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So we begin today with an example of when you have a center manifold in a dynamical system

and how linearization could lead to an erroneous conclusion and again I do this with the help of

an example so let us consider the following.
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System consider x. =- y and y. =x as we know this linear system has a critical point at the origin

which is a center because the eigenvalues of this matrix of + or - I the linearize matrix and you

would expect, the center it is like the harmonic oscillator problem but now I add nonlinear terms

to it, so suppose I add x + x times this + y times x 2+ y 2so there is clearly a critical point at 0 and

the linearize system x. =- y. =X → a center.

Therefore expect the trajectories to go around in small circles or ellipses about the center which

is a stable critical  point on the other hand we can solve the entire system the full nonlinear

system because  of  the  form of  the  non-linearity  it  is  straightforward  to  solve  this  problem

completely and what would the solution be all I have to do is to use the fact.
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That rr. is xx . + yy . if I do that I multiply this by X and that by Y and add these cancel and I end

up with an r4 which → that r. is r3. Which immediately says since r can only take on non-negative

values as soon as you have a finite r0 which is non0 r increases and keeps increasing indefinitely

and the question is you could also find out how it increases as a function of time that is straight

forward.

Because this says dr/r3 =dt and that of course → that 1/2 1 over r of 0 - 1 over r (t) this quantity is

= t itself r0 2 and it is easy to see from this if you solve for r(t) so this → that r(t) tends to infinity

at some. Moreover if you do this in plane polar coordinates and look at what θdoes.
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Then see θ is =if you recall this is D /DT of tan inverse y/x and of course we already have a

formula for it which is =xy. - y x. / x 2+ y 2and in the present problem θ. works out - so I multiply

this by X and this by Y and subtract these terms go out and you end up with an x 2+ y 2divided by

the same thing so this is = 1. 

So in this particular problem we see that linearization has led to completely erroneous conclusion

whereas if you restricted yourself to the linear part of the system, you would conclude that the

origin was a stable center it turns out that is not.
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So at all and wherever you start you are actually going to flow outwards in this fashion such that

you hit infinity at some finite value of time because of this specific form of non-linearity. So the

origin is not a center it is an unstable node in this case and things flow out and this shows you the

perils of linearization when you have a center manifold very clearly shows you that the non-

linearity has completely changed the behavior r the dynamical system from what the linear one

would predict the linearize form would predict.

And this is the reason I said early on that when you have a center manifold there is no guarantee

that linearization produces the true flow in the vicinity of the critical point and this is a simple

example which illustrates this point. Let us go on to the next topic that we had started namely we

were looking at higher order critical points and I made a statement that these higher order critical

points are generally formed by the coalescence of simple critical points.

And indeed we saw in the case of a saddle node how a bifurcation occurs and you get a higher

order critical point at the point of an exchange of stability bifurcation. Now let us look at some

further examples of this let us look at for instance.
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X. = x 2- y 2and y. is twice X Y it is immediately clear that the origin is a critical point but there

are no linear terms on the right hand side and therefore this thing is intrinsically a higher order

critical point at the origin. The question is what kind of critical point is it what does the flow look

like in this instance what would you suggest looking at this function what does it suggest to you?

Let me give you a hint suppose you wrote z =x+ iy and regarded this as a complex variable x +

iy as a complex variable  what does this  suggest to you. So if  you set  z =x + iy this  set of

equations → z. = m. So it is = z 2itself so it is immediately clear that the origin the singularity at

the origin is such that if you took a circuit once around in the Z plane once around the origin the

function on the right-hand side its argument changes by 4 π rather than 2 π because it is z 2 .

So this brings us to the concept of the winding number of a singularity of a planar vector field

and let me explain what that is.
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The winding number for correct index of a planar vector field namely a vector field in a plane as

a function of x and y, we will  come back to this, we will  come back to this the statement I made

was if in the z plane there is some singularity at z = 0at the origin but it is such that if I move

around once in the Z plane and increase the argument of Z by 2 π the argument of this vector

field on the right-hand side increases by 4 π because it is the 2 and this has a specific implication

for what I am about to say the statement is the following.

Suppose you have a singularity of a vector field somewhere in the XY plane say the origin and

the field lines around the origin looked in some complicated fashion they perhaps look like this

these are perhaps the field lines, this is how it would look for instance near an unstable nodes in

this fashion. At every point other than the origin which is taken to be a singularity of this vector

field the vector field is unique and by vector field.

 I mean the set of equations which we wrote down once again x. is f of x, y y . is G of x , y and

you recall I combine these two into reading as a vector equation f of x and this vector field F has

two components F and G so let me write that explicitly and write f of x , Y is times the unit

vector in the x Direction + times the unit vector in the y direction, this field vanishes at the origin

both F and G vanish at the origin and you have a critical point of some kind.

And now I would like to characterize this singularity by the concept of what is by the concept of

the winding number of this singularity which is defined as follows if I start at any point here any

arbitrary point there is a unique direction to this vector field F and it is evident that if I write this



vector field F itself as a modulus times an argument this is equivalent to writing if you like this

vector field as a complex number.
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So I could write w = f of x y + i times g of x y and this w is a function of x and y instead of a

planar vector field I represent it as a complex number for a 2- dimensional vector field this is

only true in two dimensions to start with if I took this W which is a function of x and y and wrote

this as some r e to the i where r is the modulus of w and size the argument of w then if I start at

any point in the plane and make a circuit of some kind and come back to the same point.

It is evident that should return to its original value because the field at every point is unique and

therefore this arguments I must come back to its original value it is quite clear or it must increase

by a multiple of two π. So that e to the 2 π is unity and you do not see it at all it is therefore clear

that the integral of around any such closed circuit must be an integer times 2 π, if I call this

circuit C therefore I assert that integral around the closed circuit C D sine this must be =2 n π

where n is some integer. Simply from the single valued Ness of this number of this argument sy

which → if I go back here.
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let the combination 1 over 2 π integral d must be an integer but what itself this is 1 over 2 π over

C D tan inverse G over F because that is the definition of the argument of a complex number

whose real and imaginary parts are given by these two fields scalar fields but this in turn is =1

over 2 π over C and if you simplify this exactly as we did tan inverse Y over X it is immediately

clear that you get f DG - GD f / f 2 + G 2 we are F and G are functions of X and Y.

And therefore in principle you could write D G and D f in terms of DX and but if you integrate

around any closed path in this vector field you are guaranteed as long as this function is well-

defined you are guaranteed to get  an integer. Now what would happen and we can see this

geometrically what would happen if I took a circuit which does not enclose a singularity of this

vector field namely a point where F and D vanish or the vector field is not defined. What would

happen then and that is easy to see because if I simply took a region of the space.
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Where the vector field is well behaved and has no singularities of any kind and I start at some

point where the vector field points in this direction and took a closed path and came back in this

fashion we can  track  what  happens to  the argument  of  this  vector  field  by looking at  what

direction it points in by pretending there is a little umbrella which you hold as you move along

this path and ask what happens to this umbrellas direction.

I start here in this fashion and I move up there so it perhaps tilts in this fashion and then I come

down and it perhaps moves this way it comes here it comes back and then it goes out like this

and then, when I come back it slowly comes back to its original value. So all it has done is to

take  a  little  perambulation  of  this  kind and back to  its  initial  value  therefore  this  n has not

increased at all first you had a small increment in the argument and then it decreased back to its

original value went back oscillated and came back to 0.

So in this case n was 0 immediately on the other hand if there is a singularity of the vector field

and we went around a path which enclose the singularity then this is no longer true.
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Let us take a simple example let us look at a vector field which perhaps is in this fashion it kind

of radial field in this fashion and they will say there is a singularity somewhere there what would

happen if I started and enclosed this path once in this fashion. Now let us follow it once again I

start here in the vector field points like this in the tangential direction and let me just look at

instead of moving along with this curve let me look at simply keep it fixed here and turn this

arrow around to reflect what it does at various points in its path.

So it starts in this fashion by the time it comes here it is pointed like this by the time it comes

here it is pointing in some direction like this like this out here it is definitely in this fashion and

here it is like this here it is back there and it is back here and back to this. So in this path as I go

around the singularity once in the counterclockwise sense this arrow this umbrella has also gone

around once completely in the same sense counterclockwise.

Since and the N is =1 in this case because the total angle is 2π by which this vector field is

rotated and I say that the singularity of this vector field at this point is the winding number is 1 +

1 this  is  the definition  of the Poincare  index or winding number of a vector  field around a

singularity, if it does not enclose the singularity if the singularity is somewhere here and this path

does not have the singularity inside then of course the winding number is 0.

So in a region where a vector field is completely well-defined on a contour on which the vector

field is well-defined if that contour does not enclose a singularity of the vector field then the

winding number corresponding to that contour is 0 because the argument does not change at all it



might oscillate but never completes a complete two π, yes if I start here and I do not enclose this

singularity it is evident that all this vector field can do is go up like this go down like this again

and come back.

It does not turn once upon around its center completely so the argument starts at some value θ0

increases to some θ0  + α comes back to θ 0 goes to θ0  - some θ and comes back to θ0  it does not

complete a circuit and therefore the algebraic sum of all these increments is 0 and the winding

number is 0.

So you play around with this and you convince yourself that the only way in which the winding

number is going to be non0 is if this contour C encloses at least one singularity of the vector field

and for this radial pattern we discovered that the winding number is + 1 and now we can begin to

ask what is it for other kinds of singularities what is it if you had a saddle point or a center or a

node or a spiral point of various kinds.

Those were the kinds of critical points we had for two-dimensional flows and we could ask what

is the singularity of the vector field looked like but before that I would like to point out to you

that this numbers which we got as one for this kind of field is independent of this contour see I

could have started here or I could have started there and gone around. The fact is independent of

this contour see as long as it encircles this singularity once in the counterclockwise sense the

increment inside is also guaranteed to be 2π.

It is therefore a topological property which is not a property of the specific contour C but rather a

property of the singularity itself it is very similar to Cauchy theorem in the calculus of residues it

simply says if you applause contour which encircles a pole a simple pole of a function and the

function of a complex variable Z, then the line integral f of Z DZ of this function around the

singularity is reduced to two π i times the residue at this point.

And it is independent of the actual contour as long as the contour encircles the singularity once

in the positive sense. Now this statement is independent of the contour also the direction of the

contour because if i started here at this point you could ask what's to stop me from doing this i go

around once but then i do all kinds of meanderings here and come back and hit this once again it

still does not matter all these increments would cancel out and the net result would again be 2 π

as long as you enclose this once in the counterclockwise sense.



What happens if instead I started with this kind of radial field moving outwards and I decided to

traverse the contour in the counterclockwise sense I did this instead what would happen now?

Well it is clear that again if I go around in the counterclockwise sense in the clockwise sense

sorry in the negative sense then this vector would also rotate in exactly the same sense as the

contour and the winding number is again + 1. 

So it is a property not of the specific contour but rather of the singularity that is being enclosed

and that is why it is so important so it is remarkable that if you have some functions of x and y

which are well behaved in a certain region, except for a singularity at some point where F and D

vanish  then  this  combination  of  algebraic  quantities  is  guaranteed  to  be independent  of  this

contour C provided it encloses the singularity and is an integer.

Yes it does not make it itself so the statement is if I go around once in the positive sense in what

direction  does  I  increase  it  increases  by  + 2π,  if  I  go around once  in  the  negative  sense  it

increases by - 2π therefore the statement is if increases by the same amount as what happens

when I go around once then the winding number is + 1. It should be independent of this C so I

change by going around once like this if this is a complex Z plane the complex plane in which X

and y are the real.

And imaginary parts the argument of Z increases by 2π once in going around this way and the

arguments I also increases by + 2π, so the winding number is + 1 if I went around like this the

argument of sight decreases it changes by - 2π and so does therefore the winding number is again

+ 1 it is independent of the sense in which I describe this contour. What happens if I took other

kinds of singularities well let us look at some of them.
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What if you had a singularity which is like what happens in the case of a Center, so we have field

lines which go round like this is what the field lines are for this vector field and let us put a sense

on it what would be the winding number corresponding to this singularity at the origin well again

you do exactly the same thing start at some point the vector field looks like this and go around

and follow this trajectory all the time.

I start here in this fashion when I come here I am like this when I come here I am like this when I

go here I am like this like this back to this back to this therefore, the winding number is again + 1

n =1 what if I had a radials outward field well n was =+ 1 we saw but what if I had a radials

inward field what if I had something like this these, are the field lines what happens if I did this

what would happen?

Now again we do the same thing I start here at this point the field points, so then I am going to

go around in this fashion so it is when I am here it is like this when I am here it is like this when

I am here it is like this like this and then when I am here I am back here and when I come back to

this point I am back here. So as I go around once in the positive sense this field also goes around

once in the positive sense and the winding number is again + 1, so we see that at a node the

winding number is + 1.

Regardless of whether this node is stable or unstable therefore the idea of this winding number

does not say much about the stability of the critical point but it says something about the local

geometry of the vector field at this point for this as well it is + 1. So is it for that and it is so even



if the arrows are pointing outwards does not matter at all so for a spiral point a node and a center

it is easy to check regardless of the stability of the center or this of the nodes or the spiral points

the winding number is + 1 always.
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What if you had a saddle point at a saddle the vector field let us say this is a saddle point two

lines in two lines out and let us say these guys go out in this fashion, in this fashion what would

be the winding number around the saddle point well I start with the same trick as before I make a

contour of this kind now look at what happens? When I am here the field points, so when I come

to this point what does the field do?

So it starts here and by the time I come here to this point the field does this, so please notice I am

moving in  the  counterclockwise  sense along this  contour  but  the field  on the other  hand is

moving in the clockwise sense, so it does this does this my time it comes here it is done that and

by the time it comes here back again it is done this. Therefore it goes in the other direction so

while the argument of Z increases by 2 π the arguments I decreases by 2 π it becomes - 2 π is the

change.

And therefore the winding number in this case and =- 1 for a saddle but it is + 1 for a center node

or spiral point regardless again of the stability of these points, what that suggests is that what

looks  like  a  radial  flow  in  one  region  can  actually  be  uniformly  deformed  to  look  like  a



tangential flow as you move out, this is certainly possible because this is what topology is all

about you could start with a flow.
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Which perhaps near the origin is radically outwards let us say and as you go up it starts curving

and as you go further out it starts getting more and more curved completely smoothly, so that it is

clear that the flow eventually could even look tangential if you are far enough away from the

origin.  So this  suggests  that  flows which look like  sources  or  sinks  could  be made to  look

tangential by smooth changes in a smooth manner without actually go crossing any singularities

and that is the reason why the concept of a winding number did not distinguish between centers

nodes or spiral points.



On the other hand a hyperbolic point the saddle point is very different and there is no way in

which one of these flows which correspond to any of these singularities can be deformed by a

smooth change of variables to look like this not possible. So it is of limited use but it gives us

some  hints  as  to  how vector  fields  behave  what  would  happen  if  you  had  more  than  one

similarity.

Inside  I  made  a  statement  that  the  winding  number  if  you  enclose  a  singularity  you  are

guaranteed that the winding number corresponding to the singularity is not 0, okay on the other

hand if I have a closed contour and I discovered the change in this argument as I come back is 0I

cannot conclude that there are no singularities in sight for exactly the same reason, that I cannot

do that in complex variables because you might have two poles whose residues cancel each other

just as you might have two charges in Gauss's theorem.

It  simply  says  the  total  flux  across  a  closed  surface  of  the  electrostatic  field  is  equal  it  is

proportional  to the sum of the algebraic  sum of the charges  inside and you could have two

charges whose fluxes could actually cancel as you took the full integral in, exactly the same way

it is possible that if you had a closed contour in which you had both for instance a node as well

as a saddle point then the - one of the saddle point and the + 1 of the node could add up to give

you a 0 and this is not difficult to see let me give you an instance right away where this happens.
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We looked at the example of a saddle node which was x. as x 2y . =- y and if you recall the flow

here was along the positive x axis, here and along the y axis it was inwards in this fashion and

this side looked very much like a saddle point, so the flow was like this and out here the flow

rode into this point in this fashion. And the question is what kind of winding number this field

has around this point.

Of course we unfolded the singularity and we discovered it really came about by coalescence by

the coalescence of a saddle point with a node but you can unfold we will  put this back together

in this fashion and it is not hard to see that if you took a console and went around this contour

see. The net change in size is in fact 0and what is happened here is that the + 1 of the known and

the - 1 of the saddle have added up to give you a net change in the arguments I = 0.

You cannot conclude based on that that there is no singularity of the vector field there very much

is a singularity but the some of these winding numbers has added up to 0 in this case. So the

statement is if you discover that the winding number around a closed circuit is non 0 there exists

at least one singularity inside on the other hand if you discover that the winding number as you

do this integral around the closed circuit is 0 you cannot conclude there are knows necessarily

conclude there are no singularities.

Inside there could be a set of singularities whose net winding number is 0 and now let us go back

to the example we started with which was essentially that . =Z 2  and now this will make sense

right away I do not even have to draw a picture because the flow.
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X . is x 2- y 2y . is 2x y could be combined into Z . =Z 2and the statement I made was simply but

if you went around once in the Z plane in the counterclockwise sense then the argument of Z

increased by 2 π but the argument of Z 2 obviously increases by 4 π which means that this vector

field which was my W has a winding number at the origin of 2, because the angle increases by 4

π and what is the field itself look like.

What does this field look like there's a complicated singularity here and it is a dipole field in this

case so the field lines look like this it is exactly, what a point dipole would do when I leave you

to verify that if you took a closed circuit  around this  origin here then the net change in the

arguments I would be 4π provided you traverse this circuit once in the positive sense. This is

what a point dipole does this is what the magnetic field lines of a point dipole the electrostatic

field due to an electric dipole look like.

And what it is and why is it - physically why is this can you tell me this from your experience

with electrostatics why is this - exactly there are two charges in there. One of them acts like a

source and the other acts like a sink if you take a single point charge if it is positive then the field

lines are radially outwards that looks like an unstable node and if you took a negative charge the

field lines go directly in words and that looks like a stable node asymptotically stable node.

You put the two together arbitrarily close to each other such that the distance between the two

vanishes and the product of the distance multiplied by the charge is finite the charge becomes

infinite such that the product is finite you get a point dipole, which looks exactly like this, so this



is characteristic of a dipole field and the winding number n =2. In this case well your ceiling fan

acts like a dipole field for the velocity field.

If you assume this fan the just the central portion of this fan is like a point source then it is

sucking in air from above and pushing out air from below and there is circulation in this pattern

so that is a simple example of a dipole source for the velocity field but the charge example is

more familiar to you from electrostatics and this is exactly what it looks like. So this is one way

in which you get some handle on higher order singularities by examining what the Poincare

index of the vector field looks like gives you some hint.

As to what is going on let us go on, now to another model it is very useful and very common and

this helps illustrate a little theorem I want to talk to you about regarding limit cycles. I pointed

out that limit  cycles do not exist in conservative systems but only in dissipative systems the

reason is if this limit cycle is for instance stable then it says a whole lot of points in its basin of

Attraction get attracted to it exactly, as in the case of a critical point which is an asymptotically

stable critical point.

And such attractors do not conserve phase space volume because the whole area falls in into a

line or a point and therefore it cannot occur in conservative systems which we have defined as

those systems for which the divergence of F is 0 everywhere measure preserving flows. Now let

us look at a famous example of a nonlinear oscillator and ask whether in the presence of non-

linearity and dissipation you might perhaps have limit cycles and this model is called the Duffing

oscillator.
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And it  goes  as  follows  it  is  a  second-order  differential  equation  that  specifies  the  Duffing

oscillator but we will interpret this in physical terms and the equation of motion is X double. +

Some friction term gamma X. and then terms which would correspond to non-linear oscillations

and this corresponds to oscillations, in a double well potential the potential looks like this versus

X and as we know this potential is described by a fourth order potential function which has a

maximum at this point at the origin say and to equal minima on either side.

So it is like having an inverted parabola near the origin and then moves out on either side so a

model for V of X would perhaps be - x 2  over 2 + x 4 over 4 with some constants multiplying

these two cases and with that kind of choice of origin the picture actually looks like this, so that

the potential vanishes at the origin and is symmetric has two minima on either side of it. So little

inverted parabola and then a fourth order term which takes you up in this fashion.

What would the phase trajectories here look like we will come back to this in a second they

would correspond to oscillations here or here or oscillations in D over both across both potentials

both wells so this thing here has a term which is - some constant times X which would come by

differentiating this point I put an α there. So let us put an α here + perhaps a β X cubed which

would come by differentiating this term and putting a - sign and this in general could also be

driven.

You could  also take  the system and put  an external  force upon,  it  which could  instance  be

sinusoidal. So perhaps on a cos ω t and you could now ask what about the dynamical behavior of



the system and let us interpret these terms once again I have divided through by the mass of this

oscillator,  so this  is  just  X double  this  term represents  linear  π  proportional  to  the  velocity

instantaneous velocity of the particle these two terms come from the restoring force represented

by the potential.

The fact that you have a - sign here comes from the fact that this is an unstable point the origin is

actually unstable and this beta X cubed with positive β comes from the fact that you have two

stable minima on either side it comes from this potential and that is driven by some external

force with frequency ω with amplitude. How many parameters are there in this problem well

there is one here, two three four the amplitude of the driving force and five.

With five parameters you have an extremely rich set of possibilities for the dynamical behavior

of the system but we could choose the scale of time,  so as to get rid of one of these constants

and let us choose the scale of time in such a way that this thing here is unity you still have four

parameters λ β a and ω and in the parameter space of these four constants these four parameters

you actually have many possibilities and the full set of possibilities of the Duffing oscillator can

only be understood numerically and it includes chaotic behavior of various kinds it is extremely

complicated.

Is this an autonomous system or non autonomous it is non autonomous you are right because

there's this forcing term here, so there is explicit time dependence so very complicated things

could happen in this system. Let us look at the simplest version of this in some form in which I

do not have a forcing at all but let us look at the case X double. + λ X . - X + let us just put this

beta =one this =0 and ask what about the unforced dressing Duffing oscillator.

That corresponds to motion in this potential but in the presence of π, now I could go ahead and

ask alright suppose you did not have this π at all what does the what do the phase trajectories

look like and that is very straightforward because here's what it does.
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Here is the potential  and if I plot X here versus X. for instance on this side then the phase

trajectories are very straight forward, you have a little center here you have a center here and you

have a hyperbolic or saddle point out there. For small enough energy just above the minimum of

this potential you could have stable oscillations about either of these centers and therefore you

would have trajectories of this kind for.

Slightly larger amplitude oscillations you would have non harmonic oscillations you would still

have this kind of behavior. On the other hand if you had enough energy and you oscillated with

this total energy it is clear that the particle could cross this barrier. Go to the other cycle come

back and oscillate with this amplitude and it would do so it is something which looks like this

amplitude here.
\
So it would certainly do something like this it encloses both the words with the minimum and

what is the critical value or separately value of the energy in this case it is 0 itself at this value it

is evident that if is start  here and give it  a little  perspiration to the right it  would start here

go down like this and come back and form a homo clinic orbit which is a separate R ix on which

the time period would diverge.

Similarly on this side you would have a symmetric thing which looks like this and you have your

saddle point at this point and these are the separate races we can easily find the tangents to these

separate races in this model but the actual stable and unstable manifolds are like this it is in a



really homo clinic orbits an outside you have oscillation across both wells and inside you have

oscillation around this well for that matter.

This is what would happen if you had this system without the γ without any damping at all but

now the question is interesting question is I switch on the γ I have a finite positive value of γ

what do the phase trajectories look like it is not easy to draw this immediately because I could

start at some point in the space and then it would start by doing this but because of the damping

the  amplitude  would  keep  reducing  and  eventually  it  would  find  itself  stuck  either  at  this

equilibrium point or at this equilibrium point.

This separatrix is no longer there once you have friction that is  the whole point this is only two

if you have no friction but once you have friction this is no longer true so I start with this energy

perhaps it goes around the first time and then it comes back it slows down it is below this and

then it stuck here and oscillates here on the other hand depending on what it does whether it

crosses this for the last time to the right or to the left it could any starting point would fall in the

basin of attraction of either this attractor or that attractor.

And these would actually be spiral points as an automatically stable spiral points so unlike the

non dissipative system in the absence of γ where you have two centers and a saddle point in

between in the dissipative  system you have two asymptotically  stable  four spiral  points and

where a given initial point Falls finally is dependent very crucially on where you start and it

turns out actually that in this model and subsequently I will try to show you some pictures of this

the basins of attraction of this point and that point they riddle each other the kind of interleave

with each other.

So you could perhaps start here and end up there but you start here and you could end up here in

this fashion they actually fold around each other in a very intricate fashion and I can only do this

numerically at some level but you also can ask the interesting question can this system with the

damping switched on have a limit cycle somewhere what is to stop me from doing that after all I

start by saying look there is a non-linearity in the problem due to X3 and there is dissipation so is

it not possible that there exists actually a stable limit cycle there is some isolated a trajectory on

which you have periodic motion and everything within it falls into some asymptotically stable

spiral point.



(Refer Slide Time: 48:15)

This could happen and we would like to find out if this is true or not so the question is there a

limit  cycle in this system is there a limit  cycles and there is a criterion called the bendixson

criterion which says there is not in this problem and it goes as follows let me stop with that.

(Refer Slide Time: 48:38)



So you have the bendixson criterion which reads as follows I start with x dot is f of x ,y y dot is

=g of x, y which is exactly what the system is like because recall that this implies x dot =y and y

dot =- =x - x3 - γ y so y double dot is why dot the same as y dot and that is = this and the criterion

says the following it says if you have a vector field of this kind a dynamical system of this kind

and you consider this in some domain in the xy plane.

(Refer Slide Time: 49:50)



Some domain D which is simply connected no holes there are no holes in this no singularities in

this domain and in that domain D F and G are continuous and have continuous partial derivatives

first partial derivatives and moreover if  � F/� x + � g/� y has a definite sign at every point in

other words is always positive or always negative in this region and this remember is just the

gradient of our vector field F in this case so if this has a definite sign always positive or always

negative then there can be no closed trajectories lying in this region in D.

Therefore it would say that can be no limit cycles either which is a closed isolated periodic orbit

the proof is very simple if there is such a trajectory then on that trajectory y dot is g of x,y and x0

is F therefore dy which could be written as dy/dx times dx would be =well dy is g/f dx and on

this trajectory it immediately follows that f dy - g dx =0 on the trajectory and if I integrate/this

trajectory this must be =0 so if you had a closed trajectory of this kind inside this domain D.

(Refer Slide Time: 52:03)



That must be true but my greens theorem on the plane this quantity is also equal to/the surface s

bounded by this C it is also equal to/s  � f/� x +  � g/� Y dx dy but that contradicts our initial

assumption if this function never vanishes has the same sign throughout s then this cannot be

zero on the other hand it must be = 0 if you had such a closed trajectory so this forbids you from

having a limit cycle if the bendixson criteria is satisfied what is the gradient what is Del dot F in

this problem it is the derivative of this with respect to X which is 0 + the derivative of this with

respect to Y which is - γ and that is  not 0.

Therefore we conclude that by the bendixson criteria the unforced Duffing oscillator linearly

damped Duffing oscillator  cannot  have a limit  cycle it  is  an illustration of a fairly powerful

theorem  which  works  for  these  planar  vector  fields  otherwise  you  would  have  to  examine

numerically.

And we are never sure whether there could be such a case or not a limit  cycle or not some

isolated periodic orbit but this tells you no matter what your initial conditions are you are not

going to have a limit cycle you are always going to flow either into this or this attract attractor

point attractor eventually a very useful criterion and we will see more properties of this next

time. 

Online Video Editing /Post Production
K.R.Mahendra Babu

Soju Francis
S.Pradeepa



S.Subash

Camera
Selvam

Robert Joseph
Karthikeyan
Ram Kumar
Ramganesh

Sathiaraj

Studio Assistants
Krishankumar

Linuselvan
Saranraj

Animations

Anushree Santhosh
Pradeep Valan .S.L

NPTEL Web &Faculty Assistance Team

Allen Jacob Dinesh
Bharathi Balaji

Deepa Venkatraman
Dianis Bertin

Gayathri
Gurumoorthi
Jason Prasad

Jayanthi
Kamala Ramakrishnan

Lakshmi Priya
Malarvizhi

Manikandasivam
Mohana Sundari
Muthu Kumaran
Naveen Kumar

Palani
Salomi
Senthil

Sridharan
Suriyakumari

Administrative Assistant

Janakiraman.K.S



Video Producers

K.R. Ravindranath
Kannan Krishnamurty

IIT Madras Production

Funded By
Department of Higher Education

Ministry of Human Resource Development
Government of India

www.nptel.ac.in

Copyrights Reserved

http://www.nptel.ac.in/

