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Greetings,  and  nice  to  resume  our  discussion  on  Angular  Momentum  in  Quantum

Mechanics and we are going to talk about the S U 2 and the S O 3 groups, today we will

also talk about angular momentum matrices.

(Refer Slide Time: 00:31)

And the question that we discussed last time was this that you have J square and J z,

which can be simultaneously measured and the Eigen values of J square are h cross

square j into j plus 1. What kind of values can j take and we learned that j can take 0 half

1 and so on, half odd integers as well and for each j m can take 2 j plus 1 values going

from minus j to plus j in shapes of 1, we learned that. We got it by simply working with

the commutation relations, simply the fundamental commutation relations, which define

angle of momentum, we did not put much else.

No additional postulates no additional you know mathematics or no additional physics,

no additional quantum mechanics, it was mostly this and a little bit of common sense,

which is and fortunately not very common. But, that is that is about, what all that we put



in right and we got these results that j can be 0 half and so on and this has something to

do with the fact that, we should understand, what we mean when we say that the electron

is got spend half. So, we got half quantum numbers, but we did not use any relativistic

quantum  mechanics,  we  did  get  half  integer  angular  momentum,  only  from  non

relativistic quantum mechanics and only by using angular momentum algebra.

(Refer Slide Time: 02:21)

Now, this gave us the half order integer quantum numbers alright, but it does not mean

that,  we  get  electron  spin  from  non  relativistic  quantum  mechanics,  it  would  be

misleading that one can get electron spin from non relativistic quantum mechanics. I

want to emphasize this point, because I have had students, who have sometimes been

confused by this  issue,  because they do get  half  integer quantum numbers from non

relativistic quantum mechanics.

And I would like them to understand that, this does not mean that you get the electron

spin from non relativistic quantum mechanics, you can, you will get the electron spin as

half angle, as half h cross only from relativistic quantum mechanics. You must use Dirac

equation, it is the consequence of the special theory of relativity, it is based on the fact

that Galilean transformations are no good, you have to use Lawrence transformation, it is

because the speed of light is constant.

So, these are the things, which go into the Dirac equation and unless you do that, which

is what we will  do in unit  3,  we will  do it  systematically  and we will  find that the



electron spin comes neatly out of it. What it also means is that, if you are talking about

an electron at rest or moving at the speed at which you walk or even I walk, which is like

a 1000 speed, at which you walk may be right.

At any low speed, if you are talking about the electron spin, there is no escape from

relativistic  quantum mechanics,  you cannot  say  that,  you can,  you are  going to  use

relativity, only if you are dealing with very high speeds. Because an electron at rest exists

along with its charge and mass and along with it is intrinsic angular momentum, which

can come only from relativistic quantum mechanics.

So,  the  consequences  are  built  into  it  and  sure  enough,  you  do  need  Lawrence

transformation, when you are dealing with you know objects at high speeds, but then

even if you are dealing with objects at low speeds. If you are talking about phenomena,

such as electron spin angular momentum, then you do really need a relativistic formalism

to be consistent. One can always plug in things, in an ad hoc manner, but that is not how

it comes systematically.

(Refer Slide Time: 05:14)

And the discovery of electron spin is really very interesting and we know that electron

spin is very closely associated with the Pauli matrices and Pauli introduced a true valued

quantum number. This was in the connection of assigning quantum numbers to different

atoms in a periodic table, that you have the periodic table and how do you fill in the



electrons you know cells, all of you have heard about the aufbau principle, so 1 s 1 then

1 s 2 then 2 s 1 2 s 2 2 p 1 2 p 2 and so on right.

So, you go on filling till that cell is filled and you had to do it in some kind of systematic

manner and to explain the filling of electrons, in various cells in the periodic table. Pauli

came up with a 2 valued quantum number, he said that n l and m n l and m, do not suffice

to explain the filling of electrons in the periodic table. And you must have an additional

quantum number, which can take 2 values and he did not say that these 2 values must be

plus half and minus half.

He did not say that  this  refers to electron spin,  he just  said that,  there has to  be an

additional quantum number, which must have 2 values. Those 2 values could be alpha

and beta x and y or whatever, these are 2 quantum numbers and they must be moved to

explain the periodic table, so this was Pauli in 1924.

(Refer Slide Time: 06:51)

And  he  really  had  no  idea  at  that,  time  about,  the  electron  spin  as  a  half  angular

momentum and this idea had to wait till, it was proposed by 2 experimentalists.



(Refer Slide Time: 07:05)

Uhlenbeck and Goudsmit and what they did was to propose the electron spin in 1925 and

associated with this magnetic moment, the reason they did it is because they were trying

to explain certain anomalies in certain spectra that, they had observed and to introduce

this, they passed this idea. It came from nowhere, a brilliant intuition, you might call it

and they proposed that there has to be an electron spin, it was so much out of the blue

that  uhlenbeck  actually  called  it  like  abrakadabra  [FL]  that,  it  just  comes  from

somewhere, but it works. There was no model no theory to explain that and Goudsmit

said that it was some kind of numerology, it was a miracle that we arrived at the correct

expression, which later could be derived from quantum mechanics. So, it just came out

of nowhere, this was in 1925.



(Refer Slide Time: 08:09)

And very often, we assign these pictures to the idea of electron spin, which are all wrong

as I mentioned earlier as well, that there is no classical analog to any of this any of these

pictures.

(Refer Slide Time: 08:25)

And I will also like to draw your attention to a letter by Thomas to Goudsmit and this

letter is available in the internet, if you just Goolge, I am sure you can find it and I

downloaded, I copied it from there. And what Thomas wrote to Goudsmit is that, I think



you and uhlenbeck have been very lucky, to get your spinning electron published and

talked about it, before Pauli heard of it.

It appears that more than a year Kronig believed in the spinning electron and he worked

out something and the first person he showed it to was Pauli. Pauli ridiculed the whole

thing, so much that, the first person became also the last 1 and no 1 else heard anything

of it, so that was Pauli response to a suggesting, which came from Kronig, which was

before Goudsmit and uhlenbeck proposed it.

(Refer Slide Time: 09:20)

And then later in 1927 Pauli introduced the 2 by 2 matrices, which we call as Pauli spin

matrices, which are connected with the electron spin as all of you know from your first

course in quantum mechanics and we are going to meet them, today as well. And then in

1940 Pauli  proved the  spin  statistics  theorem,  which  is  very  easy  to  state  and  very

difficult to understand that particles with half integer spin are fermions and particles with

integer spin are bosons.

Feynmen says in his lecture somewhere, that this is one of the few theorems in physics,

which can be very easily stated and extremely difficult, to prove and to understand, but

that is a different story altogether. And then in 1928 Dirac came up with the relativistic

formulation of the quantum mechanics and the electron spin comes, very neatly out of it

as we will rediscover in unit 3.



(Refer Slide Time: 10:22)

So, the electron spin is a reality, it has got 2 states and the experimental verification came

before all of this it was known, in an earlier experiment done by stern and Dirac, that

when you pass silver atoms in a magnetic field, they sort of spread out, they come out

and this experiment is known to most of you.

And this comes from the spin angular momentum of the outer most unpaired electron in

silver atom that belongs to group 1, so it has got the N S 1 configuration outer most

configuration  and that  N S 1 is  unpaired.  So,  that  is  a  single  electron  and it  is  the

magnetic moment of this unpaired electron, which provides these 2 states in the magnetic

field, now if you did this experiment with electrons.



(Refer Slide Time: 11:14)

Instead  of  silver  atoms,  you send in a  beam of  electrons,  you have  a  electron  gone

Gerlach and you fire in a stern Gerlach magnet, they do not separate out, as up spin and

down spin. The reason it does not happen is that electrons are charged particles, silver

silver  atoms are neutral  particles,  so when you send in a  silver  atom, the outermost

electron has got a magnetic moment, which interacts with a magnetic field. But, when

you send in an N l an electron the electron being a charged particle, also experiences a

Lawrence force, which is charge times v cross b right.

The charge force Lawrence force on a charge is q into v cross b, o, the v cross b term,

which is an additional force, on the electrons, which is not there on the silver atoms,

silver atoms are neutrals. So, q is 0, but for the electron, q is the charge of the electron, so

there is this additional force and then there is a little complicated not, so complicated, if

you sit down to work out the algebra, but I would not spend time detailing it, but I will

just mention the result.

That when you work out the consequence of this Lawrence force the charge times v cross

b and try to play the consequences in a formalism, which is consistent with uncertainty

principle, then it turns out that this kind of separation is not possible. So, this argument

you can find out in some of the books, I will be happy to share some references.



(Refer Slide Time: 13:00)

But, we will you know, share the historical, you know narrative on this and pick up the

discussion on electron spin orbital, which has got a 2 state and you have got a special

coordinate r and a spin coordinate zeta and you write this as a spin orbital. This is the

orbital part and this is the spin part, sometimes called as a spinner and this has got 2

states represented by c 1 and c 2, which are the coefficients of the 2 pure states that, the

electron spin can have.

The pure states are either alpha or beta or 1 0 and 0 1 or up and down or whatever you

call it, these are 2 states and this is your spin v function or the spinner as it is called. And

the angular momentum of the electron, which is associated with the spin is referred to the

SU 2, rather than SO 3 and I will tell you why you have to have this difference.

So, S U 2 is another group, it is a unitary Uni modular group of 2 by 2 matrices, SO 3

you have already met in the context of rotations generated by components of the angular

momentum vector right. And these 2 groups are Homo morphic, which is why they have

some similar properties and they are important to us, but they are not isomorphic, there is

a certain similarity.



(Refer Slide Time: 14:47)

And I will demonstrate the relationship and we can do it in the context of understanding

S O 3 and S O 2 or we can also have a look at O 3 and S O 3 and you know, some of

these group properties become relevant, for our understanding.

(Refer Slide Time: 15:05)

And let me remind you that, you deal with orthogonal matrices, in the case of rotations

and these matrices will have determinants, which are either plus 1 or minus 1 and for the

case of S O 3, you pick that subset of matrices. Those rotations, those matrices, whose



determinants are plus 1, that is  what makes it  special  orthogonal group, that is what

refers to the S in S O 3.

(Refer Slide Time: 15:41)

Now, you can have a similar story for the O 2, which also has got explicit representation,

which you can see very easily and you can see that the determinant of Cos theta minus

sin theta, sin theta Cos theta is plus 1, whereas, if you have the 1 1 element with the

minus sign, then you have the determinant to be minus 1. So, if you take the subset of

those matrices, which have got the determinant to be plus 1, then you get the S O2. So,

these are very simple relationships, that we are working within the context of S O 2 or S

O 3 and this is what makes our group special, that you are picking a subset.



(Refer Slide Time : 16:27)

So,  now when  we  deal  with  rotations  our  infinitesimal  rotation  is  generated  by  the

angular momentum operator, we have identified this operator and our unit 1, we know

that it is 1 minus i over h cross delta phi dot j delta phi being an infinitesimal angle,

which is a vector. Finite angles are not vectors infinitesimal angles are vectors, now what

you are going to do when you work with finite rotations, now you can express a finite

rotations theta, this is no longer an infinitesimal rotation.

But, you can take a finite angle theta break it into 9 piece into n pieces, so that each piece

is tiny and then let this operate n times and let n tend to infinity, now what you are doing

is to break it into such tiny pieces, that you will have infinitesimal rotations, which you

have no difficulty with. And this series sums up to this exponential series, now I have

been careful not to put a vector bar on theta, I write it rather as the magnitude of theta

times the unit  vector, because I  do not want to recognize the finite angle theta,  as a

vector.

So,  I  write  it  as  a  product  of  a  number  times a  unit  vector, so  it  has  got  a  certain

mathematical sense that, we understand through this limit n tending to infinity of the

operator for infinitesimal rotations, acting n times, n tending to infinity. So, that is the

mathematical sense, that we are all comfortable with, now these angles can be changed

continuously, which is why they belong to the lee group.



(Refer Slide Time: 18:48)

And you can work with this algebra, for finite rotations and now, if you consider this

finite angle to be 2 pi, 2 pi is of course, a special angle, because we always think that

when you take any object and turn it through 2 pi, you are going to recover the original

state right that is your expectation. So, you take this angle theta to be 2 pi and look at this

operator for finite rotation through angle 2 pi.

So, now, this is theta is 2 pi, let us say it is about the z axis, so this unit vector theta

carried is e z unit vector and now, you have 2 pi times the j z operator, which is the z

component of the angular momentum. Now, this is cosine 2 pi j z over h cross minus i

sin 2 pi 2 pi j z over h cross and if you operate this on the angular momentum Eigen

states, you know that j square j z have got, simultaneous Eigen states that you have the

Eigen value equation satisfied by these operators.

So, you can operate by these operators on angular momentum states and you will get the

corresponding  Eigen  values,  Eigen  value  of  j  z  is  m h  cross,  which  in  the  case  of

rotations, j are integers like the orbital angular momentum right, these are integers m

goes from minus j to plus j, so they are also integers. So, this rotation operation through

2 pi is equal to the unit operator 1 as would expect, now this is the story coming from S

O 3 S U 2 is different in this respect.



(Refer Slide Time: 20:59)

Let us see, how now S U 2 is a set of all unitary unimodular matrices, which are 2 by 2,

the poly matrices are classic cases, in fact, they give you a basis for any 2 by 2 matrix,

along with the 2 by 2 unit matrix. So, if you have any unitary, any 2 by 2 matrix, any

matrix does not matter, what you can always write it as a linear super position of the 3

poly matrices and the 2 by 2 unit matrix, that is what is meant by a basis. So, you can

always write any 2 by 2 matrix in terms of these matrices.

(Refer Slide Time: 21:39)



And if you refer to a certain spin orbital, now you know what a spin orbital is it has got a

spin part and an orbital part, the 2 component function is called a spinner and these are

the 2 components, here the position vector r is with reference to a certain coordinate

system, which is e x e y e z, which is a Cartesian coordinate system. Now, what would

happen, if you refer the same spinner, the very same spinner to a different coordinate

system, which is rotated with respect to the previous 1.

So,  we have the spinner  2 components  and we refer  the spinner  now, to  a  different

coordinate system, which is rotated with respect to the previous 1, as I have shown in

this figure and the new coordinate unit vectors are e x prime, e y prime, e z prime. The

new spinner is obtainable from the first spinner by matrix multiplying it by this 2 by 2

matrix xi eta lambda mu, all of these are complex numbers. So, you can, but these are

unitary matrices, so they will satisfy this relation that, the joint is the same as the inwards

that is what makes them unitary and they also have modulus 1, they belong to the S U 2.

(Refer Slide Time: 23:18)

So, you do have 4 equations here, that U dash U must be equal to 1 and you also have

another constraint, since the modulus of U is equal to 1, so out of the 8 real numbers that,

you work with in 4 complex numbers. Each complex number has got 2 real numbers, the

imaginary part is as real as the real 1 right, so you have a 5th condition and you really

have only 3 parameters as 1 would expect.  And the these are the matrices,  that  you



invoke, when you are dealing with the angular momentum with half odd integer, like the

electron spin, that is described by S U 2 and not S O 3.

(Refer Slide Time: 24:07)

So, let us take this electron spin, which is half h cross sigma, sigma being the poly matrix

vector and if you now look at the generator for rotations, using the same relationship, but

now for j equal to half. So, now, this j is half h cross sigma, now let us see the fun, this is

really interesting, because you have done the same thing for the rotation operator now,

the h cross cancels, you now have theta over 2 times this.

(Refer Slide Time: 24:49)



And if you now take the same finite angle 2 pi, which you had taken earlier, take theta

equal to 2 pi, so this angle theta by 2 becomes 2 pi by 2 and then sigma dot e z will give

you sigma z. What you get is cosine and sin of pi times sigma z, sigma z you know what

they are, 1 0 0 minus 1 right, so you get the cosine and sin over here, so you get Cos pi

and 0 and 0 and cosine minus pi. But, cosine of pi and cosine of minus pi are both equal

to minus 1, so you get minus 1 times the unit matrix, you have rotated through 2 pi angle,

you do not get the unit operator, you get minus 1.

And if you want to recover the original state, then you need a rotation through 4 pi,

because if you do it twice, then minus 1 into minus 1 is plus 1, even in atomic physics

right. So, you have to carry out this rotation twice and this is what distinguishes S U 2

from S O 3.

(Refer Slide Time: 26:19)

Now, you can see it in another fashion same result essentially, you go ahead and replace

this operator by the j z operator and get it is Eigen value, which is m. But, m now for

spin half is either plus half or minus half and you get essentially, the same result that this

operator for 2 pi rotation will be minus 1, it is the same thing. And you will need to rotate

this state through 4 pi to get plus 1.



(Refer Slide Time: 26:53)

what it really means, is that when you are dealing with half integer quantum numbers,

you need to work with S U 2 or else with S O 3.

(Refer Slide Time: 27:06)

And states of particles with half odd integer spin will require a rotation, through 4 pi,

which is a problem with shifts  quantum mechanics or many other books in quantum

mechanics, you know and it is very easy to show the results. It also means that, half of

the matrices that can be used to represent this rotation operator, they are double valued

with respect to this angle theta, because you need 2 of them.



(Refer Slide Time: 27:35)

So, you can have identical rotations, through angle theta and also through theta plus 2 pi,

which corresponds to different matrices, so that will happen and this is not a problem,

because you really deal with quadratic quantities in terms of the said vectors. So, this

normally  does  not  lead  to  any  problem,  but  so  far  as  our  understanding  of  the

phenomenology is concerned, it is such an importance.

(Refer Slide Time: 28:05)

So, there is homomorphism not isomorphism between S U 2 and S O 3, the 3 by 3 unit

matrix would correspond to both the 1 1 2 by 2 matrix of the S U 2, as well as the minus



1 unit matrix of the S U 2. So, there is this correspondence and it means, that every

representation of S O 3 is also a representation of S U 2, but not vice versa, because you

do not have a 1 to 1 mapping.

(Refer Slide Time: 28:40)

We will discuss the matrix representations of angular momentum operators now and you

will see very soon, that this is very simple, but also extremely important.

(Refer Slide Time: 28:52)

And it will be impossible to highlight, how important this really is, but you will certainly

see it today, so these operators we have introduced earlier, in our unit 1, these are the step



up and the step down or the raising and the lowering operators, in terms of which you

can write the operators j x and j y. So, we also have these matrix elements, for j plus and

j minus, which we have used in unit 1, so I will use these results straight away.

Likewise,  you have  the  matrix  element  of  j  minus as  well  or  if  you get  the  matrix

element of j plus and j minus, then since j x and j y are explicable in terms of j plus and j

minus, you can get the matrix representation of j plus and j minus. So, this is always how

you go about, getting matrix representations of j x and j y, j z is easy, because j z is

diagonal along with j square. But, j x and j y are not diagonal and you should get them

first in terms of the ladder operators and then use this straight forward relationship to get

the corresponding representation for j x and j y.

(Refer Slide Time: 30:17)

So,  now, for  spin  half,  you  have  got  a  2  by  2  matrix  representation,  there  is  a  2

dimensional basis, the first quantum number is the j, which is half, the second quantum

number is the m quantum number, which is plus half or minus half. So, you have got a 2

dimensional basis here.



(Refer Slide Time: 30:36)

So, let us get the matrix representation of various operators j square is very easy, because

it has got an diagonal representation, you know what the Eigen value is, which is h cross

square into j plus 1, so half into half plus 1 will give you 3 by 4. And similarly, j z is also

diagonal, so it has got an Eigen value equation, whose Eigen values are either plus half

or minus half times h cross.

(Refer Slide Time: 31:08)

So, you write the matrix representation in this basis of J square, write the 1 1 element,

the 1 2, 2 1 and 2 2, that is it, you get it all. And using the matrix elements and the Ortho



orthogonal relationship of the base is set, you get the explicit matrix representation of J

square and likewise, for j z.

(Refer Slide Time: 31:38)

What  about  J  plus  before,  we  get  J  x  and  j  minus,  we  will  first  get  the  matrix

representation of J plus and j minus and we know, how to do that, because we have met

these matrix elements. So, you get 0 and 1 1, 2 1 and 2 2 positions and only 1 2 is non 0,

you  plug  in  the  value,  which  you  already  have  and  you  get  an  explicit  matrix

representation of J plus, which is h cross time 0 1 0 0.

(Refer Slide Time: 32:19)



Similarly, you get the matrix representation of J minus by doing exactly the same kind of

algebra and once again, you have the other relation for the step down operator and using

that, you get the matrix representation for J minus, which is h cross 0 0 1 0. Now, you

have the matrix representation of J plus and J minus both.

(Refer Slide Time: 32:47)

So, you can get the matrix representation of j x and j y. So, J x turns out to be h cross by

2 0 1 0 and J y is h cross by 2 0 minus i, i 0, which is where the poly matrices come in.

(Refer Slide Time: 33:07)



So, these are the poly matrices, the sigma z, sigma x and sigma y and you must keep

track of all the attributes of the angular momentum the quantum nature, the vector nature

the operator nature and now also the matrix structure. So, whenever you deal with these

operators and that is what you are going to do lot in unit 3, you must keep track of all of

these attributes, the mat matrix structure, the vector structure, the operator structure and

the quantum structure all of this.

(Refer Slide Time: 33:44)

That you thing that you do can be inconsistent with any one of these features, what about

j equal to 1.



(Refer Slide Time: 33:51)

So, now, you have got a three dimensional basis, because for j equal to 1 m will take 3

values  minus  1  0  and  1  3  is  nothing  new  about  it  and  you  can  get  the  matrix

representation of all the operators j square j plus j minus then J x J y everything right.

And  I  will  like  you  to  do  this,  for  you  self  and  obtain  these  explicit  matrix

representations, for j equal to half, j equal to 1 and for some other angular momentum

just  to  get  used  to  it  for  j  equal  to  3  half,  for  example.  Now  you  will  have  a  4

dimensional basis, because m will go from minus 3 by 2 to plus 3 by 2 in steps of 1, so

minus 3 by 2 minus half plus half and plus 3 have, so you will have a 4 dimensional

basis and you will have 4 by 4 matrices.



(Refer Slide Time: 35:01)

So, the size of the matrix also goes on increasing and these are the angular momentum

and  the  angular  momentum  Eigen  basis,  these  are  the  matrix  representation  of  the

rotation  group.  So,  this  is  the  rotation  group  and  you  can  obtain,  it  is  matrix

representation in a basis, which is 2 j plus 1 dimensional, these matrices are known as

Wigner  D Matrices.  And the Wigner  D Matrices  are  matrix  elements of the rotation

operator, in angular momentum base as such, a very simple to obtain, for any value of j,

we just saw how to get them, these are extremely important Wigner D Matrices, as they

are called.

(Refer Slide Time: 36:04)



And they will all be 2 j plus 1 by 2 j plus 1 matrices, their size will grow with j and the

reason, they are important, if it had not occurred to you yet, is that you would have seen

them on the cover of Sakurais quantum mechanics book. And that book deals with, so

many topics in quantum mechanics and what they pick out of all that to be placed on the

cover are the Wigner D Matrices. So, they better be important and they certainly are you

will find that, you will need tremendous expertise in dealing with these matrices.

You will need tremendous competence and if you have difficulty dealing with angular

momentum algebra and commendation properties between angular momentum operators

and lens operators and so on. Here is a classic book, which is used all over the world and

it is telling you that, please learn this carefully thoroughly, have a good handle on this,

that is precisely, what this cover is telling, you it is speaking to you now.

So,  please develop tremendous competence and comfort  with the algebra of  angular

momentum operators, angular momentum Eigen states, the lens operators, because S O 3

is a subset of S O 4, which is the collect symmetry of the hydrogen atom right. And I

made an attempt to introduce you to these topics, expertise you will have to develop on

your own.

(Refer Slide Time: 38:18)

So,  I  guess,  I  will  stop  here  today  and  we  will  continue  the  discussion  from here

tomorrow is there any questions, I will be happy to take.



Students:  Can you please  explain  about,  difference  between  electron  spin  and silver

atoms.

Yes the silver atoms this is with reference to the stern and Gerlach experiment, now what

happens is when you put a magnet in magnetic field, it aligns itself along the magnetic

field, which is what you do in a magnetic compass that, you might wear on your wrist.

Now,  when  you  talk  about  classical  magnets,  you  always  think  that,  they  align

themselves exactly along the magnetic field that does not happen with real magnets,

which are essentially quantum.

Because, the quantum magnets, have got a magnetic movement, which is proportional to

the angular momentum is such an observable that you cannot get all the 3 components of

this  vector observable,  you can get only one of the component along with it  is  size,

which is given by j square, the size is given by j square. And one component is given by

the Eigen value of J z, when you perform this measurement the system collapses into an

Eigen state of J z and that is what you measure, but then it is not in simultaneously in an

Eigen state of J y or J z or J x, it is in an Eigen state of J z right.

Now, you can have these 2 orientations for j equal to half, because m goes from plus half

to minus half in steps of 1. So, the silver atom has got 1 unpaired electron, it is got it is

like n s 1, it belongs to the first group and this unpaired electron has got a net magnetic

movement. So, this magnetic movement can align itself, either along you know with, it

will  have 2 Eigen values, which is a plus half and a minus half  and these are the 2

components, which gets separated out when you send a beam of silver atom through the

stern Gerlach magnet now, so far so good.

Now,  if  you  do  the  same  with  the  electrons,  the  electrons  do  have  this  magnetic

movement and the mu dot b coupling will give you the same kind of result, but that is not

the only thing that is happening to the electrons. Because, in addition to this the electrons

have got some difference with the silver atoms, the difference is in the charge, the silver

atoms are neutral particles, there are how many 47, what is the atomic number, I had it

on the slide actually, I believe it is 47.



(Refer Slide Time: 41:22)

So, there are as many protons in the nucleus as the number of electrons, in the atom 47, it

is written here in the middle of the atom, the number of protons is 47, the number of

neutrons is 61. So, the 47th electron is outside, that is unpaired electron, which is giving

you the magnetic movement, but the atom on the whole is electrically neutral, there are

as many protons in the nucleus as the number of electrons outside it.

So, it is a neutral atom with a net magnetic movement, when you send in a beam of

electrons, you have charge particles with the magnetic movement and the charge particle

responds to the magnetic field, also through this q into v cross b term, which the silver

atom will be insensitive to, because the silver atom the charge q is 0. So, there will be no

q into v force on the silver atom, but you will have that force, on the electrons, now

Kessler has got a book, I believe the tile is electron spin by Kessler.

And  the  very  first  few  pages  Kessler  discusses  this,  that  when  you  consider  this

phenomenology, of the Lawrence force on electrons, together with this stern Gerlach

effect,  which the electrons  will  also experience,  because they  do have this  magnetic

movement.  But,  in  addition  to  that  they  experience  this  Lawrence  force,  so  the

combination is also constrained by the principle of uncertainty; that is fundamental to

every process.



So,  the  combined  effect  of  the  Lawrence  force  and the  uncertainty  principle  on  the

electrons is that they do not separate like this, so that is a little bit of algebra, which you

can find in Kessler's book, any other questions.

(Refer Slide Time: 43:29)

So, thank you very much.


