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So, last lecture I had mentioned the j function, and but I did not remember the exact 

coefficients. So just for completeness, I mean you are not expected to memorize this numbers 

or anything. Let us look at the coefficient of q, which is 196884 and it can be written as this. 

And what this implies is that this particular number is special to the monster group. If you try 

to find a matrix which non-trivial matrix representation of the group, the smallest one you 

could find, which is a reducible is of this dimension. So, it is very difficult to cook up I mean 

this number is not just cooked up. And 1 mean single - singlet, it means it is trivial. So you just 

take a 1 by 1 matrix, where every element get mapped to 1 and then, so that is trivial 

representation. So this is also the next representation, bigger representation. So, it is sort of 

mysterious, why these numbers come? And the story it is sort of this is a story it is a popular 

book with not too much mathematics by Mark Ronan. It is symmetry and the monster it is a 

fun read and I recommended. And let me give some references for group theory. 



(Refer Slide Time: 01:30)  

 

The first one is Michael Artins book on algebra. It is actually an undergraduate linear algebra 

book, it has some stuff on group theory. It also has lots of things on linear algebra, I would 

recommend, if you do not know many of the things to work through it. This, and J S Milne has 

actually lot of stuff on his website, which I have given the link out here. And for group theory 

has a nice sort of 150 pages of notes, which you can read through and here, is some exercises. 

And I would recommend sort of working through some exercises, so that you understand the 

ideas which go there. There is no shortcut to that, I mean you if you just keeps there are so 

many books on group theory you can keep I can the list can keep going on and on. But what I 

recommend is that actually playing around with things. 
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I will also probably give you an assignment on finite groups, so that you can play with some 

specific examples that I see fit. These all I have to say about group theory, but outside of class 

somebody asked me this interesting question. Do we really need so much abstraction? And the 

short answer is yes. The longer answer is that if you there is no getting around the fact that the 

symmetry in nature is captured by this wonderful idea called group theory. And the first sort of 

important use of it was made by Wigner in physics.  

And since, you will be looking at relativistic field theories, which is usually used in the context 

of high energy physics. There again the whole development of the field actually, made use of 

group theory. One important instant is called the 8 fold way. So, people are looking at nuclear 

resonances and there were plenty, I mean everyday they were finding one and the question was 

is this a new particle? Is it some you know, maybe I can name it after my wife or whatever. 

You know it, things like that, did happen. And so but there was Gellman and at some point 

realize that there was some group theoretic structure. And the group which actually sort of may 

made him organize things was what is called SU3. And the 8 fold way refers to the fact that 

SU3 as an 8 dimensional representation, and certain set of objects could be organized in a 

multiplet of size 8.  



Another place where you would see you might have already seen if you done quantum 

mechanics, you have the angular momentum algebra which you would have seen. Again that is 

a very important use of the group, rotation group in quantum mechanics. So, there is no getting 

around the fact that group theory is something which is very important. And the idea here is to 

do things in abstraction because in some way that is easiest. At the thing is if you are able to 

digest the fact that there is a representation of a group and it has a certain dimension. The 

minute I say, something like the 8 dimensional representation of SU3, I mean that is actually a 

very well defined statement. And as this course goes along, you will, it will sort of you will 

also learn more about these things. And you will become more comfortable with it. And you 

will realize yes this is the only way I could say it. You know why should I spend you know, 25 

minutes trying to explain what this 8 dimensional representation is when it can be said in one 

line.  

And it is very precise and this is the kind of precession we will need and we will use. So that 

the Sir John into finite groups was to give you exercises, which you could play with and do 

something more quite explicitly. There is not much you can do explicitly in general because, 

you need little bit more of theory to see the structures which we will see as much as we need. 

And another point were doing the math in this course is because, we would like to I mean if 

you take group theory it is a full course in a mathematics department. But look we want to just 

learn certain enough group theory if you get by. And depending on your personal interest you 

can read up things nobodies is stopping you from that. But what the goal of my lecture here, is 

to fill in the math background. Because most of you I mean have a mixed background and you 

know something, you do not know something. But at the end of the day I cannot assume that 

everybody knows everything. So, I that is one more reason to actually spend some time on the 

math that is required. So actually today we are ready to actually start working towards 

description of continuum field theories. 
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So, classical field theory as we saw in the very first lecture was the classical mechanics of 

fields. By the ways there is a wonderful book title statistical mechanics of fields. By Kardar I 

recommend reading chapter 2. It is not a classical the title of the book is statistical mechanics 

of fields. That we will be doing classical mechanics of fields. So this is recommended reading 

it is a wonderful book. So, the basic object is going to be a field, so I am just using a symbol 

phi of x and of course it could be t for simplicity for a few minutes. I will assume that we have 

only 1 dimension because I can draw I can use the board efficiently there.  
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So, in another words x takes values is some real line and at every point. So let us say this is a 

scalar, so at every point there is a scalar degree of freedom. So clearly there is a infinite degree 

of freedom. And so how do we do go ahead and handle it. One trick is to actually descritize 

space and then take the limit where the spacing goes to 0 and that is what we will do, so we 

will replace. 
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So this is R I will replace this by a discrete set of points so, it is an integer worth of points. And 

let us say they are equally spaced with some spacing it so, we start so this is something which 

has coordinate x. But, this would be some typical point would be x equal to some n where n 

belongs to integers. And important things like, if you believe that there is translation in the x 

direction clearly it is broken out here. It is broken down to the discrete set of translations in this 

1 dimensional lattice. By units of a, but, what we have in mind is that what we will do later is 

to take a, to 0. So that the spacing goes away and hopefully will recover this sort of a 

symmetry. 
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So, first step is to ask what happens to phi of x? So we have done some thinning. So what we 

are going to do is only know the values of phi at these points. So, let us write out something 

like this, we replace phi of x with in the discritization process by q of n, which should be 

morally speaking I am not using the equal to sign, You will see why? We will put the equal to 

sign later this is e has a same as, the degrees of freedom. So what I have done in this process is 

to convert the degrees of freedom to make it look like system, which has infinite degree normal 

classical mechanical system which has infinite degrees of freedom. So the question is what do 

we do with, the so let us Recall the Lagrangian. 



(Refer Slide Time: 10:27) 

 

Actually even before I do that, let us take a slightly let us take a thoi model of the kind you 

would see in Kardar books for instance. So just take bunch of degrees of freedom which lie out 

here, and think of them. So these are like masses connected to by some springs that means, 

there interaction is harmonic. So, what I have in mind is we have some so the Lagrangian for 

such a system would be. So, this would be the kinetic energy part. You could have a constant 

here but let us say I normalize things such that this constant becomes 1 minus. The potential 

energy which would come from this spring which would look like summation over i half so let 

us say k. Let us use a small k k by 2. So, I am just saying that this is some harmonic spring 

with spring constant k. But, if you think of this s some ion in some lattice it there will be some 

local potential which will keep it out there.  

So, I could write something else which would also. So, let us look at each of these terms again 

first point you realize is that each of these terms is translation invariance. So we are assuming 

this infinite change for practical purposes. So, you can see that when the discrete symmetry just 

i goes to i plus 1. So I have so, it is not like I have different constants for each of these things 

so this coefficient is uniformly 1. Similarly, out here all the springs are identical. And this 

potential let everything again side should be identical. So let us look at these two different, so 

these is the normal kinetic energy term if I had put an m out here, then you would be happy but 

I let us say I put m equal to 1. 



So, let us look at this particular term, this term involves two sides but this involves only 1 side. 

So, now you can see that but these are all local interactions. There is nothing which says that 

you know something here and something which is like million lattice points away there is no 

interaction between them. This is kind of intuitively what we could we would write we could 

have I mean without losing sleep we could have made this as i plus 2. But I mean, but this is 

more natural to this kind of problem. 
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So will distinguish, but there is a difference between these two kind of terms, this term is local 

this is also local. But this we will call ultra local because it is determine by the degrees of 

freedom at a particular site. So will call this term ultra local all this is in space all the 

statements while a term like this we will call local.  
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So now comes a question, How would you go about taking the continuum limit of something 

like this for status? So of course the easy answer is say take a, to 0. But now comes the issue, 

how do we take a, to 0? So, first thing is to realize so it is not enough to take a, to 0. We need 

to know, What is it we have to do with summation over i? Does anybody have any idea, what I 

should do to that? You replace it by an integral. So, but this has dimensions of length and this 

is dimensionless. How do I fix it? You go back to the old definition of things. So you put a 1 

by a, out here. So, now let us go back and first pick up the kinetic energy term. So let look at 

the KE term. So this says that I should go ahead and replace summation by 1 over so this just 

becomes 1 over 2 a, integral over x. We are not done yet we need to take the continuity of 

limit. But you can see that if I take a, to 0 just naively what do I get? I find that it blows up. But 

we can take care of that by realizing making advantage, taking advantage of this particular 

thing I said q may not be exactly equal to this. So, we just and go ahead and define so, we say 

that let phi of x be defined to be. So you can see that what I have to do is to that you have to 

take the limiting process or whatever but if I define it this way I get, So x equal to… 
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I just need to put a square root right, because there is a square root here. So it is a important 

note that this is your continuum field and this is the discrete fields. So there is always some 

power of a, which goes with the field. And in fact suppose we had instead of 1 dimension 

suppose we had d dimensional space time then, let me write use a different color. And write 

that so for d dimensional space time you would not sum over just i you some over the d 

dimensional lattice for simplicity. 
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Let us, assume it is a cubic lattice of size a, then sum over the lattice. So d dimensional cubic 

lattice I will not write cubic it should go to 1 over a power d. So this is what you get for in the 

summation. Now you can see that the analog statement which, are again right now, that would 

be that phi of now I will just use x, because they would I require many indices n 1, n 2, n 3 

etcetera so, let us do that. So let us say that it is n 1, n 2, n d. So what I have in my mind is do 

not want to write out. So, I will just, in this notation this would be just n1 would be just there 

will be 1 n. So, that be of many of this guys out here, which should be equal to 1 by a power d 

by 2 q of that vector n. So you can see that the dimensionality of your space is actually buried 

into this. So let us get back to the rest of the terms. And we will again work we let us see what 

we have to do to take the continuum limit of these terms. 
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So the next term would be the Local term. So now, again we can see several things first thing is 

we can we know that the summation has to be replaced by the integral. But now we also have 

to take in to account what happens to this difference. So, let us first work out what the 

difference looks like, again I will do it for just 1 special dimension. And I think it is simple 

exercise for you to work it out for the other dimensions. So, let us look at what happen to a 

term like this. If I divide this by a, and multiplied by a in the continuum what will happen you 

can see here is that we have seen the appearance of the discrete derivative.  

So in the limit that q goes I mean a goes to 0 this becomes the derivative. And putting in that 

other factor that we have out here. That is square so nq is equal to square root of a times phi. 

So this should become this there is 1 a coming from here. And there is also a square root of a 

coming from the scaling which you need to go from q to phi. And this way and the way I have 

written it is qi minus qi plus 1. So, that will be the minus of the derivative. So, let us just now 

we can put we can combine we are also we will get also some more powers coming from this 

things, so this term now. So you get since, there is the square of this, you get this is what a 

power 3 by 2. So you get a cubed coming from this part and the summation will give you a 1 

over a.  



So now we can see that so we so again taking a equal to 0. You can see that this term is now 

going to 0. Now you could say fine that that means such terms are irrelevant. But, that is not 

quite true you do not want to lose your local interactions. So again you scale things in other 

words take k to 0 k to infinity, such that a becomes a goes to 0 such that this combination 

whatever ka square is some constant. So the limit is let k is defined to be limit a tending to 0, k 

tending to little k tending to infinity, such that this combination, which is k this should have a 

finite limit of course by definition, which you also know that springs becomes stiffer as you 

make them smaller so this is not it is not counter intuitive.  

So this so this tells you that this is another thing. So now we can see that local term becomes 

the local term is now nice it is half k. There is some minus sign in the way it appears there. 

But, I am just looking at this term is now half k integral we still need to handle the ultra local 

term. So what I will assume is that the ultra local term has some power law. So let us say let it 

will V of q b some, let me use some lower case it is some power m. If you want several of 

them you can sum over them. But, I am just choosing for simplicity just 1 term I called this 

coefficient bm.  
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So now so that the ultra local term now has the following part which is half no half out there, 

So it is just summation over i V of qi this is equal to. So now, we can quickly do things we 



know summation will give 1 by a, and q each power of q will give you a square root of a, on 

top. So this will just tell you that this is equal to or goes to bm. This gives you a power m by 2 

divided by a again. It is obvious how to take the limit, is to just take the limit such that. So you 

take now b goes to so you basically take the chose the limit of b such that this thing becomes a 

constant. So, just define so I will not worry about how the limit crosses goes we just define bm 

to b. So, now we are ready to write out the Lagrangian. What I will do now is to write the 

action first just like the Lagrangian it is let us write Lagrangian. 
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So, the Lagrangian in the continuum limit is the sum of three terms. The first one is this, so it is 

just half. And the important point here is that so it is very clear, how to do this for an arbitrary 

function you can scale things properly and get everything to work out. If you have some 

polynomial kind of things; so this what you get. And we have already put in locality in space. 

However, we done if we have seen that we have only taken nearest neighbor interactions, and 

we have got an integral over only dx. An example of an non-local term would be something, so 

it is useful to see how an non-local term looks like, I am not saying this is the only non-local 

term I am giving you an example of a non-local in space. That is if I have something like this, 

times some function of x and y. So, it depends on two points. You can make things even worse 

you can make it depend on n points, but this depends only on 1 point.  



So, we have already put in locality and it shows you that locality in space implies that there 

will be only two kinds of terms. That you could add one is a local term that can be expressed in 

terms of derivatives of x, I mean phi and its derivatives, I mean derivatives of phi. And the 

local pieces are the derivatives of or no derivatives but just ultra local terms, which are 

function of phi.  

So this sort of gives you the idea what kind of Lagrangians you have. So obviously since, what 

you have in inside this inside the braces it is natural to call this object a Lagrangian density. 

Because, dimensionally it is really per special thing right. So, one writes these thing as integral 

dx we use script l. In fact there are more general local terms that, you could write I could write 

higher powers of phi. And there are models where people do look at such terms. So I am just 

for I will write a something like that, let us call it k prime over 2 over some power let us call it 

Z, where Z is some where Z is equal to 2 it is this Z can be greater than 2 anything higher 

powers.  

So now we can ask this was we did only for 1 dimension the generalizes to d dimensions is 

quite easy. But once you go to more than 1 dimensions even if, you are in two dimensions you 

have additional symmetries to think about, which is rotation you would like to think things to 

be isotropic in space. So things have to be rotationally invariant and you may wonder, How do 

I implement that? We can implemented just like, we did by implementing translational 

invariance we required things to be invariant under translation the action to be invariant under 

translations. So a term like this, you would just replace it by the scalar product. So for instance 

in higher dimensions higher special in higher special dimensions dx of phi. So for instance into 

in we could have taken in one dimension dx phi whole cubed there is no issue or so it seems 

you can take an odd power. But if you got to higher dimension you will have to take square 

roots to do that.  

So dx square would go to some kind of gradient, let me write is it as a dot product. And you 

can see that notes no particular direction is special in such a term isotropic is taken care of. So 

if you want to put higher powers you can but, it has to be some power of this sort of guys. And 

needless to say, L will become so, the continuum limit of that simple model of spring tie 

together would be some would be a string with some tension right. And so in such cases this k, 



what would k be in such in that example? k would be the tension it related to the tension and 

also related to the speed, speed of sound from that thing. 

So k is some kind of even by simple dimension analysis you can see that k that k should be the 

square of k would be the square of some velocity or speed to be more precise, so, that just 

dimensionality. Now we can come back I mean there well all these I raised one of these things 

the question is. Can we figure out is there some way of making sense of these numbers? This 

powers of a so, let us write out what are the powers which we got. We got two from here; we 

got m by 2 minus 1 from here. And the last bit was with phi had a square root right. So these 

roughly the so this is this has. So, now question is can we come back look at these Lagrangian 

and derive the same thing. And I will show you how to do this and the way to understand that 

is at the lattice level I could have done the following thing.  
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I can take a to lambda a, I scale it and so we can do the same thing in the continuum by just 

realizing that I just go ahead and scale x.  
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So I scale so, I replace this, by x goes to lambda x. And you want to write you want to 

associate by demand that every term is scale invariant in some sense. So, we start from this guy 

and let us, look at this. So x so this implies that dx also scale like lambda dx. So you look at 

this part t does not scale so, only phi has to scale. So implies that phi should scale to cancel that 

phi should scale with. Now, that this term has fixed the scaling will call a, this thing we will 

call the k half or minus half actually to be precise is a scaling dimension of the field phi. What 

about here?  

So now you can see so there is d by dx here, so this will go like 1 by lambda out here. So there 

are two of them, that will give you a 1 by lambda square and a phi gives square root, so you 

gets a 1 by lambda. If I goes this so then k, so k so now you can see that k so dx of phi whole 

square will go like this will give you a lambda power minus 2. And phi will give you a lambda 

this will give lambda. So the only way the things can be invariant is if k is scales like, so this 

implies that k scales like; it has to cancel this k lambda cubed.  

There is a lambda from the dx, which will reduce this number to 2. And k so let us forget this. 

So we are look at bm so b m will have to go like phi m is like it goes like lambda power minus 

m by 2. And but it has to also I have flip sign I think. So, you can see that is not as if these 



things we scaled away. So, let us see what we get out here, is this I cannot see that. So you can 

see that you get the same scaling dimensions which you had out here.  

So, it is not like by going to the continuum, we forget all the memory of those limits. We can 

actually recover these things. And these are called the naive scaling dimensions. They are 

called naive because, quantum mechanically these dimensions can change. And they are not 

something which you will do in this course. But so, there is some memory even after you take 

the continuum limit, in this Lagrangian. Is this clear?  

So now, but we are interested in constructing Lagrangians for Relativistick theories which have 

Relativistick symmetry that is a Lorentz group. So, we have already inputted special rotations 

we have taken care of. Even if you look, at the Boncary group we have even got taken care of 

translations. In fact translations in space and time are taken care of. If you go look at the level 

of action, so action you can see is an integral over these things. So, now the question is. How 

are we going to so? We need to ask what is the value of k such that k or all these constant such 

that we end up with things which are Lorentz invarient. So, we need to only ask, How they 

transform under Lorentz boost? So first thing is let us start what I will do is now is to start from 

the easy part. We will let us, start from the ultra local term and ask the following question. 
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So, let us take the ultra local term and what I will do more generally is that, you can replace 

this by a function, which we call it u of phi. I call it u because, u is transfer ultra local to 

remind you, not v but, u. So the ultra local term is u of phi and we have said phi is a scalar field 

by that we mean it is a scalar. Since is a scalar under Lorentz rotations transformations, any 

arbitrary function of it is also a Lorentz scalar.   

Now, you may think that I can construct I can consider the local term, I can just write out a 

local term, which I look at only the local term and try to make things work. But, we know that 

under Lorentz boost space and time mix. So clearly, there I mean terms like this can become 

terms like this. So we can ask how things change. So let us go back and look at how so we 

have let us say that x prime is equal to so these Lorentz boost.  

So, the question is, what happens to d by dx prime? Now, we can use the chain rule and may be 

I will go the other way. I will go from d by dx. So we can just look at this, so dx prime by dx is 

just cos hyperbolic plus. This should give you some sin hyperbolic with some factor of c d t 

prime by this is 1 by c that may shift the c this side.  
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Let us put psi. So d by dx is x prime and t prime. And it is not hard to work out what d by d 

prime is. So, now comes the nice stuff, so this we can see. So the question is so we have to ask, 

How this transforms? So by acting on these things you can see that I can put the phi inside this. 



And not hard to show that the Lagrangian density involving derivatives the part of the is 

invariant under the Lorentz boost.  

So that is the case so basically what you will see that the cross terms vanish and the nice 

identity cos hyperbolic square plus sin minus sin hyperbolic square equal to 1. And the nice 

thing is that there, is this minus sign. This minus sign is very important, the reason is that from 

our if, we go back to our discrete system this was part of the potential. Then you also learn one 

more thing, if you put a term where like this, where Z is not equal to 2 it is not invariant. You 

cannot choose some random thing, which you could have if there was no say nothing which, 

mixed space and time.  

So theory is will like this, would usually happen in non relativistic settings. These are Lipschitz 

these are called Lipschitz models. And there is no there space and time do not have to mix in 

this fashion. So you can see that arbitrary terms like that are completely ruled out. So, now we 

are sort of ready to write out the most general relativistic. 

(Refer Slide Time: 47:30)  

 

So L and I have just read it, I have just solved for everything. So this is what you need to do. 

The only change we did we go through away that kind of piece and we have got this. And now, 

you can we can also see the generalization to arbitrary d dimension is to is just write this and 

replace this with gradient. But this term actually can be written in a very nice manner by, so 



recall that I can pull out as c square fully. This will become d by dx 0. We called x 0 is defined 

to be ct.   

And this has a nice way of you can rewrite as C. So in relativistic field theory you can see that, 

these since these two terms mix. And they can be written as this so this you can see is 

explicitly that is contraction this is by manifestly a Lorentz Scalar. Do not worry about, this 

factor of C, you can avoid if you wish. You can rescale, you can absorb 1 C into the d t 

definition. And the other C can be absorbed into the taken in with the phi, so that the C goes 

away. It will and you can absorb all the other constant, so that not so important. What is 

important is that this is manifestly a, Lorentz Scalar.  

So in this course for the rest of these thing I will when we will what I mean by kinetic energy 

will refer it to this term itself as the kinetic energy. So it is a loose imprecise thing because 

really this is what you would have thought was the kinetic energy part. And it contains the 

local part as well. So we will call this kinetic energy the standard convection and the ultra local 

piece, we will call that potential energy so this is how you would write things. And one more 

things you can see is that if you even though the Lagrangian this measured the dx is clearly not 

invariant under just Lorentz transformations. The full action is because the action becomes… 
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So, I can write so S is integral so I am including time and this thing times. Some Lagrangian 

density which depend on phi and d mu of phi and so this of course this measure is also trivial 

nicely Lorentz invariant measure. And these term by term we saw was the Lorentz scalar. So 

what we are accomplish today is to write out what would be a local Lagrangian which is for a 

scalar field. So you can ask what about vector field? And the answer is we could write these 

things. But what you can see is that this kind of things will still go though, that you would 

write your action some integral over both space and time. And it will be in terms of some 

Lagrangian, which would be in terms of the field and it is derivative. This structure will still 

hold.  

Student: What are Lorentz invarient scalar field will this be any possible structure? You could 

take higher powers.  

Student: Kind of potential terms but anything else.  

Not just in the potential you can write the whole thing power higher power you could write.  

But, this combination you cannot suspect.  

Student: Some function of the field the potential energy.  

Absolutely.  

And just a, I mean if you one more thing I want to remind you is that in quantum mechanics. 

Why did you restrict yourself to 2 derivatives? You could have had 3 derivatives etcetera. 

Suppose you had q double dot square in your thing. What you usually do there is to introduce 

an extra degree of freedom, whose equation of motion is just saying so, if there is q triple dot. 

You call you introduce some other let us say q prime which is equal to q dot. And then you 

rewrite stuff and then you will get something.  

So you add you sort of increase the degrees of freedom to handle lower derivative pieces high 

derivative pieces and, write it again as a normal Lagrangian So these kinds of tricks can be 

done. And so, but actually the hardest part in any system is not writing the Lagrangian density 

it is the first step itself. What are the correct degrees of freedom, for in to describe your system, 

and that is the hard part actually. And once you have the correct degrees of freedom then, 



anything of I mean so you could the same system may have a different energy scale different 

Lagrangian description system.  

Classic example is qcd at higher energies that it is theory of quark and gluon. But, low energies 

is actually a, is more like a theory of mesons and baryons. So you could write some other 

theories. So, degree the fields which you would describe low energy stuff, would you can write 

effective Lagrangians which actually do these things. And there is lot of interesting work 

which works that way. So you can see that the same what you thought was the same system a 

different energy scales behaves like the degrees of freedom natural degrees of freedom are 

different.  

Another example is the super conductor, I mean in its normal state, it is a system which 

contains only electrons. But in the super conducting state there are other degrees of freedom, 

which carry the thing and that, is what lead to the super conductivity. The cooper pair you 

think of that as a different degree of freedom and it is funny. That, the cooper pair is a Bosonic 

degree of freedom even though the individual parts are formeyonce.  

So, you would describe that by scalar field theory. Even though I mean you might say all the 

conductivity is due to the electrons move. But that it is like two electrons moving in 

synchronization, and it does not make sense to think of it as a system of electron. But rather the 

scalar field which describes this thing the cingulated part in some sense to be precise. That 

could be the triplet which could gives half that is also a scalar. So that is actually the hardest 

part in real systems.  


