iterates of the map also lead to unstable fixed points there are no

more stable periodic cycles possible.

And this map becomes fully chaotic and the entire unit interval becomes part of short μ =4 the

entire unit interval becomes part of the attractor. But in between this end of this first period



doubling cycle to the reaching of this chaotic attractor you have many intricate phenomena that

go on here between μ ∞ and 4 because what happens is although all the 2 to the N period cycles

became unstable there are many other integers and we have not exhausted them.

So it turns out that this map exhibits cycles of all integer periods 1 2 3 4 5 etcetera etc not

necessarily all of them stable but eventually what happens is various complicated things happen

here which will describe by and by including a phenomenon called intermittency. So there are

long regular verse of the iterates followed by chaotic intervals followed by regular bus and so on

and eventually at the point 1 + √8 a period 3 window takes over.

So for a little bit of time there is a period 3 cycle and the period 3 cycle happens at 1 + √root of 8

it is still <four a set of tangent bifurcation occurs. So you have a stable fixed point an unstable a

stable unstable stable unstable and the system flips between these and that remains stable for a

little while. So you have a stable period three window the chaos disappears and then once that

disappears  that  periodic  window disappears  again  chaos  takes  over  and you have  a  chaotic

behavior.

Here finally till at μ=4 you have what is called fully developed chaos and we will have more to

say about this and the question is what is the Lyapunov exponent at μ =4 when the entire unit

interval is completely chaotic, it turns out that the Lyapunov exponent is can you guess what it

would be because it now has property is very similar to the tent map in some sense. It is locked

to it again becomes log 2.

Even though in this case the slope is not uniform, so you really have complicated behavior the

system is  a  gothic  on the  unit  interval  and ends  up with  a  limiting  value  of  the  Lyapunov

exponent which is log to once again that stage. So it hits something here limiting value at μ=4

this value is log 2 in between in this chaotic region the Lyapunov exponent has only to be found

numerically, there are very few analytic expressions what would be the value of the Lyapunov

exponent in this periodic window.

It would become negative in general if there is a stable periodic window it would simply become

negative,  so  it  is  not  as  if  this  stays  and  goes  up  monotonically  to  log  2  there  are  still

complications here goes up and down and eventually hits the value log. Yeah this is a numerical

result here as to where the period 3 window emerges, so the statement I made was after the two



to the N cycles ended after that set of period doubling bifurcation you had the onset of chaos at

this point.

Exactly at μ ∞ the Lyapunov exponent is 0 and right above for any infinite decimal value of μ

beyond μ ∞for an ∞ as many larger value you have a positive Lyapunov exponent the system

becomes chaotic but in between in this chaotic region it is interspersed with periodic motion and

the last of these the very last of these periodic windows happens at 1 +√8, as a value of μ when

the chaotic attractor disappears and the system falls into a stable period 3 cycle. So there are

three points and it flips flops between these three points.

That  continuous  for  a  while  a  small  range of  μ  and eventually  that  periodic  cycle  becomes

unstable all the other integer periods also become unstable and the system has no recourse but to

become fully chaotic and this continuous still μ =4 okay. Now the question is where does this

come from because we only looked at the iterates of this map we did not ask what are the other

possible periodic points.

It turns out that in this map for good reasons the route to chaos is via period doubling, so we start

with period one that is double 2 that is double 24 which is double 28 and so on but this is only

one set of possible periodic orbits you could still have period 357 or any other number which is

not of the form 2 to the N. All  those periodic orbits  appear in this region most of them are

unstable when they are here but occasionally you could have stability once again simply because

of the dynamics which is not trivial at all it is extremely complicated.

And finally the last window that appears where you have a stable periodic orbit is a period three

window right here and once that two becomes unstable you have full chaos complete chaos. The

attractor at this point is not an interval it is called the π attractor at μ ∞ λ is just about to cross

over from 0 and the attractor is called a π inbound it is not chaotic because chaos has not set in

yet the lambda is still =0 it is not taken off to positive values.

This is the limit set of this set of bifurcation points and that is a fractal object it is a set of points

with a certain dimensionality called a fractal dimensionality, which is between 0and one and it is

non chaotic and because it is not an interval but a set of points which has a certain structure it is

called a strange attractor but it is a strange non chaotic attractor. I earlier introduced the idea of



strange attractors in three-dimensional or higher dimensional flows which are chaotic with at

least a positive single positive 1 positive Lyapunov exponent.

But here is the case where the Lyapunov exponent is dead 0 and yet you have an attractor which

is not a periodic attractor of it or anything like that but it is a strange non chaotic attractor in this

stage. But immediately after that you end up with a chaotic attractor we will come back to some

of these points in particular you want to study this we want to study fully developed chaos and

see what happens at this point but first one quick question what happens.

If I have a map in which μ becomes > 4 what would that look like well it is evident that this

would go like this then if you took this map seriously what would happen? It is quite clear that

what could happen is the following remember this graph goes on both sides. So if I start with the

point here it goes here I go there and I am out of the unit interval and it leaves the unit interval

till μ=four points which started inside the unit interval remained inside there.

But now things have started escaping out of it all points do not escape all the free images of this

interval would escape the pre images of this interval would escape and so on, so you have a very

complicated set of points which would escape and another set of complementary set of points

which would remain inside and these would form what are called cantor sets. So we will talk

about this in the context of the tent map.

So what you have here is something called a chaotic repelled because things are moving out of

this interval they are getting out here and this too has its uses but we are interested when you are

studying chaos it is up to four that you would like to look at yeah the unit interval yard then the

guava will be linsley bounded between the 0 to one interval rate but what is going to be the

question is if points leave the interval yeah then those points will learn to.

I am not going to be densely moving across the 02 an indirect way exactly, so now what will

happen once things he's got a point he says if you have a situation like this and some sets of

points leave the interval then what remains as an attractor is no longer the unit interval and that is

absolutely true so what remains here is what would I would call a cantor set we will talk about

this it is silk chaotic.

Because they still could be exponential sensitivity to initial conditions between what remains that

could still happen does not matter does not matter does not matter no but if I start with the point



in whatever is left as an attractor you still have, you still have a Lyapunov exponent you still

have unstable periodic orbits you have all those points a certain set of points has left. So you are

attracted and so being the unit interval has split up into many disjoint pieces yeah going to hold

within this region is going to reduce yes.

So it again goes towards stability yeah in some trivial  sense I mean once I get out up there

everything has gone off to ∞it is no longer stability everything is just moved off to ∞could be

chaotic while it is showing that it could certainly be chaotic whatever is left inside okay whatever

is left inside on yeah will reduce. So can you say that things are now become unbounded right

this motion is now going off to ∞.

So I know I understand that fully completely things are just escaping to ∞there is no longer of

direct interest what is of interest is the following which is to say that it does not really go off to ∞

is to take this map and make this put is not on a square but on a square lattice repeat this map

over and over again, so I say when something goes out into power goes into the next square and

that is how I steady scattering and it is in fact a model for studying chaotic scattering for real

physical systems again as a toy model we will get back to this next time. 
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