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Wave functions of the Hydrogen Atom

Greetings, so we got the energies of the hydrogen atom without using the Schrodinger

equation, we got the 1 over n square.

(Refer Slide Time: 00:27)

And, we were able to do a lot more than what we could with the Schrodinger equation

because  the  Schrodinger  equation  would  lead  us  to  a  situation  which  we  could  not

reconcile  with  the  degeneracy  that  we  find  in  the  hydrogen  atom  right.  So,  the

Schrodinger  equation  consequence  could  at  best  be  dealt  with,  by  referring  to  the

degeneracy as accidental degeneracy.

But, when you understand the symmetry of the hydrogen atom recognize that is S O 4

and symmetry in degeneracy goes together. You know what you do in perturbation theory

that you apply a perturbation, and the perturbation removes the degeneracy, sometimes

partially sometimes wholly that is a matter of detail we were certainly come back to at

when  we  discuss  atomic  spectroscopy.  But,  typically  a  perturbation  removes  the

degeneracy, and the presence of degeneracy suggests that there is some symmetry which

you can break, as you do in the g mean fact for example, your ferromagnetic field.



So, you break the spherical symmetry right, so things are different along one direction,

so  symmetry  and  degeneracy  go  together.  And  when  you  recognize  the  complete

symmetry of the hydrogen atom, which is the S O 4 you are able to explain the energy

spectrum of  the  hydrogen atom,  and also the  degeneracy. Now, the casimir  operator

which you have on the screen C 1 and C 2 it is not such a big, you know surprise that the

casimir operators are I square plus K square and I square minus K square, because we do

know from rankers theorem that the number of casimir operators is equal to the ranks.

So, we have something to begin with, we also know this is in response to your question

vivek  yesterday,  you  also  know  that  from  rankers  theorem  that  a  suitable  bilinear

construct of the generators, would give you the casimir. So, generators are the angle of

momentum, and the Pauli Lenz vector operators, so you contrast the bilinear out of it.

So, you they have to come out of L square and A square and that is what you find the

over  here.  So,  you  have  some  sort  of  clue  to  go  about  discovering  these  casimir

operators, and you can get it readily, so these I and K are the pseudo angular momentum

vector operators I and K are independence, so they commute with each other. And for

angle of momentum algebra in some of this we are going to do in unit 2, we will ensure

that these quantum numbers can be either 0 half 1 3 half and so on.

But, I have anticipated that result you have met this result earlier in some other course

reassembly I have used it. But, we will establish in some details when we do unit 2, we

will actually prove that angle of momentum quantum numbers can be only 0 half 1 and

so on. So, these are the pseudo angle of momentum operators as I mentioned yesterday.



(Refer Slide Time: 03:45)

We have the degeneracy, we are which goes as n square, this is was the mystery which

we wanted to explain for the hydrogen atom.

(Refer Slide Time: 03:56)

And if you see what the degenerate functions are, so for n equal to 2 you have a 4 fold

degeneracy. And these of course, are the 4 linearly independent wave functions, which all

belongs to the same Eigen value, this is then doubled because of spin, but without spin

this is 4 fold degeneracy. So, for n equal to 2 these are the 4 for 3 you have the additional

5 orbital's which are degenerate these are the 5 orbital's with the d symmetry.



The 3D way functions there are five linearly independent functions with d symmetry, and

these 5 get added to those earlier 4, which are the s n p and you get a 9 fold degeneracy,

for n equal to 3, for n equal to 4 you get an additional 7 fold degeneracy coming from the

4 or 5 orbital's. So, this is how it will go and as n increases the degeneracy will increase

as the square of n.

(Refer Slide Time: 05:05)

Now, for the Rydberg Balmer Bohar formula we put kappa equal to e square, you notice

the  2  s  and  2  p  are  degenerate,  which  is  another  surprising.  Because,  these  wave

functions have opposite parity one is g when other is odd, the parity is given by the l

quantum number. And under inversion these wave functions in the parity you know, they

have  the  parity  of  the  l  quantum number,  and  usually  you do  not  have  degeneracy

between functions of opposite parity. In this case you have, which is rather pique your

result, and this we now understand very easily because we are dealing with a mix of l

and a 1 is a polar vector, the other is an axial vector that is a reason parity is not a good

quantum number in this case.



(Refer Slide Time: 06:06)

So, these are some of the references which I will like to suggest there is a very nice

article  by  Burkhart  and  leventhal,  which  was  first  publish  in  the  American  general

physics  in  2004.  And  subsequently,  you  know they  also  published  a  book which  is

published  by  Springer  verlag  and  this  is  a  very  nice  reference  for  the  Lenz  vector

properties of the hydrogen atom, this is a good reference.

But, then I will also like to suggest that the usual books in quantum mechanics Schiff's

messiah  Arno bohm.  Now, David  bohm Sandra  boehm has  got  a  book on quantum

mechanics, and greiner book landau lifshitz they all have this, and you can refer to any

one of these, so you what you find the main results that we have discussed in all of these

sources.



(Refer Slide Time: 07:04)

Now, let us consider various atomic systems, an atomic when I talk in atomic system I

also include an iron, which is also an atomic system. And typically in neutral atom you

will have Z number of protons in the nucleus, you will have N number of electrons in the

atom, in the neutral atom Z is equal to N. But, N could be less or more in negative ions N

could be more than Z, and in positive ions N can be less than Z, and in highly charged

ions N can lot less than Z.

And in stiller space N do have extremely highly charged ions, you know you have ion

which is strip out of it is electrons, and you are left with very few electrons with the ion

nucleus. And there, so many other species of this kind and depending on the number of

electrons N is either equal to Z or not equal to Z and this Z minus N could be 0, if N

equal to Z. And as r tends to infinity the potential will go as 1 over r if n equal to Z, but if

N is not equal to Z it will go by not just 1 over r, but by Z minus N plus 1 over r as r

tends to infinity.

Whereas, as r tends to 0 the potential will go as minus z over r, so if you look at this

curves here, there two lines over here, one is a blue curve which is minus 1 over r this is

the typical hydrogen atom curve, you have just plotted minus 1 over r. And as r tends to

infinity the red curve, which is the potential seen by the electron in an atom, which is not

just a hydrogen atom. It could be, you know half more than one electron and this curve

will go to 0 as minus Z over r.



So,  which means  that  this  will  fall  below the blue  line,  and that  is  what  makes  the

potential in other atoms not hydrogenic strictly. So, the potential is not strictly minus 1

over r in the entire region of space, and then the S O 4 symmetry is broken for these

atoms. The nature of the potential, you know it is right on top of the 1 over r only in the

asymptotic infinite r tend into infinity region, but not elsewhere. So, some of these things

lead to correction a 1 over N square formula needs to be corrected it because 1 over n

minus mu square.

Because, the potential is different from minus 1 over r in the core as r tends to 0, you

have a correction and this is sometime referred as a quantum defect. So, the mu that you

see which is a correction to the principal quantum number, the energy do not go strictly

as 1 over n square. But, the energies are another atoms rather than the hydrogen atom,

they go as 1 over n minus mu square, where mu is called as a quantum defecter, and this

was  earlier  introduced  semi  empirically.  But,  then  you  get  a  nicely  from  quantum

mechanics and this was done by mics Keaton and farno and so on. So, there is a whole

formalism which is known as a quantum defect theory, might that upon some of the

applications that later point of in this course.

(Refer Slide Time: 10:46)

But,  in  these  atoms  because  there  is  a  quantum defect  mu and this  quantum defect

depends on the l quantum number. This is what makes the energy of 2 s different from

the energy of  2  p,  this  is  what  happens in  sodium atom and all  the other  atoms.  In



hydrogen atom 2 s and 2 p will in the same energy 3 s 3 p 3 d will be in the same energy,

but that is not the case in another atoms, in another atoms depending on the l quantum

number.

So, the energy depends not just on the principal quantum number as it does for hydrogen

atom, but also on the arbitral angle of momentum quantum number l for all the other

atoms. Now, there are further considerations and we will just anticipate some of these

things, when you do the relativistic hydrogen atom, which is what we will discuss in unit

3.

(Refer Slide Time: 11:42)

You will find that states with different l, but if they have the same j quantum number

they are the degenerate. But, then there is a spin orbit you know spreading because of the

relativistic interaction, so these are some of the details that we will meet when we do unit

3. So, the complete story of hydrogen atom is quite rich and we have just got a vary

introduction to the non relativistic hydrogen atoms spectrum, and it is degeneracy. Not

only that the there is a further difference between the 2 p 1 half and 2 s 1 half this is

known as a lamb shift.

And these are you know these come from you know feel theoretical correction, so the

story of the hydrogen atom is really very wide and quite challenging. So, these are some

of other things that you will meet, then there is the hyperfine structure which comes from

coupling between the electrons span and nucleus span. So, you know depending on the



level which you study the hydrogen atom, you do have a very complex spectrum, so we

will talk about these things may be in a little later part of the course.

(Refer Slide Time: 12:58)

Now, let us have a look at these wave functions and again I am not going to discuss, how

you derive these solution from the Schrodinger equation. All of you have done a first

course quantum mechanics,  you have done the  hydrogen atom you have applied  the

boundary conditions to the radial part, and you have actually obtain these solutions. So, I

take that you are familiar with these solutions.

Now, you obtain these redial functions by solving the Schrodinger equation and applying

the property boundary conditions right. So, these results are known what you are going

to do now, is discover that these solutions can be obtained not just from the Schrodinger

equation as you have already done in your earlier course on quantum mechanics. But,

you can get these wave functions also from the Pauli Lenz vector.



(Refer Slide Time: 14:04)

So, we will carry the potential of the Pauli Lenz vector further, and we begin with this

equivalent form of the Pauli Lenz quantum mechanical vector, and we will use this Pauli

Lenz vector to get the hydrogen atomic wave function.

(Refer Slide Time: 14:14)

So, let see how to do that, let first of all define the ground state, the ground state has a

principal quantum number n equal to 1, n we have introduced as 2 i plus 1 right. So, this

corresponds to i equal to 0, and we do this book keeping by designating this vector at the

Hilbert space by the principal quantum number, this is of the designation of the ground



state. And we have to find what this is, we have to find this coordinate representation, we

have done it  from the Schrodinger equation,  we will  now do it  from the Pauli  Lenz

vector.

So, given the fact that n is equal to 1 we know the corresponding value of i must be 0,

and therefore, if the vector operator I would operate on this ground state, you will get 0.

And the same thing would happened, if you are to operate by the other pseudo angle of

momentum vector operator K, so you will get 0 out of this operation, now L and A the

angle of momentum on the Pauli  Lenz operators,  they are made of the sum and the

difference of I and K.

And since I and K is gives you 0, L operating on the ground state will give you 0 and A

prime the Pauli Lenz operating on the ground state will also give you 0 it is quite straight

forward. Now, A prime is proportional to the Pauli Lenz operator right, we had only

defined A prime through the scaling factor if you remember, so; obviously, when the

Pauli Lenz operator operates on a ground state, the result is 0. Now, this is very good

because we do have an explicit form of Pauli Lenz vector operator which is this.

(Refer Slide Time: 16:22)

So, let us write this expression with the complete form of the Pauli Lenz vector operator

which is this, operating on the ground state and the result is 0. The first term has got the

angle of momentum operator, which is the first one which would operate on the vector,

and have we already seen that when the angle of momentum operator operates on the



ground state, you must get 0 we just saw it right. So, l operating on 1 on the ground state

would give you 0, so out of the 3 terms that you find in the bracket. The first one would

give you 0, you have only the other 2 both with the minus sign, so you can write the

remaining 2 terms, which is i h cross p plus mu kappa r the unit vector r that I have

change the sign. Why minus 1 into 0 still equal 0 even in the atomic physics right.

(Refer Slide Time: 17:36)

So, this will what, now we know what the momentum operator is this is our expression,

momentum is a gradient operator. So, plug in momentum is minus h cross gradient, and

now you have a differential equation, you have a first order differential equation and it is

no big problem to solve it, all of you can do it right. So, you have a first order differential

equation which is h cross square gradient plus mu epsilon square operating on the ground

state equal to 0.

This is; obviously, not Schrodinger equation the operator is not the Hamiltonian, it does

not have a kinetic energy, it does not have a potential energy. The kinetic energy goes as

the  square  of  the  gradient  operator  right,  p  square  this  is  the  first  order  differential

equation.  Schrodinger equation is a second order differential  equation,  this  is not the

Schrodinger equation, this is the first order differential equation that you are getting by

exploiting the property of this Pauli Lenz vector operator.



(Refer Slide Time: 18:47)

And all you have to do is to solve this first order differential equation, which will give

you the ground state, the coordinate representation of the state vector 1 will give to the

ground state  wave function psi  right.  And the solution is  what you have seen earlier

already, but you have got it from the Schrodinger equation, and we get it now without

touching the Schrodinger equation. And question which I had posed to the end of our

previous class, was that we get the energy Eigen values of the hydrogen atom.

And now you have seen that you get a also the wave function and in fact, if you do this if

you extend this technique further, you can get not just 1 s wave function. But, all of them

that involves a little extensive algebraic methods, which I will not discuss at the class,

but you can go through Masaya quantum mechanics, and you will find the discussion

over there. So, I am not going to discuss that, but we have shown how you can get, the

ground state wave function all  the other wave functions also be obtained using some

other technique.

And the interesting feature is that you get the energy Eigen spectrum, the Eigen values

you also get the wave functions you are able to do more with this, because you are able

to explain the degeneracy of the hydrogen atom, which you could not otherwise, but you

not use a Schrodinger. So, how is it that you get all the results of the quantum mechanics,

without using the Schrodinger equation.



Do you recognize that you have not used the Schrodinger equation, and you do get the

complete energy spectrum, the Eigen spectrum, the Eigen values, the Eigen functions

and the degeneracy and everything, ((Refer Time:  20:58) answer lies in the fact that

Schrodinger equation is a representation of quantum mechanics. So, whenever we ask

this question as to what is it that mean by quantization. Does it mean that you replace the

classical equation of the motion by the Schrodinger equation.

And the  Schrodinger  equation  is  not  just  h  psi  equal  to  e  psi  that  is  only  the  time

independent part. Basically it is rate equation, it gives you the rate at which the wave

function changes with time del psi by del t. So, it tells you how this state of the systems

evolves with time that is the fundamental question in mechanics, how do you represent

state of a system. And how does this system evolve with time, and rate equation is given

by the Schrodinger equation for del psi by del t.

But,  the  heart  of  quantum  mechanics  is  in  the  fact  that  you  need  to  perform  a

measurement, unless you are able to carry out the measurement, you cannot relate your

theory to your observations.  And in classical  mechanics  you do it,  by measuring the

position and the momentum, and without this measurement you do not get the state of

the system. The state of a system in classical mechanics is denoted by q and p it is a find

in the free space.

So, q and p give you the state of a system in classical mechanics and this is possible

because simultaneous measurement of position and momentum are not challenged in the

approximation is not that they are possible, but they are challenged. They are of course,

not possible because you try to do it and you meet incompatibility you try to make a

measurement  of position,  then you do a measurement  of momentum come back and

measure the position, you do not recover the same answer as you did earlier.

So, repeated a measurement  do not give you same results, so these operators do not

commute, they do not have simultaneous Eigen state. And then you have to abandon the

rate  equations,  which  are  the  Hamilton's  equations  q dot  and p  dot  equivalently  the

Lagrange equation and Newton's it is a same thing. But, essentially you are looking for

rate equations, that is to how a system revolves with time, and you have to abandon the

scheme  and  replace  classical  dynamic  variables,  by  judicious  operators  that  is

quantization.



It is not just having discrete and indiscrete anything it has that is quantization, and that is

something we have certainly  used in our Pauli  Lenz vector analysis.  The essence of

quantum mechanics is that, we have taken full advantage of that in our treatment of Pauli

Lenz vector,  which is  why we are able  to  get  all  the results  of  quantum mechanics

because they are containing in a heart of quantum mechanics which is quantization. So,

we did not use a Schrodinger equation, but get the all results.

(Refer Slide Time: 24:14)

So, these are this is the 1 s wave function which you know goes e to the minus r, and

then likewise you can do a little more, you know analysis and you can recover the entire

range of radial functions of the hydrogen atom, you can get 1 s 2 s 2 p 3 s just about

everything, the entire range of Eigen functions you will get using this treatment.



(Refer Slide Time: 24:45)

So, I will like to remind that the Schrodinger equation is not just h psi equal to e psi it is

rather the rate equation at which the state of a system evolves with time because the

whole idea is this that you want to see how a state of the quantum system, evolves with

time. So, there has to be time deliberative operator which must show on that is what the

Schrodinger equation is about then of course, when you have stationary state solutions

you can get, the time independent differential equation.

And depending on the symmetry when there is  spherical  symmetry  you separate  the

radial part in the angular part, and all of this machinery of the Schrodinger equation it is

a very powerfully, you know machinery. And there is a lot that one learns out of it, and

since you have already done a course in quantum mechanics, in which you have done

both out of these details. I am not going to repeat any of that, but I will nevertheless

touch upon a few points, just a selection of a few points of those properties which I think

rather interesting in atomic physics. So, I am going to refer to the Schrodinger equation

now, exploit the radial the spherical symmetry.



(Refer Slide Time: 26:07)

And then look at the radial differential equation, this is the one dimensional differential

equation that you get, after you remove the spherical part the angular part. And I will like

to discuss this for any form of the spherical potential, for which r square V goes to 0 now

this includes the coulomb potential because r square V goes as 1 over r. So, r square V

will go as r and r tends to 0 it goes to 0, so for any potential which goes to 0 as r tends to

0, and then look at the nature of these solutions in this limit.

Now, r square V goes to 0, so if you look at the small r behavior, and this is always nice

to  do when you dealing  with  differential  equation.  Does not  matter  whether  it  is  in

physics or any other subject, try to see what you can get in different limiting conditions.

Like how does differential equation look like, in the r tending to 0 region, how does it

look like in r tending to infinity region, do you get some special features. And you can

get a lot of inside into the subject by doing this.

So, is r tends to 0 if you look at the last you got r square multiplying E the energy, and no

matter what energy is, it could be the energy the 1 s state of the 2 s the 3 p or 15 g

whatever or it could be continuum, it could be a positive energy in the continuum it does

not matter. No matter what energy is r square into E will go to 0 as r tends to 0, and by

our choice of the potential that r square V goes to 0 as r tends to 0. The second term over

here, this one also goes to 0 which means that in your differential equation this entire

thing can be struck off.



If you want to get some idea about what is the nature of the solutions in the small r

region, and what is interesting is that whatever you learnt from the residual differential

equation, is going to be common for all the energies. It does not matter whether you are

dealing with this discrete part of this partum, with negative energies, positive energies

which quantum number n equal to 1, 2, 3, 4 it does not matter, because our consideration

is completely independent of the energy.

So, for this the residual differential equation consists of only the first 2 terms, and we

write this differential equation here. This is a residual differential equation, which is of

relevance for the small r h, this is not going to give us a complete solution for the entire

domain of space from the 0 to infinity. But, it will give us some a insight into the nature

of the solution in the small r h that is very important.

It of course, it  is not depend on the azimuthal quantum number m either, it  does not

appear in anywhere, it is independent of E. And if you see kappa power series solution,

then you can plug in this form of the power savory solution over here, take the first

derivative take the second derivative. And immediately you are left to the condition that

this radial function as r tends to 0, must go as the l'th power of r. Now, this is a very

important result it has got very important consequences an atomic process in collusion in

quantum collisions and so on, you will see why it is such importance.

(Refer Slide Time: 30:00)



Let us try to sketch this behavior in the small r region do not think of this line, as a line

of significant length. Because, we are really looking at what we are discussing is a nature

of the solution as r tends to 0, so it is in the infinitesimally small region close to r equal

to 0 that you are examining the nature of the solutions. And that is what I indicate on the

vertical axis that this is the redial function near the origin, and we know that the solution

goes as r to the l.

So, for l equal to 0 it will be constant r to the 0 is 1, so there will be some normalization

constant etcetera right. So, it will be constant as r tends to 0 for l equal to 1, which is for

the p waves right l equal to 0 are s waves, for the p waves this is r to the 1, so it will be

linear right for l equal to 2, you will have parabolic behavior. And for l equal to 3, it will

go as r to the 3 and what you notice over here that as l increases, it goes to 0 much faster.

And  this  should  not  surprise  you  because  if  you  look  at  the  1  dimensional  radial

Schrodinger equation, you have an effective potential which is made up of this part, and

this term over here which is l into l plus 1 by r square. You remember this term, you got

it when you separated the angular part from the redial part, this l into l plus 1 by r square

term is called as a centrifugal term. Why is a centrifugal, what does the term centrifugal

suggest was,  centrifugal  term is  what you used in classical  mechanics  when you are

dealing with pseudo forces right.

So, there is something unreal about it and what is unreal about this term is that, this is not

a real physical potential. The physical potential that you have an hydrogen atom just a

electromagnetic  potential,  which  is  the  coulomb  1  over  r  right  that  is  the  physical

potential.  Here the effective potential  is  a coulomb potential  plus an additional  term,

which is not the physics it is coming from a mathematical artifact because you have

reduced the 3 dimensional problem to a 1 dimensional problem.

So, it is a mathematical artifact of the reduction of the 3 dimensional potential to the 1

dimensional problem that you have this term, it is not a physical potential. So, that is

what  makes  it  a pseudo potential  kind of  thing,  so it  is  called  as  a  centrifugal  term

because it is not really physical. The other thing it has in coming with this centrifugal

term, is that what the centrifugal term does in classical mechanics when you are dealing

with rotating frame of references, is to keeping on object out right.



The centrifugal force keeps on object out away that is exactly what we see over here that

as l increases l into 2 l plus 1 by r plus term becomes more and more important. And the

probability amplitude of the wave function, goes to 0 much faster in the small r region as

l increases. So, as l equal to 0 s wave is not at all it has an amplitude at l equal to 0

because the centrifugal term is 0, but then whenever l is greater than 0 whether it is 1, 2,

3 or whatever.

The  wave  function  is  not  able  to  reach  the  centre,  the  corresponding  probability

amplitude, the probability density, and the electron itself will be kept away. So, if you

have a collusion experiment for example, if you got a target you bombed electrons then

electrons with higher angular momentum, they would not really be able to get in the core

they will be kept away. So, it has got consequences in quantum collisions, we will be

discussing some of these applications later.

But, it is important to recognize that these properties come from the small r behavior of

the wave function, which goes as r to the l. So, this is the centrifugal term let us now deal

with the v equal to 0 case, like I mentioned that whenever you look at the differential

equation, it always interesting to look at it in different limiting conditions. So, you can

look at r equal to 0, r going to infinity, you can also look for a limiting behavior of the

potential, v equal to 0 is also a centrifugal potential. Because, it has got the same value in

every angle, no matter in which direction you look, it is always a same, which is 0, so

this is an isotropic potential.



(Refer Slide Time: 35:43)

So, we consider the center field problem with a special case when V is equal to 0, when

there is no potential you already know these solutions are, you have done the problem for

free particle. The solution is E to the i k dot r right these are the plane waves, so you

already know the solutions, you also know these are not bound particles which is why

called them as free, not because you do not pay anything for it, but just because if not

bound anywhere right. So, it is a free particle you know the energies are positive they

belong to the continuum.

(Refer Slide Time: 36:22)



And the solution goes as e to the i k dot r and you can choose an axis along k, so you can

get the k dot r term to be given by k z. And now, let us throw the term V, you know these

are also Eigen state of l square, which is the square of angular momentum right, now put

V equal to 0 in the v radial Schrodinger equation. So, V is gone you are left with 2 m e

by h cross square, and you can defined the wave vector in terms of that which is p over h

cross.

So, the 2 m e over h cross square is replaced by this k square in the differential equation,

and now you have a differential equation in which V does not appear. And it is still a

Schrodinger equation for the hydrogen atom for the special case, when you are dealing

with a limiting behavior V is going to 0.

(Refer Slide Time: 37:35)

So, let us have a look at the nature of the solution, now what is interesting about it is how

do you normalized it. Because, when you construct normalization integral, you integral it

is psi over the whole space, and that is what gives you the normalization integral right.

Now, what is going to happen if you have for the wave function e to the i k z, you have

the e to the i k z multiplied by e to the minus i k z that gives you 1. And then you are

adding the volume element of over the whole space.

So, it blows up it is just blows up, and this is not square integral this is not normalizable,

so how do you normalize it. So, we have to figured out how to normalize it, and these are

normalize  using a  technique  known as a  Dirac delta  normalization,  now you have a



pearly met the delta function. And the normalization is achieved through this expression

over  here,  that  you  normalized  this  integral  by  setting  it  equal  to  the  orthogonality

between l and l prime and m and m prime, this is coming from the orthogonality of the

spherical harmonics.

So, this is not new to us that is not I am going to discuss, but the radial part will have to

be normalized because the trouble is coming from the radial part of the solution. So, the

radial part of the solution is normalize under k over 2 pi scale, this is called as Dirac

delta normalization. And this integral 0 to infinity of the radial integral is set equal to the

Dirac delta this is not the conical delta, this is the Dirac delta, and the Dirac delta is a

very interesting function it has got marvelous applications, when you are dealing with

continuum functions. Because, continuum functions you are always going to have deal

with the quantum collision theory. So, the discrete spectra which are square integrable

they are only part of quantum mechanics, but then the remaining part of the quantum

mechanics,  which deal with you know the continuum states,  you have to normalized

them using the Dirac delta functions.
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And it has some similarity with the charge density, which is charge per unit volume in

the limit the volume element going to 0. When the value element is goes to 0 both the

numerator and the denominator would individually vanished right, but the ratio does not

and the Dirac delta functions has got properties of this kind. So, this is the definition of



the Dirac delta functions, you early have met it in your mathematical physics course.

And what it does is it has got a spic, when the argument of the function is 0 that is spic

function, there are various representations of the Dirac delta functions. Always remember

that  it  has got  dimensions,  it  must  have the dimension of 1 over x whatever  be the

argument of the delta function. So, do not ignore the dimensions of the Dirac delta.
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And what it does is that, you can you know reduced the width and let the height increase

of the rectangle. But, the area which is the product of one side with the other that area

remains  a  same,  and  you  can  keep  doing  it  and  decrease  a  width  let  it  becoming

infinitesimally small, and let this height becomes infinitesimally large, so it does develop

a spic.
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This is not a only representation,  there are many other representations of Dirac delta

function, all of them have got this special feature. They are all spiced they have got a

huge height in the middle, and they dies off very fast and sometime I like to call this as

an exploit function. Because, it remind me a modern exporters, an expert is 1 who knows

more and more about less and less right.

In  the  limit  he  knows everything  about  nothing,  so  sometime  I  call  the  Dirac  delta

function as expert function, but you understand why it has this behavior. And I will like

to draw your attention to Arfkens book, Arfken Weber and you will find the properties of

the Dirac delta and some very good exercises I strongly recommend Arfken for this.
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Now, you can defined this Dirac delta normalization, now notice that the dami variable

here, which is being integrated out is f. And the quantum state is represented by f over

here, and you integrate this out and you get the Dirac delta normalization, landau lifshitz

is  also  very  good  source  for  this,  specially  for  the  normalization  of  the  continuum

functions. Now, if you multiply the argument by 1 factor by a scaling factor like alpha,

then the Dirac delta gets scaled by 1 over modulus of alpha.

And some of these properties are parley known to you or if you look into herfkens book

you will find that these are simple exercises, which are based on the properties of the

Dirac delta. What it means that if you normalize this, not with reference to the state f, but

you described it in terms of the function of f like phi of f, what I have in mind is the

energy parameter, energy is  p square over to m right.  So,  I  can normalize the wave

functions on the energy scale, I can also normalize it in p scale or the momentum scale.

The  corresponding  wave  functions  will  have  to  be  related  they  have  to  be  scaled

appropriately, and the scaling will come from this relation. Because, the Dirac delta for

alpha x is related to delta of x by this relation over here, so if it is normalized on the phi

scale rather than f scale where phi is a function of f. So, f can be your k and p is a

function k e is also a function k e is p square over 2 m or it is h cross square k square

over 2 m right.



So, you can write the index either it is energy or is a momentum or as k which is the

wave number, and depending on which you are using you will have a Dirac delta which

is  now the  difference  of  phi  f  prime  minus  phi.  And  this  comes  from the  ordinary

calculus that this will be delta f prime minus f divided by this modulus of this the same

relation that I am writing here. So, some of these things we will have to work with when

we advance this course to deal with continuum physics, with collusion quantum collision

physics. So, we will come back to this, but I just thought that I will alert you to some of

these properties for now.
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So, this is the normalization on the k over 2 pi scale, this is the normalization on the

energy scale, and the relationship between the 2 is given by this scaling factor. So, the

normalization if R E l is the redial function which is normalized on the energy scale, it is

related to the redial function which is normalized on the k over 2 pi scale through this

relation. This is very simple algebra, and it comes straight from the property of the Dirac

delta function.



(Refer Slide Time: 46:11)

So, let us see what is the nature of the function in the isentropic region, the solutions we

know are e to the i k k dot r. So, these are sinusoidal functions these are given by the

Schrodinger basal functions, and if you look at the nature of the solution in r tending to

infinity region, you have got this derivative operator operating on sin. So, for l equal to 0

this operator operating raise to a power 0 will be unity, it will be the unit operator and

you have the solutions sin wave right, which is the sinusoidal wave.

As l increases, you will have the derivative operator operating on sin or sin k l over r,

now what is the derivative of sin k l over r, you will get a term in 1 over r square. And

another term in 1 over r, the 1 over r square term will go to 0 faster than the 1 over r as r

tends to infinity right. So, you can throw the 1 over r square term take the leading term,

the leading term it goes on 1 over r will be the derivative of the sine function, which is a

cosine. And what is the cosine function, it is just a sine function which is fey shifted by

pi by 2 right.

The cosine function is exactly the same as sin function it is only phase shifted pi by 2.

So, every time you have the l quantum number go up by 1 from 0 to one to 2 to 3 to 4,

every time this happens you are going to have an extra phase shift by l times pi by 2 that

is the nature of the solution is r tends to infinity. Now, this is the nature of the solution

for very special case of the hydrogen atom, which is v equal to 0 these are the continuum

functions of free particle solutions. Now, what would happen if the potential was not 0,



you stick on a potential, so there is a target it could be a hydrogen atom itself it could be

any other atoms.
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Ignoring terms of the 1 over r square, then each of the solution is a sinusoidal wave

whose argument is k r phase shifted by pi by 2 l times. Because, every time you got the

derivative operator d by d r you are going to get phase shift of pi by 2, it was from the

sine you get a cosine. When the potential is not 0 you get an additional phase shift at this

phase shift is; obviously, coming because of the potential, so there is some information

of the potential, which we would find this phase shift.

Now, this is a topic of some detail which we will take up later in scattering theory, and

you will find that in quantum collision theory, you get a lot of information about the

nature of the potential by looking at the phase shift. So, phase shift analysis is a very

important tool in quantum collusion. So, this is something that we will return to other

later part.
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There are a few other properties that I would like to mention over here. So, this is a r

tend to infinity the isentropic form of the solution.
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What do we know abound bound state spectrum is that the solutions go as r to the l, as r

tends to infinity, the bound state solutions go to 0 because they are bound. And then for

the entire range it then goes r to the l e to the minus gamma r and some other functions

chi, so you can find what must be the nature of chi, and when you do this which I have I

am going to assume that you have done in your first course on in quantum mechanics.
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So, I am not going to do this algebra, but I will remind you some of other properties that

the number of nodes of the redial function, when you look at this is n minus l minus 1.

Those are the number of 0's that redial function will go through, and this is an important

property  that  I  will  like  you  to  register,  keep  track  of  this  because  it  has  got  very

important applications in spectroscopy, and quantum collisions of atomic systems. So, if

you look at l equal to 0 for n equal to 1, there will be no node, 2 p will node less, 3 d will

be node less right.

And the number of nodes depending on what is the difference between n and l, you will

find that 2 s, 3 p, 4 d have got 1 node 3 s, 4 p 5 d will have got 1 node, have this have got

2 nodes and so on. So, without looking at the detail form of the expression, if I asked you

to sketch in your notebooks, sketch the 4 d function can you do it now in the next ten

seconds. The 4 d how do you do it, you know that it is a d wave therefore, l is equal to

how much is it 2 s p d right l is equal to 2.

So, it goes as r is to the 2, so small r behavior is parabolic, so is r tends to 0 you will

draw a parabolic curve right. As r tends to infinity you know it must go to 0, and in

between 4 d will have only 1 node, so it has to be parabolic it has to go up, at cut the x

axis once and only once because there is only one node and then go to 0. So, that would

be the rush sketch of the 4 d, and you can do this for any redial function without knowing

this detailed polynomial function explosively in front of you.
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So, this again has a important consequences and photo ionization and so on. So, these are

the redial functions.
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I will also like to draw your attention to the angular part, which I am not going to discuss

because you have done it your quantum mechanics course. But, you know the solutions

which I will run through very quickly you are familiar with the angular equations the phi

equations on the theta equation.
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And I will like to ask an question over here, that you have these spherical harmonics in

front of you, you have met them you have both with them.
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And let us take a simple case of the spherical harmonics for the p wave, the p function

for l equal to 1, m equal to 0 the p z orbital, sketch it in your notebooks do it in the next

ten seconds. Now, you have parley drawn these diagrams a number of times, you have

seen these diagrams a number of times, and without looking at your answers I suspect

that many of you do not have it right.
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And the reason I suspect that is the following that this is the correct shape, and what you

must notice is that you have got from this Pythagoras theorem a cosine theta term. So,

this side must be exactly is 0 cos theta, which means that this upper lobe must be a

perfect circle, and my suspension is that many of you have not sketch the perfect circle,

you may have along lateral  lobe. And if you had a long lateral lobe your sketch was

wrong, you get it you realize why it must be a perfect circle, it cannot be along at a

dumbbell shape thing.

Now, what you see what the pictures that you remember are not a redial functions, but

the square of that, which is the probability density. The plots of the wave functions, the

plots of the probability density will have to be different, so you have to keep track some

of these details, I think I am running out of time this class.
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So,  I  am going to  stop here  I  thought  I  would mentioned that  essentially  we had a

introduction to the S O 3 and S O 4 symmetry of the hydrogen atom. We looked at the

some of the property of the angular part, and some of property of the radial part which

are of some consequences in atomic physics.
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The problems set is in integral part of this course, and you have to do the problems set

number 1, which is already uploaded at this web link, and the solutions are due in a few

days from now.
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And then of course,  in a later part  of the unit we will  be talking about the quantum

mechanics of many electron atoms because of in many electron atoms you got a 1 over r

i j the term, the coulomb reparation between pairs of the electrons. So, you need what is

known as art folk self consistent field formalism to do that, so we will get to. So, I will

the stop here is there are few questions we will be happy to take, this is a preview of

what you are going to meet in the unit on self consistent fields.
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But, I think I would not spend any time on this because we are practically out of the time

this class, I will rather takes some questions.
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And if there are no questions goodbye for now, but if there are some questions that will

be nice.
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Look at this figure, this spherical harmonic for l equal to 1 and m equal to 0 is a cosine

function, which means that theta is a polar angle, it is polar angle of the spherical polar

coordinate system, with reference to the z axis. It is not specially about the z axis, it is



some direction in space, but having chosen that you do have a polar angle, and with

reference to that polar angle the amplitude of the redial function, and the amplitude of

the complete wave function will be proportional to cosine of that angle.

So, it will be most for theta equal to 0 how much it will be the theta equal to pi by 2,

cosine pi by 2 is 0. So, in the horizontal plane the amplitude in the x y plane must vanish

that is what you see over here, and in between it will change with theta as a function of

theta, the function being the cosine of the angle right. So, there will be scaling factor and

that scaling factor is cos theta, and from simple geometry which you did in your high

school or even in kindergarten I do not know.

Because, you do these theorems very early these days, you know that if you have a circle

the diameter subtend an angle of 90 degrees at any point on the circumference right. So,

once side will go as sin theta, the other side will go as cosine theta, so this side must go

as cosine theta. And if that is the nature of dependence this has to be a circle, so this

diameter will subtend an angle of 90 degrees at the circumference is that clear.

So, it cannot be an long at a dumbbell it is not, not only that the cosine theta is positive

for the upper lobe, and it is negative for the lower lobe right. So, you must put that sign

you see in that figure, there is a plus sign on the upper lobe and there is a minus sign in

the lower lobe and y must put that, but when you take the probability density that goes as

chi, chi, chi right, so it goes as square of this.

And then you get the cos square theta dependence that is what gives you the along at a

dumbbells, not only that when you do that there will be no plus and minus sign on the

upper lobe and lower lobe because both the lobes will be positive. The square of minus 1

this  plus  1  even  in  a  atomic  physics,  you  cannot  help  it  right,  so  when  you  plot

probability densities you have both the upper lobe and the lower lobe are with the plus

sign. But, when you plot the probability amplitudes, it is a upper lobe which has got the

plus sign, and the lower lobe which has got a minus sign, and both of these must be

perfect circle. And of course, they have got a symmetry about z axis, so you can you

know rotate this about that z axis, so you will get this spherical shape any other question.

So, thank you very much.


