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And we saw that Lie algebras made life a lot easier, because we start working with linear 

vector spaces rather than some horrible nonlinear thing, and so the key was that you get a 

group ellipse that is a nice relation between group elements and exponential of… So, let 

us say that you have generators T a and some parameters alpha a’s. Did I use upper case 

or upper index for T a in last lecture; then let us stick to that. So what this tells you by 

looking at it in this form what you realize is that this is a group element, so you can 

actually write the parameters in this form. 

And towards the end of last lecture, I told you that you could I asked you to consider 

something like this for SO 3 or SO 2 or like SO3 and T a b c, you take it to be epsilon a b 

c with a b c everything running from 1, 2 and 3. So for instance, so this would tell you 

that you could write a group element of SO 3 in terms of something like this so for g of 

SO 3. So, again like I pointed out this is in some representation, so this is a 3 by 3 

matrix. 



So, this is in the three-dimensional representation of SO 3, and one more bit on notation, 

when you write the Lie algebras we use lower case; let us use an upper case for this. So, 

the group SO 3 would be written this way and here I would mean the Lie algebra. Some 

books use some kind of different script some other font, etcetera but I think for writing at 

least you can have upper case for group and lower case for the corresponding Lie 

algebra. This standard notation and so we are in a three dimensional representation, so 

the group also. So, if you through the exponential map so I will just write the same thing 

alpha a T a; I am not putting I out here, I am using the math convention just for now. So, 

this would give you g of alpha a and if you just go ahead and rewrite alpha a as follows, I 

write this as some angle times n hat of a where n hat of a is such that. So then you can 

rewrite this, so it is still three parameters because if I just wrote alpha a it is alpha 1, 

alpha 2, alpha 3. 

So, all I am doing here is calling theta the magnitude of alpha a in some sense; if I define 

magnitude to be alpha 1 square plus alpha 2 square plus alpha 3 square and then I just 

write this. So, now we know that this SO 3 is just rotations in real space and so this you 

can see now I have written it in a particular form. So, we know in three-dimension any 

rotation can be written as a rotation by some angle theta about some access and n. So, 

now you can see that and I think I believe I have given this expression in one of the 

assignments I asked you to work it out. I think so if I have not it does not matter.  

But now this is what we would have called in our earlier notation; we would have called 

this r of n hat and theta. So, we see a nice connection between what we had seen in 

instead of in more elementary courses or even earlier in this course and something much 

more starting out from a much more abstract setting. The advantage of the abstract 

setting is this kind of formula holds for Lie groups for arbitrary Lie groups. 
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So for instance if I take SU 3 we know nothing about it. At this point we accept for the 

fact there it is a Lie group and so what about Su 3. So, first thing we can check is that the 

dimension will be 3 square n square minus 1, so that will be 8. So, it is the set of n by n 

so the natural representation if you look at three by three Hermitian matrices that is 

traceless; that will be the Lie algebra similar to what was antisymmetric. So, the 

dimension will be 8 and you need to choose some bunch of three by three matrices and 

so let us just call them instead of calling them T a’s I will just call lambda a; a runs from 

1 to 8 but there will be some i j index, i and j run from 1, 2, 3. So, these are some three 

by three matrices that satisfy this property which will form a basis for these things. So, 

the statement would be if you wanted to write an SU 3 arbitrary SU 3 element, just one 

second I will not say I should say skew-Hermitian or antihermitian. Because I am not 

putting i or we leave it like this and yeah, let me stick to the physics convention now I 

put an I out here. 

So, this is physics convention while this is the Math’s we are writing it here. So, you can 

see that i t a, sorry not T a lambda a. So if lambda is Hermitian i times lambda a will be 

antihermitian in a trivial fashion. Now you can see that so in your assignment you will 

see that I have given you a bunch of a particular representation of this eight matrices, 

These are called the Gellmann matrices; Gellmann is the very important name in this 

high energy physics for one of the reasons is that he actually brought about the idea of 

using groups to classify the particle zoo. So, what happened is that they were used to find 



what are called resonances every day and it looks like should we call them new particles, 

etcetera because people did not know about coax or anything. This was before the quack 

model and so what he did was he realized that there is some underlying SU 3 symmetry 

and it goes by the name of he coined something called the eight fold way. This eight I 

mean it is related to this and he introduced this particular set of basis vectors or basis 

vectors for the Lie algebra Su 3. 

But you do not need I mean the point I making out here is that we do not need to 

remember anything. You can just write out the group elements but there is one tricky 

part in this whole business. If you are asked what is the values that what is the range of 

values alphas can take such that you get a single valued this thing; so out here its easy, I 

will tell you the answer theta goes from zero to 2 pi n and its identified but if you go to 

SU 3 it is not so easy. So, local properties you can capture but if you want global 

properties which means which tells you things like what are the ranges values these 

various alphas can take, then you will see that things are more involved. But at least 

notionally you can see that you get you are able to write out group elements which 

satisfy all the product rules which are required. So, now coming back to the original 

problem we want it to parameterize find a nice way to choose fluctuations when you 

have symmetry breaking. 
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So let us assume, so let us return to symmetry breaking and let us say that H is some take 

subgroup of g and let us assume. So, as usual G is the symmetry of the thing and H is 

some subgroup which is preserved by the classical vacuum and we will assume so this is 

symmetry of the theory and this is the unbroken part. Further we will let us assume for 

simplicity we assume both are Lie groups and now one more point here is the fact that H 

sits inside is a subgroup of G sort of tells you that the Lie algebra of H will also be sub 

algebra of Lie sub algebra of G. What is the statement what you will say so when we 

looked at when we said subgroup, if you take two elements H 1 and H 2 which are in H 

you take their product the group composition it will stay within H. So that guarantee so 

that via the exponential thing you will see that the Lie bracket or the commutator of the 

Lie algebra elements should stay. 

So, it is just the closure part you have to check but the closure at the Lie algebra level is 

done by taking the Lie bracket or the commutator of the Lie algebra elements and while 

in a group it is just the composition part. So, in other words what you will so let us first 

go ahead and write let us say that let us use little g, so we will write something like this, 

h is a sub algebra of g. So, this I am replacing this statement by the Lie algebra. So, now 

we can go ahead and let us say that we choose T, let me choose capital A and let us say 

that A runs over something’s a trans over dimensions of g and let us say that this has a 

bunch of generators. So, this is a basis for this thing; similarly I can have another t let me 

use a little a index and a will run over dimension of this the Lie algebra h. 

Because it is a strict subgroup obviously this dimension will be less than this and we can 

be clever enough because this sits inside this, we can always adjust it such that the first h 

elements of this. So we can also write a, I can break up the indices or the generators a 

and a dot where a runs over 1 to dim h. So, that is the set of generators which are in h 

and a dot is the set of generators which are not in h. So they belong in some sense 

morally speaking to the co-set the directions along the co-set. So, elements in h rather 

group elements. So, now we can see they are very easy things lot of simple things can be 

done, we can write a group element. So, an element like this e power let me put i strict to 

the physic rotation alpha a T a. What would be this group element where would it belong 

to? It will be an H and suppose we wanted elements in g mod h. 
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What about elements? This is what we wanted to isolate, right, we wanted to get the flat 

directions, etcetera, that is what we wanted. Yeah. So, H is symmetry of this thing and so 

we just want to write out. So, you can see that a natural choice will be to write an 

element of this form. So, this is the index generators of the Lie algebra not in H. So, that 

so you can see morally speaking, so how do you understand this. The most general group 

element would be something like this but now I can write I want to get the co-set but I 

can keep acting on it either from the right or left does not matter which way. I can keep 

acting on it and you can see that I can always adjust it such that this term goes away. So 

this is a representative of or equally well I could written the most general group element 

I could write out in some form like this; nothing wrong with writing it even this form. 

So, now you can see that these goldstone modes came from exactly these guys. 

So, what you would do is you would write out these elements explicitly outside. So, if 

you have some vector v, so this is some vector in whatever representation it is its acting 

on this thing. So, what I would write is the fluctuations I will write as v plus eta where 

eta would be like the analog of the radial directions times e power I alpha a dot T dot, 

and the number of eta fluctuations will be whatever is the appropriate thing but this you 

can pull out explicitly and you can see all the nonlinearity, etcetera that you need is taken 

care of. So, this is what one means by choosing a clever parameterization and that is why 

the Lie algebraic structure is very useful in even just writing something like this. And 

then because you have chosen things properly everything will work out. So, we will get 



back to where we will see more general symmetry breakings, etcetera in this course and 

during that time you will see me explicitly work out examples of this. 

But you could for instance ask what happens if I mean if I have three scalars in SO 3. So, 

it is one exercise for you. Choose G to be SO 3 three dimensional representation the 

normal vector thing and H to be SO 2. So, this is nothing but choosing one vector so that 

this would be the rotations and so you write out. I mean I think you should be by now 

very easy for you to write out something and just work out, verify Goldstone’s theorem 

for this example; for an example you can construct a Lagrangian which has this 

invariants. So, and the scalar fields would be some phi, choose a suitable potential; you 

can even choose my favorite phi forth potential if you wish which has that invariance. 

So, this is a good fun exercise and I am sure we will look at this example. Yes, have I 

mixed it up? Yeah. We do not have there in the solution a is what is noticed? We rotate 

the solution by the unknown. No, no, I think it is correct because you just look at it right, 

if I put a out here it is symmetry of the this thing. 

So, trivially so if I have something just forget everything. This is the statement that it is 

symmetry. So, you write the most general group element action on v and you see what 

you get but the v goes off. Okay, I think I am correct here. So, before moving ahead to 

more general things I would like to take a step back and like I said in my summary of 

what we have done so far, we are moving on to understanding vector fields and so I 

would like to complete the discussion of looking at the symmetries of just the 

electromagnetism and getting the various currents, etcetera. This is something you have 

done in your assignment but I would like to go over the solution to that and so that is 

what I will do in next half hour or so. And since you people have worked through quite a 

bit of the details I will just go over points which I want to emphasize, etcetera. 
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So, the Lagrangian is very simple. Just to add some structure to it. So, this is what would 

be the Lagrangian density for pure electromagnetism or u 1 but I have also added mass 

term. If you add such a term this Lagrangian goes back to Proca, so it is called the Proca 

Lagrangian. As I mentioned just as a quantum field theory this thing is sick without low 

rates like I mean this breaks gauge it is not invariant under local transformations because 

of this particular term there is a potential for the gauge field. So, you know that this is 

bad but from a view point of just taking a classical Lagrangian, getting it working out 

what you know the currents are, etcetera under various symmetries. This is perfectly 

good thing to start with and also you can go ahead; at the end of the day there is one part 

where you when you set m equal to zero something nice happens and that means 

something. 

So, what are the symmetries? So, the first symmetry of course is translations in space and 

time and I will use epsilon because I will use a for the arbitrary parameter, so epsilon is 

some constant parameter in this thing and so this is one symmetry. The other symmetry 

which we look at is x prime mu; we can let us just write it this way. So, there we always 

work to first order in these parameters. So, epsilon and lambda are suppose to be first 

order parameters, and so for here there might be no higher order terms but in this case 

there will be more terms and we also saw that this lambda mu nu was if you lower the 

index you get lambda mu nu it is anti symmetric; you have already seen this. So, and the 

last symmetry occurs only when m is equal to zero and that comes from and that is just 



the usual get symmetry which is I think I use alpha or something, that does not matter, so 

this local gauge symmetry. So, the first point here is to work out what the equations of 

motion are but I do not think I will work it out; it is rather simple but yeah, so what I will 

do first is to work out the current for translations. 
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So we need the master formula which we had worked out several lectures ago. So, the 

only change I did in the master formula is said that we are done it for scalar phi a but it 

does not make any difference; I replace phi A by A nu, I mean it is the same thing, think 

of nu as a index like A. So, the same formula goes through; there is nothing deep in the 

whole thing whole business and delta bar was the change in the functional form and 

yeah, so one more thing one way to we need to know how the gauge field transforms but 

I prefer to think of it in more general settings like in general theory of relativity but it 

holds even these are also these two are also examples of coordinate transformations. So, 

I will write something more general. So, all you have to do here if you want to work hard 

what it is under translation is to look at d x prime by d x this thing d x nu and what do we 

get? We get delta out here. 

So, for translations we see that a mu but for Lorentz transformation. So, you may think 

from here it is easy to gets d x prime by d x nu but for small thing you can just invert it 

and just get put a minus sign and you will be fine. So, since I want to write it in this form 

what I will get is a prime mu of x prime will be equal to. Now you can see that the first 



time we are actually seeing something more than normal. So, this looks like exactly like 

you had for a scalar field but out here the fact that this index transforms under Lorentz 

transformation shows up here. So, what is it we need to do; really the only things we 

need to work out are and to write out what this a will be, what is delta bar and these 

things. So, I will just do these two things and so first thing to work out is what is A mu. 

A mu is nothing but epsilon mu out here and out here A mu. So, by the way is this was 

that my notation, I mean am I okay or is there a sign issue? I am okay, right; well if there 

is a sign issue I will fix it later but right now it is not so important, I mean it is important 

but I do not think the world is going to. 
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So, let us first do this part. Now this is something lots of students have trouble with you 

know what do I do with this; you know the first thing is so I have to go ahead and do the 

variations in here and this has d nu, A mu, etcetera, your dummy indices all these things. 

So, first thing you should do if you are totally confused is to not do what I have. Here I 

am interested in d nu, A mu and these are all dummy indices. So, first thing to do is to 

write this as rho and sigma something else then you expand this. Each of this is two 

terms, you get four terms and each one of them will give a contribution and they will all 

add up and it will eat up this four and that is about it. So, you will end up getting minus. 

So, you need to fix you have to look only at one of the terms the minus comes from here 

this minus; sorry F mu nu, thank you. Sorry, I was intent on getting the sign corrected 

got something wrong. 



So but the thing is I never like to explain in more detail how this four goes away because 

everybody has their own way of doing communitorics. I know that I cannot follow 

someone else’s communitorics; what I do is to do my own and then check. So, but this is 

something which you should do once in your life, actually expand it out in gory detail, 

write out every one of the four terms, write the delta functions everything and see that it 

works and then after sometime I mean you can just do it visually. But the first time 

around it is not something this step to this step I mean it is to spend 5 to 10 minutes. It is 

not, do not feel ashamed that ho, it took me so long but after a while it will be like ten 

seconds. So, this is this is one bit. The next part is to work out delta bar of A mu and that 

is defined to be. So, it is a change in the functional form, this is the definition. So, for 

translations it is similar to what we got for a scalar field. I will just jump some steps and 

do it from memory it was minus A mu d mu. So, it was so delta bar of A mu was minus 

a. 

So, now there is a free index mu, so I should use some other index. So, let me call it d 

nu; it is a little bit more involved for Lorentz transformations. So, for Lorentz 

transformations so we have to make so one term, so let us first forget so this one term 

which will look exactly like this which I will write out and A mu A nu is just epsilon. So, 

we go back to the constant parameter, we find delta bar. A mu will have one piece which 

should be minus A mu, so it is minus A mu lambda nu rho x rho times d nu A mu. So, I 

have just written A mu d nu but A mu is this but I get one more piece which comes from 

this. We are ignoring all odd lambda square pieces. So, this is the biggest change that 

happens because you have this has an index which transforms. So, until this point 

everything went like it went for a scalar field. So, first step is to get the stress tensor for 

this that is just the conserved current for under translation. So, let us get the stress tensor. 
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So, now putting all these things into this thing and there is only one. So, there is a 

parameter epsilon which is the constant. Remember A mu in general is not a constant 

because here is an example where A mu depends on x. So, you cannot pull out A mu 

outside the derivative. You can pull out only constant factors like lambdas. So, what you 

get is T rho mu. So, this is what you get and the conserved current here is d rho. So, the 

rest of this talk lecture rho will be the conserved current this thing. So, this is the point. 

So, we can look at this and we can just write out we get minus F rho sigma d mu A 

sigma minus eta rho mu L. So, first thing you observe is that it is not symmetric 

anymore; that is one issue. So, which was true for the scalar fields, so just one concrete 

example but there is one more issue. 

Especially we know that you know that this is a toy model; with the model we are really 

interested in this when m is zero. When m is zero you look at the energy momentum 

tends around here; this is not gauge invariant. This is F which is invariant but this is not 

invariant. It is also not gauge invariant. So set when m equal to zero which is not a very 

nice thing; I mean so the question is that somewhere we can actually make that you 

know F and along the way also make it symmetric and so the answer is actually more or 

less staring at you in your face; you can actually figure out these things but there is some 

logic which goes behind what you can add. But at the end of the day this is the conserved 

current which was given to you by no other prescription, I mean the formula. So, now the 

question is can we do something to it such that the charges are not affected. The charges 



should not be affected but some nice properties are recovered such as we recover 

symmetry and may even get invariance. In this case you will find both of them come in 

one phase. 
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And we can go ahead and also work out what is the No ether currents for Lorentz 

transformations; call them this thing. So, again rho is the, so this is such that d rho and 

tilde rho mu nu is zero and this is antisymmetric in mu and rho nu because that lambda is 

so the parameters which come with this. So, this turns out to be, what am I writing, x mu 

t rho nu minus x nu T rho mu. So again when you do this, this term comes from exactly 

this term similar to the other guy but this piece will give you an extra term and it is better 

to write that out. So, the thing is you do get something but the point here is it actually 

consists of two parts. This piece looks pretty much like r cross p in physical’s way this 

thing. 

So, this has morally speaking role of orbital angular momentum while this guy, so 

whenever I say angular momentum I mean a generalization; my angular momentum has 

six components because we are in three plus one dimensions, so rotations are examples 

of them, rotations only have three parameters. So, the usual angular momentum which 

we discussed has only three components corresponding to rotations but we have also 

three more currents which come due to boos. So, there are six of them and so what one 

does is to use in the relative stick field theories whenever we use the word angular 



momentum we mean a generalized angular momentum; in fact this is the angular 

momentum in that setting. 

And so now this has do, so this is what we will call but you can see orbital angular 

momentum is not conserved and this came because this object has this extra 

transformation, where does this come from? This comes from the fact that this 

transforms under Lorentz transformation; it is an index which transforms. When we go to 

fermions, fermions carry spinner indices which again transform exactly like this, I mean 

when I say exactly like this it is not a vector index; it is a similar property you expand it, 

you will get lambda in except here this indices would be Spinner indices as a post to 

vector indices but if the structure will be similar. So for fermions also you get the same 

story. You get one more piece for the same reason and so this is what we should call the 

spin angular momentum. So, now what we will do is to recover symmetry of the stress 

tenser or the energy momentum tenser we will modify to get something. 

(Refer Slide Time: 40:07) 

 

So, we will construct something which we will call theta mu nu which has the following 

properties. First thing is it is symmetric and it is conserved. Let us say rho mu. The four 

charges the charges associated with the theta zero mu integrated over agree with T zero 

mu and some more properties we will put in. M rho mu nu, so this other term is just 

antisymmetrising with mu nu, I mean there is nothing to remember. So, this M is not 

quite M tilde that is why there is a tilde, but the key point is that the charge is again and 



the charges of M agree with those of M tilde. So, the property two actually gives you a 

hint as to what you have to do. You want the charges to be conserved. 

So, what you do is you suppose we did this, suppose we look for something like this 

theta mu nu actually there is a fourth one which I could add which it says that it should 

become gauge invariant; in fact it is a bit of a cheat in the assignment I did not write that 

and so theta mu nu plus t mu nu and h rho nu is totally antisymmetric. So if you have this 

is like a total derivative, so if you add things to it and you do an integration, you will find 

that the charges this gives surface terms and if your fields drop off which is what you 

assume at infinity, then there is no contribution coming from this and so we need to 

figure out n h rho of mu but actually it is very easy to ask what that would be because 

you use my trick which is to say let us look for the gauge invariant guy and up to some 

sign we see that H, if you plug this in, if you if you plug what is it this value of H into 

this you get this theta and theta is really if my memory is right theta, what did I erase I 

forgot, F mu sigma; that is what it is? 

And you can also then it is kind of nice you get something which is gauge invariant and 

you have this thing and you can actually go back and look at what you get for theta zero 

zero and think of it in terms of electric and magnetic field. So, in your assignment I am 

sure you put M not equal to zero but for my class for this lecture I will just set M equal to 

0, because I can write the answers; otherwise I have to look up some notes or something, 

I do not remember the answers. But if this is like half and what was again this tilde here 

implies I do not know the factor. It is probably half; was it half, but the key point here is 

that you end up getting something which is positive definite. What about theta zero I; it 

is a pointing vector and another thing which is very interesting is that theta i zero is equal 

to this, but it has a different meaning you see. In some sense it also is the energy flux. 

So it has a dual role, it is a conserved charge. So, you can think of this as momentum 

carried by the electromagnetic wave. We also think of this as the energy flux where you 

think of it a low this thing, theta i j is something which you should write out in terms of 

electric and magnetic field; just see it for yourself, it is a little bit of a mess but it is okay. 

I mean it is so it is a momentum flux. So, it has two directions; one for the momentum 

and one for the physical directions of the plane. So, this is actually important; this tells 

you that the field carries some energy and also can carry some momentum. In fact you 

can come up with examples if you look at books like may be Jackson electrodynamics I 



am sure it or even Landau ellipse, I am sure they discuss examples where you actually if 

you just looked at particles charge particles moving, you will think that energy is not 

conserved or momentum is not conserved. 

But if you actually go ahead and look at the combined combination of the energy of the 

particles plus the field energy and the field momentum, you will find that energy and 

momentum are conserved. There is a problem with saying what is the field due to 

suppose you have a point charge, there is an electromagnetic field all over. If you try to 

ask what is it is the total energy it could be infinite, so you need to regulate a bit. So, one 

way to regulate is you put it in a big box and box is big enough that size should not 

matter and that is not relevant for your this thing, and so you can actually come across 

situations where the total energy which is conserved is energy of the particles and this 

thing. So, at a fundamental level you can see that this is proof if you wish to say that this 

is the object you should call energy density of course here and this is the momentum 

density. 

So, there are actually in classical electrodynamics enough examples of this kind and the 

last bit of thing which is actually also. Before I forget, there is actually a completely 

different definition of the energy momentum tenser and so the thing is that in last lecture 

we discussed local internal symmetries, if you make them local what will happen but 

there was nothing to say that you cannot make translations local but that will naturally 

take you in some will take you to the elm of general coordinate transformations. So, that 

is the correct thing; so in some sense general coordinate transformations subsume both 

translations and Lorentz, there are special cases of that. So, you will ask how things 

transform under general coordinate transformations and then if you want to make things 

so there will be analog you have to introduce a field the corresponding field that will turn 

out to be something called the metric. 
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So you replace, so the dynamical field will be eta mu nu replaced by something called g 

mu nu; it is little bit confusing. It is not a vector field, it is a spin two guy, it is 

symmetric, etcetera. But even if you when this is sort of a particle physics way, 

antigeometric in some ways, what we are doing is to just say that what will happen if you 

convert something symmetry to a global symmetry that is not the way Einstein taught 

about the general theory of relativity but even this sort of approach leads you to a similar 

thing and so what you do is now you can ask give me some Lagrangian, can I make it 

locally invariant under these things and you couple it to a metric and so you can write 

something in again in a minimal fashion. So, you define t mu nu as follows. I think there 

is some square root of minus g factor g is determinant of this thing and upper lower math 

form on my part but this by definition is symmetric. Now it is a big deal to show why is 

this equal to that. 

That is a different thing but there is a straight ahead way of getting a symmetric stress 

tenser by thinking of it as the current which couples to gravity; just as we got the No 

ether current which couples to I mean so in that sense it is similar. So, the coupling 

another way of saying it is that you take g mu nu to be eta mu nu plus some small 

parameter h mu nu and you want the linear coupling such that it is invariant under 

general coordinate transformations to first order and there is a minimal way of doing it. 

And so what you will find is you will get s will be s naught plus rather L where L naught 

is where you use eta mu nu whatever you wrote plus up to factors t mu nu h mu nu. 



Similarly compare with for gauge symmetry again it would be similar. There are infinity 

order terms but only the linear pieces again gave you j mu a mu. So, this will naturally 

give you something symmetric. So, the last bit was you are asked to find the trace of this 

theta mu nu and you should remember to trace with eta not with. 
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So trace of theta mu nu is not the sum of the diagonal terms or whatever; we have 

discussed this before. It turns out that this is equal to zero when m square is zero; does 

anybody know why? I will give you the answer. There is a new there is an extra 

symmetry at least at a classical level which is scaling exercise show that the conserved 

current due to this scaling symmetry is actually the trace of this conserved current or 

charge or whatever, so you will that that is traceless; you can prove that. So, this is 

actually indicates that you have this thing. So, you will find that we will see more 

general things when you take the non-abelian gauge theories; that means you have a non-

abelian group Lie group which you gauge you will make symmetry local, you will find 

even in such cases classically. 

So, if you take SU 3 for instance you will find that classically the trace is zero, but 

quantum mechanically that need not be zero. So, a classic example of that is q c d where 

the group is SU 3 and it is known that there is a natural scale. So, one more way of 

understanding is when m square is 0, is there is no length scale in the problem. This is 

true only in three plus one dimensions, but if you go to other dimension that is not true. 



So, this is actually dimension true only; in all other dimensions gauge couplings are 

dimension full; we will do some analysis at some later stage. So, I will stop here.  


