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 Now let me repeat this point about Lyapunov stability and the theorems in the simplest form in

which we looked at it yesterday last time.
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If  this  is  a  critical  point  say  the  origin  is  a  critical  point  of  a  system and  you have  some

neighborhood of this  origin and I  would like to understand the stability  or otherwise of the

system in this neighborhood then the statement was for the dynamical system given by x dot =

f(x1)  constructs  or  considers  or  pulls  out  of  the  hat  an  auxiliary  function  V (x)  called  the

Lyapunov function which has the following properties and the properties are if V (x) is such that

V(0) is 0 and V(x) > 0 ≠ 0 anywhere but strictly positive for all X ≠ 0 in this neighborhood.

So let us call this neighborhood u then V (x) is a positive definite function if it is less than 0 for

all X ≠ 0 and U it is a negative definite function if it is greater than or = 0 you cannot find other 0

in the neighborhood U then it is semi definite and if it is ≤ 0 and you cannot find other 0 then it is

negative semi definite with these statements with this with these definitions the statements we

made or the following.
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So this  is  positive  then V is  positive  definite  and so on now the statements  made were the

following the rate of change of this function V, V dot turns out to be by a very simple piece of

algebra this turns out to be V, V dot F and the statements were if you have a positive definite

Lyapunov function and V dot is  strictly  negative  in this  neighborhood namely it  is  negative

definite then the critical point is asymptotically stable on the other hand if you have a positive

definite Lyapunov function and V dot is only negative semi definite in other words there exist

other points other than the origin where V dot vanishes then what you can assert is that the

critical point is stable you cannot assert that it is asymptotically stable and if you have a positive

definite V and V dot happens to be positive also then it is unstable.

Or a V is negative definite and V dot is negative then it is unstable this is for sure now in the

examples we looked at we came across instances we came across one instance where in the

neighborhood of the origin for a positive definite Lyapunov function we discovered that in the

presence of damping V dot was - γY2 where γ was the damping coefficient and I commented that

this only enables us to deduce that this particular critical point at the origin is not necessarily as

importantly stable but nearly stable because we know that γ Y 2 is vanishes everywhere on the x-

axis.

So we can assert that it is stable but we cannot go on to assert that it is asymptotically stable

which is what the actual critical point was in the presence of damping so it is not that now it

might turn out it might turn out you have a better Lyapunov function not the one that we chose



but a better Lyapunov function which is positive-definite for which you can show that V dot is

actually negative definite in which case you can assert that this is asymptotically stable as well it

is not that this thing exhausts all possibilities it is just that you could choose a bad Lyapunov

function in which case you cannot make any statement at all.

Could change sign or you could choose one which turns out to be only negative or positive semi-

definite in which case you can assert something about stability but not about asymptotic stability

but the point is if you can find a Lyapunov function which is such that it is positive definite and

V dot is negative definite in the neighborhood then you can definitely assert that the critical point

is asymptotically stable.

Now we have seen there are critical points which are asymptotically stable but not stable and the

critical points which are stable but not as asymptotically stable and certainly there are critical

points which are both stable as well as asymptotically stable and the correspondingly Lyapunov

functions would reflect these possibilities in various cases.

So these are not mutually exclusive categories in that sense something can be stable as well as

asymptotically stable but something which is stable does not have to be as asymptotically stable

and something which is asymptotically stable does not have to be stable it is true that you have

proved something is asymptotically stable you made a very powerful statement you said that the

points were going to fall into this attractor eventually.

So it is a very strong statement in that sense stability is weaker than asymptotic stability it says

things do not go away from the neighborhood even if you wait long enough once they have

entered the neighborhood but it does not say they are going to fall into the critical point at all so I

hope this clarifies to some extent the question that you had so let us take an example now go

back a little bit and look at a mechanical example of a bifurcation and then what this problem all

fully because it is a standard problem.
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So mechanical we will see there is a bifurcation and I am going to ask you at the end what sort of

bifurcation this system displays and it is an extremely simple one but it is an illustrative one

because  it  says  something  about  Lagrangian  mechanics  as  well  which  we  have  not  really

discussed  in  detail  in  this  course  at  all  but  this  would  give  us  an  opportunity  to  enough

recapitulate our ideas about Lagrangian mechanics.

It is the following problem I have a hoop of wire which is say in the shape of a circle and I have

a beam on this hoop of Y a beam of mass M which moves frictionlessly on this ring of wire and

let us say this hoop is in a vertical plane and the bead is constrained to move on this circle and let

us  choose  for  convenience  coordinates  such  that  the  origin  of  coordinates  is  at  the  bottom

position of this hoop which is in a vertical plane and let us suppose this plane is the y z plane for

instance.

And this hoop has a radius R what sort of motion does this constraint system have this point

mass under gravity if I take it up here and let go it is going to oscillate without any dissipation

back and forth about this point here and it is a constrained system because it is constrained to

move on this hoop as it stands how many degrees of freedom does this particle have now how

many independent degrees of freedom does it have well I fixed the plane of this hoop and that is

the yz is that plane.

So to start with this particle has only y and z coordinates the x coordinate is always 0 moreover I

am saying that it moves on the circle so it is clear on this circle z is a function of Y and therefore



it has one independent degree of freedom which you can choose in many ways a convenient one

would be to choose the angle it makes with the vertical axis its instantaneous position makes

with the vertical axis that will be a convenient degree of freedom.

But now I make the problem a little more interesting by saying that this hoop is set rotate about

the said axis with uniform angular speed ω so the entire hoop rotates about this diameter with

uniform angular speed ω and so does the beam also rotate and the question is can we do the

dynamics  can  we solve  for  the  dynamics  of  this  point  particle  of  this  mass  with  this  time-

dependent constraint namely it is sitting on this hoop but the hoop itself is rotating at a constant

angular speed ω.

So this is the problem to start with so what do we do we start by writing down the Lagrangian of

the particle which is in this case the kinetic energy - the potential energy of the particle and let us

do this by saying L which would initially be a function of the xyz coordinates of this particle

because now that it is said rotating there is also an x axis coming out of the board you have a

right-handed coordinate system here and this L would be a function of all the coordinates as well

as the generalized velocities corresponding velocities and what would this be well to start with it

would be = ½ m times.

The kinetic energy which I could write as x2 dot + y dot 2 + z dot 2 in Cartesian coordinates - the

potential energy and what is the potential energy of this hoop well it when it is here at z = 0 the

potential energy could be taken to be 0 and then when it is at a height z above the xy plane it is

potential  energy is just mg z so this is - mgz to start with but then the hoop is the beam is

constrained to move on this hoop and what sort of coordinate system should I choose when I do

that should I chose spherical polar coordinates there is an actual symmetry here it is rotating

about  the  z  axis  so  what  would  be  a  good  set  of  coordinates  to  choose  cylindrical  polar

coordinates.
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So let  us choose cylindrical  polar coordinates  and what are these coordinates well  the radial

distance the actual distance of this particle from the z axis which is = the 2 of the distance is x 2 +

y 2 that would be one of them so let us choose row there let us choose the azimuthal angle  soϕ

X is ρ cos  and Y is ρ  a plane polar coordinates in the XY plane and of course that itself theseϕ ϕ

would be the cylindrical polar coordinates and what is the kinetic energy in such a case.

So L becomes = ½ m what is X dot 2 + y dot 2 become in cylindrical in polar coordinates ρ and ϕ

exactly there is a radial velocity ρ2 dot  + yes indeed ρ2 ϕ2 because that is what X dot 2 + y dot 2

the company you have when you go from x and y to plane polar coordinates or 1  + zϕ 2 dot is

always present this is their - mg z this is what the Lagrangian would be but now we have to

impose the constraint that z is a function of the other coordinates because has to remain on the

circle.

And we need an equation for this circle itself at any instant of time now what is the equation to

this circle the circle has a center at z = R and ρ= 0 and in the static case when it was not moving

what would have been the equation to this circle it is a circle in the Y z plane with the center at y

= 0 z = R and it is radiuses are so indeed this circle would have been for example it would have

been (y2 + z – R) whole 2 = R2 that would have been the equation of this circle when it is static

when it is in the Y z plane.

The center of the circle is at y = 0 and z= R now when it starts rotating there is this circle of

some axial symmetry about the z axis in the xy plane and therefore what would this equation



become instead of Y2 you simply have to replace it by the actual distance of this particle from

this axis it becomes ρ2 indeed so this is the constraint therefore if you solve for z it says z - R

whole 2 = R2 - ρ2 or z = R +- √R2 - ρ2 which route should I choose the two routes for z and what

do they correspond to here .

Yeah if you fix a value of the other coordinate you could either be here or here and we Are

interested in oscillations about this point here so we choose the + √ or the - √ which was the - √

so this is the root we choose that is the physical √ okay because it says when ρ is 0 this is 0 z is 0

and sitting here so let us get rid of this + and write - for the branch we are interested in and now

we are ready to eliminate out here this is  dot 2 by the way that is got to have dimensions ofϕ

angular velocity 2.

So that is the kinetic energy term and when I rotate it then what does  become what does  dotϕ ϕ

become if I rotate it at constant angular speed ω  dot is ω itself and my dog is identically = ωϕ

therefore we are now ready to write on Lagrangian down but we need to use this in order to

eliminate z dot from the problem and z all together.
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So if z is this then it implies that z dot is = - 1 / 2 √ R2 - ρ2 it is ρ that changes with time R is a

constant and I am differentiating this with respect to time so you differentiate this and then you



differentiate - ρ2 which is = - 2 ρρ dot smashing so that gives us = ρρ / √R 2 - ρ2 you can put all

that in here and we finally have our Lagrangian which is a function of ρ and ρ dot alone.
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Just the radial coordinate ρ and its corresponding generalized velocity ρ dot and this becomes =

1/2 m ρ dot 2 + ρ2 ω 2 because I get rid of ϕ2 dot + z2 dot which as you can see is ρ2 ρ2 dot / R2 -

ρ2 this term - mg times z which is mg R + mg times √R 2 - ρ2 and we can simplify this a little bit

and get a Lagrangian which is = 1/2 m we combine these two terms here and it is clear that you

get just m R2 R or R 2 / R 2 - ρ2 here + ½ m ρ2 ω2 that is this term + mg 2 √ R 2 - ρ2 – mg.

This is just a constant in a relevant constant that is our Lagrangian with one degree of freedom

independent degree of freedom ρ and it is a function of ρ and the corresponding velocity ρ dot

the constraint has been taken into account automatically and notice that in the so-called kinetic



energy  term  you  have  a  coefficient  which  depends  on  the  coordinate  this  is  typical  of  a

constrained problem eliminated the constraint.

And it is become a function it is true that it is quadratic in the generalized velocity but it is got a

coefficient which depends on the coordinate itself and there is this extra term which has emerged

which looks like part of the potential what would this be due to physically what is happening

what is that going to give us this gives us the effect of the quote-unquote centrifugal acceleration

that  is  exactly  what  it  is  as  you  can  see  because  it  is  a  rotating  coordinate  you  end  up

automatically with the term which will give us this pseudo force once you write the equation of

motion.

Now and that is one of the advantages of the Lagrangian formalism where constraints can be

taken  into  account  easily  and  non  inertial  forces  and  automatically  included  it  is  emerged

automatically once we wrote down what this thing was the kinetic energy was now what is the

equation of motion we know that in a Lagrangian system of this kind the equation of motion if

you have L as a function of q and q dot.
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Then ∂L / ∂ρ the partial derivative of L with respect to the coordinate is = d / dt ∂ L / ∂ ρ dot this

is the Euler Lagrange equations for this simple system and that is the equation of motion which

is supposed to give you the correct counterpart of Newton's equation of motion well all we need

to do is to apply that here so this would imply if I differentiate I get ∂ L / ∂ ρ there is a term here



it sits here and differentiate this you have to differentiate this you have to differentiate this and

equate it to d / dt ∂ L / ∂ ρ dot which means twice or whatever ρ dot divided by this.

And  you  get  the  equation  of  motion  but  we  are  interested  in  writing  things  down  in  the

Hamiltonian framework because we would like to write everything as first-order equations in

this case and so we make a change from the Lagrangian to the Hamiltonian formalism and if you

recall  if  you start  with an L which is  a  function of q  and q dot  then the way to go to  the

Hamiltonian formalism is to go from this function to a Hamiltonian which is a function of q and

p by making the following transformation.

You first define a generalized momentum which is ∂ L / ∂q and that is the definition of the

generalized momentum given a Lagrangian the momentum conjugate to a particular coordinate q

is the partial derivative of L with respect to the q and then once you have done that with respect

to q dot sign with respect to the velocity then this Hamiltonian is = pq dot – L.

And it is a transformation which takes you from the Lagrangian to the Hamiltonian however you

have to be careful that you can that you invert this equation this in general gives you p as a

function of q and q dot because L is a function of q and q dot but in going to the Hamiltonian

which is a function of q and p you must eliminate q dot and you do that by solving this equation

for q dot as a function of q and p.

So this gives you p as a function of q and q dot you must now write q dot as a function of P and q

substitute that here and wherever q dot appears in L substitute for q dot in terms of P and q and

you have a Hamiltonian and you are guaranteed after that Hamilton's equations of motion so this

is the procedure for going to a Hamiltonian let us do that here let us apply that here so what we

need to do is to first find.
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The momentum conjugate to the generalized coordinate ρI should really write P sub ρ it is a

radial and obscure momentum but since there is only one degree of freedom let me just call it P

and this is = ∂ L / ∂ ρ dot and what is that = it says differentiate this pretending everything else is

a constant except ρ dot the 2 cancels and you get mr2 ρ dot / R2 - ρ2 please notice now that we are

not turning out it is not turning out that the momentum is some mass times the velocity not at all

it is function of the coordinates times the corresponding generalized velocity this again is typical

of a problem which involves constraints.

But that is the definition of the canonical momentum conjugate to ρ once you have this of course

you can invert this trivially in this case this implies that ρ dot is P times R2 - ρ2 / mr2 and we can

write down therefore the Hamiltonian as a function of ρ and p which is = P ρ dot - L we are ready

to write down then a Hamiltonian.
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Therefore H of P, ρ is = P times ρ dot and ρ dot is given by this so it is P2 times R 2 - ρ2 /mr2 - the

Lagrangian but in the Lagrangian you must replace ρ dot in favor of P since it must be a function

of ρ and P alone if you did that you get P times ρ2 dot so it is going to give you when i2 this I get

an mr2 whole square that cancels against this and then (R2 - ρ2)2 1 power cancels against this and

as a factor 1/2 .

So it is cleared we have 1 of this – 1/2 of the same and therefore it is just this now that takes care

of the kinetic energy part 1 - 1/2 m ρ2 ω 2 that is this quantity - mg 2 √ R 2 - ρ2 + mgr okay I hope

you kept track of all the - signs because if not we are gonna get wrong answers so let us see what

happens  that  is  our  Hamiltonian  we  can  get  rid  of  this  now  we  are  ready  to  write  down

Hamilton's equations of motion. Now it is a nonlinear Hamiltonian it certainly does not look like

simple harmonic motion or anything like that and notice the signs of these terms.
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Now what are the equations of motion well we know that ρ dot is ∂ H / ∂ that is the first of

Hamilton's equations and that of course is going to give us something we already knew because ∂

H / ∂ P and this is something we already knew because if I differentiate this with respect to P it

gives P times R2 - ρ2 / mR2  but we already knew that P was ρ dot times mR2 / R2 - ρ2 that is how

we got P so this is not telling us very much nothing new in any case it is just the old relation

between the generalized momentum and the generalized velocity.

But the other equation says something interesting and that is P dot is - ∂ H / ∂ ρ and what is this =

and now we have to differentiate everything okay I differentiate with respect to ρ and I get - P2

ρ / mR2 it is a + sign because I already have a - sign here and I have another one here so it is a +

sign and then + m ∂ ω2 that is this term here - mg /2 √R2 - ρ2 not very happy with what happened I

hope we did not leave out any - sign anywhere in between because we have then we are going to

have an unphysical result here. So I need to differentiate this and it came from - should be a +

should that be a +.
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We started off by writing L = the kinetic energy - mg said that was the potential energy but if you

recall z itself was R -  √R2  - ρ2 and so it gives us this is = various terms + mg √ R 2 - ρ2 in the

Lagrangian so when I wrote the Hamiltonian I put a - sign there so that gives me a - similarly the

original term in the Lagrangian was of the form ½ m ρ2 ω 2 the  dot 2 term in the Lagrangianϕ

with a + sign and when we write a - for the Hamiltonian it is p q dot - L that 2 appears with a -

sign so we are okay.

All  right  now let  us  differentiate  this  so we were in  the middle  of  that  and then  I  need to

differentiate it and change the sign so there is a - here and a - here both these things go away and

you get a + and then I have to differentiate this with respect to ρ so that is = 2ρ and therefore the

2 goes away and the - turns out.

(Refer Slide Time: 30:22)



And let us take the row out of the bracket and the M as well in this fashion so these are the two

equations of motion they are the Hamilton equations of motion again you see they are badly

nonlinear equations because you have all kinds of powers here you have a cube here and then

you have a third power here and then you have this  1 over the  √and so on so it  is  really a

nonlinear problem in this sense now the question is where are the critical points of the system.

They did not happen when the right hand side is = 0 of course you put R = ρ you end up with an

infinity here so the critical point would occur at P = 0.
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And let us write that down P = 0 and certainly row = 0 is a critical point because if I put ρ= 0 this

vanishes and this vanishes as well that is always a critical point that corresponds to this point the

system at rest here which we know is an equilibrium point whether it is stable or not we do not

know is there any other critical point in the system so you set P = 0 and this term goes away and

you see this could vanish this bracket here could vanish and when does that happen.

So this would vanish provided ω2 - g / R2 - ρ2 is 0 or ω2 = this or R2 - ρ2 is = g2 / ω4 that is the

root here or ρ2 is R2 - g 2 to the ω4 provided this is positive provided this quantity is positive

otherwise it is not going to happen it is not a real root what would this imply when is this going

to be positive so another solution non-trivial solution for ρ at the √of this value provided R2 was

greater than g2 / ω4 for or since ω is the quantity that you have in control R and g are constants

this implies that you have a second solution I need this equation.
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So I am going to ask to dictate it to me afterwards so you have another critical point provided ω

to the 4 is greater than g2 / R2 or ω is greater than ω critical which is = √g / R then you have

another solution it gives you something else altogether we need to compute what that is so that

route is given by this let us write it in reasonable form so you have a second root at ρ2 
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Another CP at P = 0 and ρ= the √of this so let us take out an R completely R times √ 1 - g 2 /

R2 /ω4 but g2 / R2 is ω critical to the power 4 right so this is = ω critical square ω critical fourth

over ω4 some constant its √ g / R now what kind of stability do we have here what can we say

about the stability of these solutions so we have to go back and write the equations of motion

down and see what it does for linear stability.
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And if you recall we had P we had ρ dot is = mR2 P / R2 - was this right what was what was

wrote out P over m R2 was this that was the equation and the other equation was P dot is = now

you have to tell me what it was I believe there was a P2 / mR2 + mρω2 + - mg∂ √ R2 - ρ2 and that

was it so what we did was to take the ρ out and the m out so we wrote it in this form so you

could rewrite this as in terms of ρ / R and the factor g/ R you could write in terms of ωC but

anyway let us leave it in this fashion.

So we have one critical point here and another one there and let us look at the stability of these

critical point.
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So let us linearize around ρ= 0 P = 0 and then the equations of motion are ρ dot is approximately

= the R2 cancels P / m which is what you would expect because you would expect very close to

this for small oscillations you would expect that ρ dot is just P / m or PS and ρ dot as usual the

non-linearity does not play a role there and then this equation this term is already third-order we

are going to look at it near ρ= 0.

So this can be got rid of and then what you get P dot is approximately = so this can be dropped

because it is second order and ρ this can be dropped because it is got third order terms and then

you have ω2 - g / R times ρ but what is g / R ω C2 so you have m times ω2 - ωC 2 times.
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What kind of critical point is that well the linearized matrix L is of the form 0 1 / m m times ω 2 -

ωC2 and then a 0 here. What kind of critical point is that it depends on the value of ω whether ω

is  greater  than ωC or less  than ωC it  depends on that  completely  this  be comings now the

stability at the origin so let us look at the case ω less than ω C first so you start rotating at a small

speed first and see what happens then so I think we need to retain this so let us do this.
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Therefore ω less than ωC the eigen values of L well what are the eigen values of this matrix ω is

less than ωC + or - with a R with an either right because ω is less than ω C so what kind of roots

are these pure imaginary so it is Center absolutely so you have a Center which is stable at the

origin this means that if you rotate this hoop at sufficiently slow speed.
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Then as it rotates this point is a stable Center so if you start here it oscillates about this point

while rotating so it comes back and you have undamped oscillations about the bottom that is

your critical point which is stable and you can show simultaneously that the other critical point is

unstable on the other hand what happens if ω is greater than ω C.
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So this is stable and if ω is greater than ωC then the eigen values of L + - √ ω2 - ωC2 what kind of

critical point is this it is a saddle point and therefore unstable the origin becomes unstable you

would have to do the same thing about this point to discover that this becomes stable so this

implies yes there should be no critical point that second critical point does not exist you are right

second critical point does not exist at all if ω is less than ωC because this is a pure imaginary

absolutely right yeah so it says wherever you are it is going to oscillate about the bottom most

position and these are stable oscillations on the other hand the moment you have ω crossing the

value of ω C the origin becomes unstable and a new stable critical point emerges.

So this is going to help us find what kind of bifurcation this is and this is the interesting question

but before we do that let us see what happens let us draw this bifurcation diagram and see what

happens so here is the bifurcation diagram.
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So it is not an exchange of stability transition at all it is not an exchange of stability bifurcation

because this one does not exist only if ω is greater than ω C bifurcation diagram is as follows we

plot  ρ  equilibrium the equilibrium distance radial distance actual distance from the z axis as a

function of ω which takes on only positive values and here is ω C, P is always 0 so I do not plot

that it comes out of this axis but P is always 0 at equilibrium and then it says this is your stable

root and we know it becomes a saddle point as soon as ω exceeds ωc.

So the rest of this diagram should really be a dotted line and the new root that comes out is this

what is the graph here what kind of behavior does it have at ω = ωC it is 0 its bifurcating out of

this point that is clear what happens as ω tends to infinity what happens to that equilibrium value

of ρ it tends to R so it is very clear physically that this is what is happening.
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It is clear that this hoop as you rotate it faster and faster with some angular frequency ω this is

the farthest it can actually go it cannot go beyond that it is constrained to remain on this hoop so

once it zooms up to this point it has to remain there and this is a stable oscillatory point so here if

this is a equilibrium value then if you displace the hoop about it as it is rotating it would actually

do this about this point so it gets shot out a certain distance from the bottom as long as you can

start exactly at this point and of course it remains at that saddle point.

It is an unstable equilibrium point but a little bit of perturbation puts you away and it zooms up

crawls up to this point and oscillates about this point so this goes off and as asymptotically hits

the value R as ω becomes very large now what kind of behavior does it have at this threshold

with the slope infinite with the slope be finite would it do this would it do this or would it do this

what would it do that is crucial to know yes we are indeed we need to know exactly what the

behavior is like and that is easily seen because you can see that.
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This ρ equilibrium is in fact = R times √ ω 4 - ω C4 / ω 2 take it out of the √and near ω = ω C it is

clear you can write this as ω2 + ωC2 times ω2 - ωC22and near ω = ω C you can replace this with ω

C that with ω C and you basically have this - that which in turn you could write as ω - ω C times

ω + ω C and this harmless factor you could write as twice ω C so the whole thing goes like the

√of ω - ω C so what is the shape of the curve here what is the slope what is the slope of y = √(x1)

at X = 0 it is infinite.
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So this is in fact a thing like this goes off and this thing here in this neighborhood it goes like ω -

ωC to the power ½ so that is the exponent and this is the stable hook what kind of bifurcation is

this is it an exchange of stability bifurcation no because there is not a critical point at all to start it

the other one does not exist for ω less than ω C is it a saddle node bifurcation.

That means this pair a stable unstable pair of critical point emerges as you cross the bifurcation

value but that is not true because you already had one here so it is not saddle node it is not

exchange of stability it must be a pitchfork bifurcation but then a pitchfork bifurcation is one

where a stable point bifurcates into an unstable point and a pair of stable equilibrium points

where is the other pair one where is the other member of this pair pardon me.

Why  is  it  not  physically  realistic  because  we  because  ρ  cannot  be  negative  we  plotted  a

coordinate where it cannot be negative but it is indeed a pitchfork bifurcation because there are

indeed two possible states of this suppose you color this part of the hoop green.
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And this part of the hoop read certainly something that sticks here and something that sticks here

can be distinguished between depending on what kind of infinitesimal perturbation you had here

it would either zoom up to the right-hand side or the left-hand side the green side or the red side

and therefore it is in fact a situation where you have two different equilibrium points one on one

side of the hoop and the other on the other side of the hoop and you do not see that in this picture

because this is just the actual distance we need there are two critical points that I Have emerged

from a single one.
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So this is very much a pitchfork bifurcation you could use this to measure little g to measure and

everything else and you are sure that you do not have friction you could use this actually to

measure little g because you could measure where the equilibrium point is and this will tell you

directly in terms of R and g and ωC it tells you g so that is one possible thing you could also put

this in a bowl in a spherical ball and rotate it rotate the ball you would still have this problem but

this is the way a constrained mechanical problem is simplified when you use the Lagrangian

framework.

Aand it is stability is easily analyzed when you use the Hamiltonian framework in this fashion

you could now ask what happens if I had different shapes I do not necessarily have to have a

circular hoop so let us see what happens and quickly see what happens if you have a slightly

different shape of hoop.
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One possibility is to write is to use for instance a parabolic hoop so here is it and once I said it

rotating in this fashion a parabolic hoop if this z is ½ K Y2 for example then on this parabola z is

= 1/2 K ρ2 because that is Y2 is replaced by x2 + y2 once you set it  rotating my cylindrical

symmetry and then we see that z dot is = K ρ dot in this fashion we run through our steps quickly

then the Lagrangian becomes = ½ m there is certainly a ρ dot 2 + this is n dot 2 but the z dot 2 is

K2 ρ2 if I pull the ρ dot 2 out this is 1 + this and ρ dot 2 in this fashion + in this case ½ m ρ 2 ω2

that came from the ρ2  dot 2 tongue and the kinetic energy - mg times z but this is over 2 K ρϕ 2

this  is  what  the Lagrangian  is  and what  is  the  Hamiltonian  well  to  run through these  steps

quickly.
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The conjugate momentum P is ∂ L / ∂ ρ dot and that if I differentiate here is m times 1 + K2 ρ2 ρ

dot or ρ dot is P / m1 + K2 whole2 that is the conjugate momentum again it depends on the

coordinate so what is the Hamiltonian this is = P ρ dot - L P ρ dot gives you P2 / m times 1 + K2

ρ2 here is the first portion - L and therefore you got to subtract this - this term times the 2 of this

so you have a P 2 over m 2  that gives it to M and therefore it is clear that you just get twice as

before + 1/2 mρ2 ω 2 - thank you - this + mg /2 Kρ2 like so in this fashion.

So we can simplify this a little bit take out the M ρ2 /2 and then write this as ω2 - gK that is it and

what are the equations of motion.
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So again we have ρ dot is ∂ H / ∂ P let us not gonna give us anything new except this whole thing

P over m into 1 + K2 ρ2 but then P dot is - ∂ H / ∂ ρ and that gives you something non-trivial and

this is = - P2 /m (1+ K2 ρ2)2 multiplied by the derivative of this quantity which is = K2 ρ this term

if I differentiate this and then I differentiate that and that gives me - m ρω 2 I need a - out here if I

differentiate so this becomes a + what do you conclude what kind of critical points do you have

and what is your conclusion do you have a bifurcation here at all what happens now clearly P = 0

ρ= 0 is a critical point.

(Refer Slide Time: 55:34) 



so the linear matrix about that point so near huh uh-huh so what happens well I mean it is clear

this is going to this a linear term and it is going to change sign depending on ω is less than √of

gK or greater than √of g K so the linear term the linear linearized problem is P dot = P / m to first

order and repeat ρ dot sorry ρ dot is this and let me raise this problem write it properly ρ dot and

P dot is = m times ω2 - gk times ρ.

So what you conclude from this so L0 1 / m m times ω2 - gK and a 0 here yes if ω2 if ω is less

than so Center for ω less than √gK you could have guessed that by dimensional argument √gK is

the only quantity of dimensions frequency so other than ω itself so for ω less than √gK you end

up with a center which means you have stable oscillations what happens if ω is greater than gK

the √og K becomes a saddle becomes unstable but you do not have an alternative after that and

what does the system do goes off to infinity.

It goes off to infinity exactly this critical point has becomes unstable and that is it was because

you had the curvature in the circle was appropriate that you ended up with another stable point so

it  deeply  depends  on  the  function  that  you had  it  depends  on  whatever  was  multiplying  it

depended on the shape of the wire the constraint machine which gave you which depended on

the shape of the wire told you whether you had another solution or not yes well if ω = √gK this

goes away the problem is not linearizable anymore it is intrinsically nonlinear as you can see.

So that is the marginal point at which the center is losing its stability at this point infinitesimally

greater value of ω and you are off it goes off so you can only have stable oscillations about the



center as long as ω is less than √gK I leave you to play with this and figure out what happens if

instead of this kind of situation you had for example you took a stick and you put it on a stick

just a rigid rod you put a bead on that and you rotated this about the vertical axis so this is a

linear function so the circle is special of course there are other functions for which this would

happen but the circle was the simplest case this and we did not look at what would happen in the

hoop problem.
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If you started with something not on the lower half but up here and I leave you to analyze that it

is fairly straightforward the only thing is in the constraint equation you have to write z as R + the

√R2 - ρ2 and go through the algebra once again to see what would happen to a particle sitting here

when you start rotating but the result we got was completely physical which said that initially

you have four small velocities small angular velocities you have a stable oscillations about this

origin.

And once you exceed a critical point then this gets flung out and you have oscillations about a

new point and the largest value that point can have is in fact when you're right here at this stage

which happens when you have an unbounded angular speed and then it gets flung out as far as it

can go here we also found out what was the nature of this bifurcation diagram we found out what

kind of exponent you had me found that there was a kind of √behavior the function of √of ω - ω

C was way the way the new function the new solution took off.



So it is a fairly complete analysis although we did not solve the equation of motion in general

that is complicated because the motion in general could be very complicated depending on the

initial conditions and you could translate it back to the original Cartesian coordinates but there is

not  much presentation  doing that  in this  problem it  is  obviously of interest  to stay with the

cylindrical coordinates that we had yes pardon me yes you have yes you know we did not draw

the  phase  diagram because we did  not  really  write  down we did  not  really  draw the  phase

diagram at all because we did not write the solutions down we just looked at what happens in the

critical points and so on.

But you are right there is obviously a hyperbolic point at a certain stage and then there would be

separate races coming out of it and so on so I leave this as an exercise to try and generate this but

in practice although because the expression is fairly complicated it might be messy to do this but

you can do this numerically can write these solutions down you can solve this yes it is clear that

once the critical point becomes unstable.

And it becomes a saddle point then there is no question of oscillation so absolutely so things

were diverged yes we did not look at the time period of small oscillations about this point we did

not do that we did not write down what would happen but that is straight forward because for

sufficiently  close to the origin for small  oscillations  it  was like a simple harmonic oscillator

problem for which you can straightaway write down the solution you can write down the time

period yes.

What did I word yeah presumably this would end up diverging yes because it becomes unstable

beyond that point but one should check this out explicitly we did not do the large oscillations we

kept things very close to the origin and that was it but now you make the amplitude larger and

larger and then you begin to see what would happen in general your question is what happens to

the actual time period of small oscillations itself in the linear problem yes indeed it diverges that

you can see directly.

Because let us go back his question is what happens to the time period of oscillations as ω hits ω

C in the previous problem the circular hoop if you recall  in the parabolic case yes indeed it

becomes infinite as you can see immediately because here is our problem here is our miss here is

our linear matrix.
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So what are the eigen values λ 1 , 2 is = what are the eigen values of this matrix right yes okay

now we are going to look at small values of ω to start with and therefore ω is less than the √ this

in which case let us write it as I times √ gK - ω 2 and let us call ωC2 = gK therefore this is = + or

- I times √ωC2 - ω2 those are the eigen values which means that the small oscillations will have e

to the power + or - these eigen values multiplied by T and the time period of oscillation T is

therefore proportional to 1 /√ ω C 2 - ω2 which diverges as ω hits ωC it is exactly his conjecture

so it is clear that as you hit this critical point the time period diverges it is about to take off and

beyond that it becomes unstable you could also have deduced this by looking at the shape of the

potential.

What does this correspond to what kind of thing does this correspond to when I put this in here

and you have an equation which says ρ dot is P / m and P dot approximately = and let us write

this as ω C2 and keep ω less than ω C2 so - M ω C2 - ω 2 times ρ what kind of potential are we

talking about it is like a simple harmonic oscillator with a potential this is an equation of motion

so you have to integrate this.
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So you get a potential effective potential we effective which is proportional to ½ m ω C2 - ω 2 ρ2

is not it if I integrate this and change the sign right this is like the force f of ρ so V is = integral F

of ρdρ with a - since F is - dv / dρ this is certainly true what kind of shape is this as a function of

ρ because we are looking at positive ρ this is a parabola upwards provided ω smaller than ω C

but it is getting flatter and flatter as ω approaches ω C and therefore the potential is starting to

look like this and once ω exceeds ω C the potential inwards and inverted parabola is unstable at

the origin.

So this is exactly what happens the stiffness is going down as ω approaches ω C it is becoming

like  a  spring  with  a  smaller  and smaller  spring  constant  it  gets  more  and more  flabby and

therefore the time period is longer and longer and it diverges at ω = ω C beyond that it is not

going to sustain oscillations because it is not around the other way okay yeah but we have not

really written the phase portrait down we have just done things near the origin but this is good

enough it tells us all that we need to know okay.
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