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Greetings, today we will  discuss a theorem it  is known as the Addition Theorem for

Spherical  Harmonics.  And  we  will  also  get  involved  with  Coupling  of  Angular

Momentum.

(Refer Slide Time: 00:29)

So,  let  us  remind  ourselves  that  we  discussed  the  rotation  group,  we  developed  a

representation for the rotation group in angular momentum Eigen basis. And this is the

rotation operator, we have for any angular momentum j at 2 j plus 1 dimensional basis,

and the matrix elements of the rotation operator, in this  basis  is  what gives you the

Wigner D matrices. So, these are the famous Wigner D rotation matrixes for different

values of j and as j increases they become larger as one word expect.



(Refer Slide Time: 01:14)

So, we will use the Wigner matrix to establish a theorem which is known as the addition

theorem for spherical harmonics, it has a lot of application in atomic physics and also in

nuclear physics. And then we will also talk adding angular momentum.

(Refer Slide Time: 01:38)

So, have a quick look at this figure, but I am going to develop this figure a little more

systematically. So, you do not have to remember everything, but basically I am going to

be  using  spherical  polar  coordinates,  which  all  of  you  are  familiar  with,  and  I  will

reference spherical polar coordinates with reference to two different Z axis. One is a Z,



which is a blue axis there are other a Z prime which is the red axis, and this one is tilted

with respect to the previous one.

And the polar angle is always measured with respect to the Z axis or for the red frame it

will be the Z prime axis that is the polar angle. And then there is also an azimuthal angle,

which is measured with the Z X plane in the spherical polar coordinates, in the new

coordinate it  will  be the Z prime X prime. So, just  remember that and then we will

develop this in some specific detail.

(Refer Slide Time: 02:35)

So, this is the summary of the spherical polar coordinates, and you have got the polar

angle which is defined with reference to this Z axis. And if you draw a perpendicular

from this point to the X, Y plane, the angle that this line would make with the Z, X plane,

so this entire plane that you see over here, this makes plane an angle of phi with respect

to the Z, X plane. So, that is the angle which is azimuthal angle, and any direction which

is the direction of this unit vector r, this is specified by these two angles which are the

polar angles. The polar angle and the azimuthal angle, so these are the angles which

describe  a  direction  in  space,  and  any  unit  vector  we  specify  the  direction  is  thus

equivalent to a polar angle and azimuthal angle.



(Refer Slide Time: 03:38)

So, let us begin with the first coordinate system this is a Cartesian coordinate system, and

let us have a new Z axis, which is referred to as the primed frame. So, the Z prime is

tilted with respect to the Z axis, a longer direction which is specified by the unit vector u.

Now, the angle that this unit vector u makes with respect to the Z axis, this is the polar

angle of this direction with respect to the blue frame.

So, this polar angle which would have as theta this is a specific angle, which is beta and

the corresponding azimuthal angle, which you get by dropping a perpendicular to the X,

Y plane. And then connecting this to the origin, and then measuring this angle, so this is

the alpha, so beta alpha give you the direction of the unit vector u, which is along the Z

prime axis, which is the new Z axis, which is the tilted axis. And we are doing to refer to

spherical harmonics with reference to the blue frame, and then also with reference to the

red frame, and then see how they relate to each other.

So, this is the Z prime axis, so this referred to as the e Z prime, this is the unit vector this

is described by the two angles beta and alpha. And now you have an X prime which is

perpendicular to the Z prime axis, and then a Y prime as well, so that X prime Y prime Z

prime,  constitute  a  right  handed  frame  of  reference.  So,  this  is  your  new  frame  of

reference,  and  if  you  have  any  arbitrary  direction  in  space  like  this,  this  will  have

different polar angles theta and phi with respect to the blue frame.



And different polar and azimuthal angle, which we call as theta prime and phi prime with

respect to the Z frame Z prime frame right with respect to the prime frame. So, this is

some arbitrary direction in space, which is shown with a vector from the origin, this has

got a direction V caret. So, this is the unit vector and this has the angle theta and phi with

respect to the X Y Z frame, and theta prime phi prime with respect to the X prime Y

prime Z prime frame it is quite simple as such.

Now, having define this geometry let us consider a point of the Z prime axis, any point

on the Z prime axis, you take this point whose polar angle theta is equal to beta. So, that

is what we have written here, and whose azimuthal angle with respect to the Z X plane

phi is equal to alpha. The polar angle theta prime, with respect to the Z prime axis, with

the respect to the primed frame of reference is; however, 0 because it is a long it is on the

z prime axis, so that is the geometry.

Now,  we  know  that  you  can  simultaneously  diagonalize  the  square  of  angular

momentum, and also one of it is components it does not matter which component. But,

one component can be diagonalize, and if that component is along the unit vector u then

you write the commutation relation that L square and L dot u commute. This could be the

Z axis, in which case you have the commutation L square comma L Z equal to 0, you can

also write L square comma L z prime equal to 0.

Because, you can always simultaneously measure L square and one of it is components it

does not matter which component, you cannot measure two components. But, L square

you can measure with any component, and there are infinite of them, so in L square you

can always diagonalize with infinite unit vectors L Z different directions in space that

comes from the isotropy of space.
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Now, you now have these two directions one is the direction u caret, this is a unit vector

along which you have taken the Z prime axis, the other direction is V which is some

arbitrary direction,  whose unit  vector  reference to  X Y Z is  this  r  cater. And whose

direction reference to  X prime Y prime Z prime is  this  r  prime caret,  and these are

specified by their respective polar and azimuthal angles, which are namely theta and phi

in the X Y Z frame. And theta prime and phi prime in the prime frame of reference which

is the X prime Y prime Z prime frame.

The angle between these two directions u and V is given by this cosine of theta prime

because theta prime is measure with respect to the Z prime axis. So, theta prime is the

angle between the Z axis, it is the angle between the unit vector u and the unit vector V

alright.



(Refer Slide Time: 09:24)

Now, let us consider the axis of quantization to be Z and you have an angular momentum

Eigen state, which is an Eigen state of L Z.

(Refer Slide Time: 09:38)

And what you are going to do, is to subject this angular momentum state to the same

rotation that you have subjected your coordinate frame to. So, you tilted the coordinate

frame from the blue frame you went to the red frame, and now you subject the angular

momentum state to the same rotation. And this rotation is affected, through the angles

beta and alpha as we have already found, so you take the previous Eigen vector, which is



the Eigen state l m it is coordinate representation in terms of the angles theta and phi is

what gives you the spherical harmonic right.

So, this is just the corresponding you know notation in the de Broglie notation you would

right this as a spherical harmonic,  in the direct notation you would write this  as the

coordinate representation of the state vector l m. Now, you subject this l m to the same

rotation and you get a new angular momentum state.

(Refer Slide Time: 10:46)

So, this is what you have got you get l m prime as a new vector, which you get by

subjecting l m to a rotation, we know what this rotation is this rotation corresponds to the

beta and alpha. And this would be expressible as a linear super proposition of the angular

momentum states, in which m prime is the dummy index, it can take 2 l plus 1 values,

those values going from minus l to plus l. And the matrix elements will be the matrix

elements of the rotation operator, in standard matrix representation formalism.

And  these  are  the  matrix  elements  of  the  Wigner  D matrixes,  corresponding  to  the

angular momentum l, so there is a super script l which must show up in this D matrix.

So, now let us you know here I have used the summation index which is the first index,

the first index is the dummy index, now you take the coordinate representation on both

sides that is all you have done in this system, you have take the coordinate representation

on  both  sides,  so  that  you  can  write  this  expression  in  terms  of  the  corresponding

spherical harmonics.



And  this  is  the  spherical  harmonics  with  the  quantum  numbers  l  and  m  prime

corresponding to the direction r, and this one is the spherical harmonic with reference to

the direction r prime because now you have rotate it.

(Refer Slide Time: 12:45)

So, you got this relation now the same relation I have written over here, there is nothing

new on the slide, so far. And you have got the spherical harmonic on one side, with the

primed arguments, and here you have got the spherical harmonics with the unprimed

arguments. So, this is in a nutshell the result that you get, the matrix elements in this

expansion are the Wigner D matrix elements, as you can see that this whole proof is

really very simple.
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And you have got this relationship now, and what we will do is to invert to this relation,

you had written Y l m of r prime in terms Y l m’s of r as a linear super position of that.

Now, let us carry out the inverse transformation and you know how to go from one ortho

normal basis to another, and how to carry out the inverse transformation. So, I will not

work out  the details  for you, and the invert  relation will  be this  Y l  m of r  will  be

expressible in terms of the Y l m’s of r prime, with these matrix elements.

But, you will have the complex conjugation and transposition over here right because

these are unitary transformation. So, now, the summation index is the second and there is

a complex conjugation which is shown by this asterisk, there is a star over there which

tells that there is a complex conjugation. So, now we can write this relationship also in

terms of the angles, so these angels are theta phi, which are completely equivalent to the

direction r caret. And these angles theta prime phi prime are completely equivalent to the

direction r prime.
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What have you got, we now take a particular case consider a point on the Z prime axis

we have done this earlier as well. Now, for this point we know that theta is equal to beta

right, for a point on the Z prime axis the polar angle theta, which is with respect to the Z

axis of the original frame that polar angle is beta, phi the azimuthal angle is alpha. But,

the polar angle with respect to the new frame, which is the red frame will be; obviously,

be 0 because it is the point on that axis.

So, the theta prime is 0, so consider this special case and insert the value theta prime

equal to 0 in this spherical harmonic over here. So, you have rewritten this relation over

here once again, but given specific values to theta and phi, theta and phi are now beta

and alpha. And theta prime is 0, now this is a spherical harmonic corresponding to the

polar angle, which is 0 now no matter what the value of l and m prime is from properties

of spherical harmonics, you know that it is always equal to the square root of 2 l plus 1

over 4 pi.

And this is the value it has only if and only if m prime is equal to 0 otherwise it vanishes,

so these are well known of spherical harmonics, which you would have met earlier. So,

we will use it and now we can carry out the summation over m prime and then because

of this conical delta you will get a term only one term will survive corresponding to m

prime equal  to  0,  which is  this.  And now you will  get  an expression for  the matrix

element of the Wigner D matrix in terms of the spherical harmonics, because you have



expressed the spherical harmonics in terms of the matrix element of the Wigner D. So,

you can just  invert  that  relation and what you have is  an expression for the Wigner

matrix  elements,  Wigner  D matrix  elements  which  are  given by essentially  they  are

spherical harmonics as you can see.

(Refer Slide Time: 17:48)

Now, this is a general result which you can use, so we have got this result for the Wigner

D matrix, in terms of the spherical harmonics. And we are going to use this to establish

the theorem, which is known as the addition theorem for spherical harmonics, so we will

use this result. Now, you do not have to write down all of these in your notes because all

these files are uploaded on the course warp page, so you know all the relationships are

there, so you do not have to copy anything.

But, just keep track of the logical development of the topic and that saves us a lot of

time, it saves me a lot of time to this write on the board it saves you the time to write it in

your  note  books.  But,  all  the  information  is  available  and  the  we can  focus  on  the

discussion, so that is the idea.
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So, I  begin with the earlier  expression for spherical harmonics with reference to the

primed angles expressed in terms of the unprimed angles, which we already had earlier.

And in this, if you now put m equal to 0 you specialize this relation, which is valid for

every value of l and for every value of m, and I take a particular case mainly the case for

which m is equal to 0. So, I take this spherical harmonic with m equal to 0, so that what

is I write over here, so this is the m equal to 0.

And at the right hand side, I have this m equal to 0, but I know what it is value is because

we just found that a little while ago. So, we can plug it in that was in terms of spherical

harmonics right, so we are going to use this relation which we had obtained earlier, keep

track of the complex conjugation of course.
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And using that this relation that we had obtained earlier, we get an expression for this

spherical harmonic on the left hand side for m equal to 0. So, this m equal to 0 comes

over here, the arguments here are the primed angles theta prime and phi prime, these are

expressed in terms of the spherical harmonics with angles theta and phi, which are the

unprimed angles. And the coefficients, which are coming from the matrix elements of the

Wigner D matrix, are again spherical harmonics with respect to a specific angles beta and

alpha.

We know what those angels are and then of course, there is the square root of 4 pi over 2

l plus 1 and because there was a complex conjugation over here, we now have a complex

conjugation  over  here.  So,  you  must  always  be  careful  that  you  do  not  lose  any

information, while substituting these terms, now the right side is a summation over m

prime, and m prime it makes sense to use m prime to distinguish it from some unprimed

m.  But,  since  there  is  none  in  this  relationship  we  might  as  well  drop  the  prime

altogether, it is just a dummy level which is summed over any way, easier to write it

without the prime. So, I have rewritten this relationship with m used instead of m prime.
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So, that is what we have got summation over m this spherical harmonic for m equal to 0

is nothing, but this polynomial function there is another polynomial, which you have met

right for m equal to 0. So, the left  hand side these are well  known properties of the

spherical harmonics, and then you get a relationship for P l cos theta in terms of the

spherical harmonics, which is this. So, you take this factor root of 2 L plus 1 over 4 pi on

the right. So, you get this 4 pi over 2 l plus one on the right.

And then you have got a summation over a product of spherical harmonics done, this is a

theorem which is known as the addition theorem for spherical harmonics. And as you can

see it  is  proof  is  really  quite  straight  forward,  but  you will  find that  it  is  extremely

powerful theorem, and you will find very many applications of this and there are a lot of

angular momentum algebra that you will be doing. You will need to plug in this result

every now and then so you would really need to have a good handle of this theorem.
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Now, we have these directions, so this is just the remainder of what this geometry is and

essentially this angle cosine theta prime, theta prime is the angle between these Z axis

and this axis. So, if this is the unit vector u and this is the unit vector V this is the angle

between vectors u and V, so you can write this for two arbitrary directions u and V it is

exactly the same theorem.

But, now written in the form which makes it look much more general because you can

now relate it to any two arbitrary directions no matter what those directions in space are

and the direction in space is shown by a unit vector u. And now this result that you now

have at the bottom is completely general because it does not make a reference to the red

frame or the blue frame and you can tilt these frame, any which way you like for any two

arbitrary direction in space.

And that is really what makes it, so powerful for any two arbitrary directions in space, if

you want to know what is the general polynomial corresponding to the cosine of the

angle between these four directions. Then you can always write it as a sum over products

of corresponding spherical harmonics and this is the result.
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So, this is a very powerful theorem and what we will now do is to consider not one, but

two angular momentum why not.  Even each electron has got two sources of angular

momentum, it has got the orbital angular momentum which has got nothing to do with

the orbits. It also has spin angular momentum, which has got nothing to do with this spin

over top, but it does have a spin angular momentum which is completely independent

right, so it is a different degree of freedom.

Moreover, you are not going to be doing atomic physics which has the hydrogen atom,

and you deal  with  atoms with  more than  one electron,  you will  have  2 electrons,  3

electrons, 10, 20, many right. And each electron will have it is own angular momentum,

it  will  have it  is own orbital  angular momentum, it  will  have it  is own spin angular

momentum. And the atom is going to have a net angular momentum, which is coming

from the addition of all of these angular momentum.

So, you need to learn how to add these angular momentum and the angular momentum in

classical mechanics is a solo vector, you know how to carry out the addition of these

vectors. But, the vectors we are now talking about are not just vectors, they are quantum,

vector, operators three attributes right, so you are not going to use the law of addition of

vectors, which is the addition law, the triangle law or the parallelogram law of addition

of vectors as you call it right, that is not the law that you can use that is a law which you

can use for vectors that is not the law for quantum vector operators.



And that is a law that we now have to learn, so this is the addition of angular momenta,

and what it will do is this addition corresponds to a rotation of vectors of a composite

space. So, you have got two vector spaces now, one which is an Eigen space of one

angular momentum j 1, and there is another vector space which is the vector space of the

angular momentum j 2, what do we mean by angular vector space of j 1. This is the

vector space, which is spanned by the Eigen basis of j square and j z, when j is equal to j

1.

So, for j 1 square and j 1 z you have got a certain vector space, likewise if you have

another source of angular momentum, which you call as j 2 it will have it is own Eigen

space, which is spanned by the Eigen basis of j 2 square and j 2 z, and you are not going

to work with this composite space, made of these two Hilbert spaces. So, you are have to

learn  how to  compose  this  composite  space,  composite  you have  already  implied  a

composition, composition in walls putting things together right.

And there is a certain law that has to be prescribed of how you put it together, so this is

called as the product space of the two separate vectors, this is called as the product space.

So, these are the keywords the composite space and the direct product space of two spate

vectors spaces.

(Refer Slide Time: 28:45)

And typically you represent a vector in a Hilbert space by a ket or what can you do with

these vectors, you introduce inner products you know what they are. So, corresponding



to each vector in the Hilbert space, you define an ad joint vector in the ad joint space

right. And between these you introduce products, which you call as the inner products

you also introduce outer products.

Now, the inner products are scalars the outer products are operators,  so this  operator

would operate on some of the vector, and give you a new vector, so this is an operator.

So, there are different kinds of products that you compose from vectors, one is an inner

product  which gives you a scalar, you also introduce outer  products which give you

operators, and now we introduce also direct products.  So,  one the inner product is  a

bracket, the outer product kept and the product is a ket, ket.

And this is what is called as a direct product in the composite space, one of which comes

from one Hilbert space and the other comes from the other Hilbert space. And then you

define this product, so it also called as a product which you do not want to invent your

words. So, you use the same words again and again they are all products, but with new

meanings, and each meaning is well defined in it is own context.

(Refer Slide Time: 30:35)

So, you have got an Eigen space of j 1 which comes from Eigen vectors of j 1 square and

j 1 Z which can be simultaneously diagonalize. You have got an Eigen space of j 2 which

is spanned by the Eigen vectors by the simultaneous Eigen vectors of j 2 square, and j 2

Z. And now we introduce this composition, which is the addition of j 1 with j 2, you can



call it as j or as j 3 it is the same that is the third angular momentum, which is the final

net angular momentum you get.

And because this is not just the usual addition of two vectors you can represent it with a

different  symbol,  you can put  the plus  sign in  the circle  or  invent  a  new symbol to

represent  these  binary  operation.  It  is  essentially  a  new  prescription  of  new  binary

operation,  which  is  being  introduced  to  define  the  addition  of  these  two  angular

momentum. And it is a good idea to use a different symbol at least once in your life the

reason is, it tells you that this is not the same kind of addition as addition of two vectors

it is not. But, having done it you can use the same symbol, so it does not matter what

symbols you use, these are quantum vector operators not ordinary vectors. So, all the

three the j 1, j 2 and j 3 or j 3 are quantum vector operators.

(Refer Slide Time: 32:17)

And I will use a notation, which is the angular kets, the angular vectors look at this

vector on the screen. And this vector is an angular ket, which I will use to represent the

Eigen space of the uncoupled Eigen vectors of j 1 and j 2 I will use a different notation

with these circular brackets, to represent Eigen kits of the coupled angular momentum.

Now, this notation is not very standard, it is not very specific, it is not essential there are

many books, which do not use different notation.

But, I am going to use it because it offers a little bit of convenience which you will find

as we go along. Because, once you start putting in numbers over here, once you have



angular momentum you do angular momentum addition for j 1 equal to 3 half and j 2

equal  to  half  and so on right  you are going to  have to  put in  numbers.  And then it

becomes easy to keep track which was the uncoupled vector and which is the coupled

vector of course, you know it from the context, so it is no not such a big deal.

But, having an additional suggestion as to which is the to uncoupled vector and which is

the coupled vector is often useful, at least to begin with till you get used to it. So, we will

use angular momentum Eigen kets, with these circular brackets to represent Eigen kets of

the coupled angular momentum, and this is being introduced only for notation, and this is

not a very standard notation indifferent books you will find different notations and you

should not worry if you see different notations.

(Refer slide Time: 34:10)

In fact, one could use different kinds of brackets right to represent the inner products as

well, you can also use some more notation. And some more and we will use some of

them to our advantage, and I will make a distinction between the angular brackets, the

circular brackets, and what do you call these beautiful brackets this is what I call as a

beautiful bracket. And we will use all of them, it is not mandatory, but it is useful.
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So, you will not necessarily find it in many books because it makes some analysis easy

especially when you do problems, you will see how it turns out to be useful. So, now, we

have these angular brackets which are the uncoupled angular momenta, and the circular

which are the coupled angular momenta. Now, the coupled angular momenta are j m’s

right and they are coming from coupling of what, they are coupled therefore, there have

to be two other angular momenta, which are j 1 and j 2.

And that is impassive and you do not necessarily have to write it every time, so you can

make this notation compact by suppressing this j 1 j 2. So, this a compact notation for the

coupled  angular  momentum,  but  if  you  want  you  can  write  all  of  it  as  well,  and

sometimes at least to begin with when you are doing problems if once when you are

getting,  acquainted  with  these  techniques  it  is  good  idea  to  write  all  the  quantum

numbers.

So, this has got Eigen basis which is a Eigen basis of the coupled angular momentum,

which is j square and j Z and they will have Eigen states given by two quantum numbers

j and m. Because, both of these are simultaneously measurable, and later I am going to

use this beautiful bracket as well.
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So, here we have the coupling of the two angular momentum j 1 and j 2, so now, you

have got two alternate basic sets, one has coming from the direct product of the spaces,

which are the Eigen spaces of j 1 and j 2. The other is the Eigen space of j square and j z

which is the coupled angular momentum is the same space, you are only referencing it

differently.  And  therefore,  you  can  always  carry  out  ortho  normal  transformations,

unitary transformations from one basis to the other.

So, one basis  which is  called as the direct product basis,  this  is  a basis if the direct

product of the Eigen vectors of j 1, and the Eigen vectors j 2. These are the Eigen vectors

of j 2, these are the Eigen vectors of j 1 what you have in this beautiful bracket is the

direct product of j 1 m 1 and j 2 m 2. This gives you one basis, you know that the

dimensionality this will go from you know each m 1 will go from minus j 1 to plus j 1.

So, that dimensionality will come from 2 j 1 plus one times 2 j 2 plus 1 because m 2 will

take 2 j 2 plus 1.

So, that will be the dimensionality of this basis and the dimensionality of the basis of the

of the coupled vectors better be the same, but that is something that we really have to

establish. Because, we know what j and m can take we know that m can go from minus j

to plus j, and j will also have a certain range which perhaps you have learned in your first

course in quantum mechanics, but we have to establish what that range must be like.
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So, that is going to be part of our exercise, so we have to find this dimensionality it better

turn out to be what we expected to be, it will turn out to be what it is, but it is not a result

that we will take for granted, we will actually prove it. So, this dimensionality of the

direct product basis, this is not very difficult to see it is; obviously, 2 j 1 plus 1 times 2 j 2

plus 1.

The dimensionality of the basis of the coupled basis is not obvious, we expect it to be

equal to this. But, it is not obvious at least for the beginner for the experts amongst you

know the answer, you know the answer and I hope that you know the proof for them, so

we will discuss the proof for that.
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So, I guess I am going to take some questions at this point because essentially what I am

going to introduce now are what are called as the clebschgorden coefficients. These are

the scalar coefficients, when you go from one expression of any vector and you can

express it, in terms of super position of Eigen vectors of the uncoupled vectors. All as a

super position of Eigen vectors the coupled vector, and you can carry out transformations

from one to the other.

So, that is a complete comprehensive topic by itself which I thought I will in a separate

class which will be the next class I will take, in the meantime if there are any questions

over here I will happy to discuss. Yesterday’s question I assumed that you already found

what the answer is, so why need an inhomogeneous magnetic field for the ((Refer Time:

40:45)) because u dot v is just the energy, but you need a force right to separate the spin

up component from the spin down component, and that force can come only from the

gradient. So, that is where you need the inhomogeneous magnetic field, so that is no big

deal about it right, any other question.

So, thank you all very much.


