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Greetings, we will look at the spectrum of the hydrogen atom or any alkali atom anything in

the first group of the periodic table, they all have similar spectra in some respect of course,

they are different in the details. But there are several common features and when we examine

in the spectrum of the hydrogen atom, it does set up the procedures which we most employ in

interpreting the spectra of the bigger atoms.

(Refer Slide Time: 00:48)

So, we consider the strong fill effect in the paches should back effect and then our active

consideration now is on the study of the week feels Zeeman effect. And at these magnitudes

of the applied magnetic field, the spin orbit interaction is the dominant interaction, because

the magnetic field the applied field is weak. So, the internal effects take over and j and m are

the good quantum numbers and not m l and m s, like this states or not eigen states of l z and s

z,  but  there  eigen  states  of  j  square  and  j  z.  So,  that  is  what  let  us  to  determine  the

perturbative correction to the original unperturbed energy, at this correction requires us to

determine the matrix element of s z.

Now, the difficulty here was that the quantum states that you are considering or eigen states



of j square and j z and not of s z, so that is the reason we had to find some mechanism to get

this matrix element. And we found using two alternative procedures, one based on vector

identities for vector operators, these are operators for which are irreducible tensor operators

of rank 1. So, we use those identities and the other procedure which we followed was based

on Wigner-Eckart theorem.

And using both the procedures, we are lead to relationship which gives us the matrix element

of on arbitrary vector operator, no matter what it is, and you get it in term of V dot J and J.

And if this we happens to be our S operator the spin operator, then we can use it and applied

for this case, so we have S equal to V in our case, so now we get h cross square j into j plus 1.

And here this matrix element, is the matrix element of the spin angel of momentum S, and

this is equal to the matrix operator, matrix element of the operator at there is the scalar part

which is the S dot j, and there is the vector which is the angular momentum itself.

So,  this  is  the  S  dot  J  J  operator,  so  now this  part  we  can  write  this  relation  for  each

component, because this is vector relation and there are corresponding relations for all the

three components S x and y and S z or of you can write it for the spherical components as

well. And now the relationship for the z component, is that you take the z element of this

operator on the right side S dot J is a scalar, so it remains as it is and you have the J z

operator, and what comes out of this part is the J z operates on j m j and you will get m j

times h cross.

So, that is a big advantage here, you get m j times h cross coming out of the operation by J z

and this S dot J can again be written in terms of operators, whose eigen states are already

involved in the bases set. Because, the operator S dot J is nothing but J square minus L square

plus S square, because L plus S is what gives you J, so S dot J turns out to be J square minus

L square plus S square, so all you do is to take the square of S plus L equal to J.

So, dot out S plus L with S plus L, and this is exactly what you will get, so you have the

operator  S dot  J  whose matrix  element  now you need,  this  is  given by a  some of  three

operators J square minus L square plus S square by 2. But, now this state is an eigen state of

this operators, so what are the eigen values. So, you get h cross square into j into j plus 1

minus l into l plus 1 coming from here, and s into s plus 1 coming from here, so you get

numbers of the right side now, and you are able to solve this expression.

And this matrix element which is the matrix element for S z is now obtained completely in



terms of these quantum numbers, and you can write it for this matrix element which is what

you need. So, you take you cancel ((Refer Time: 05:55)) this h cross square with this h cross

square, move this j into j plus 1 to the right it come in the denominator. And this is the result

that we will looking for, this is preciously the term that you needed to get the correction for

the weak field Zeeman manufacture, so this is the correction now, this comes along with the

other term which was coming from the j  term itself.  And together with this  gives us the

correction, the perturbative correction when the magnetic field is weak and the spin orbit

interaction  and  takes  over. So,  that  is  the  dominating  interaction  and  this  is  the  energy

correction that must be applied.

(Refer Slide Time: 06:36)

So, this is the expression that we were looking far and we have now been able to resolve it, so

this is the energy correction the h cross cancels, and if you combine these two term there is

the more magnet on times of magnetic field in both the terms. And m j in both the terms, so

you extract this is the common factor and you have 1 plus j j plus 1 minus l into l plus 1 plus

s into s plus 1 divided by 2 j to j plus 1, so there is this is the land is fact exactly. So, this is

like g, this take exactly the same place as g did for the case of the orbital angle of momentum

and also further spin angular momentum.

Because,  there  is  the  corresponding  magnetic  moment  associate  with  the  spin  angular

momentum, and with the orbital angel of momentum, and this is the effective g coming from

the combination. And this is neither equal to 2 nor equal to 1, but it depends on the values of j



and l s is always half of course, s for electron is half, so it is half into half plus 1. And this

factor is what is called is a Lande's g factor and this is what governs the energy splitting

between the perturb levels as the result of the magnetic field, which is applied and treated

perturbatively, when it is relatively weak and you can use the j m j quantum numbers.

So, which quantum numbers are the appropriate quantum numbers to be use is the dominant

consideration here, and once you take the write bases you get the right results, but choose the

choices of the bases is the critical factor here. So, this is a very similar expression for just the

way we had the magnetic moment, which is proportional to the angle of momentum you got a

same kind of consideration, but with the different value of g which is given by the Lande's g

factor.

(Refer Slide Time: 08:42)

So,  now  the  spin  orbit  interaction  is  s  plus  l,  so  s  plus  l  gives  you  the  total  angle  of

momentum j which can be either l plus half or l minus half, so you can put in the values of j

the possible values of j which is either l plus half or l minus half, so there are two possibilities

here.  And for  every j  you put  these two alternative  values  and you find that  the energy

correction depends on whether j is l plus half or l minus half, and accordingly the correction

is either 1 plus 1 over 2 l plus 1 or 1 minus 2 l plus 1, I have certainly used s equal to one half

in the getting this expression. So, when j is l plus half, the correction goes as 2 l plus 2 over 2

l plus 1, when j is l minus half the correction goes as 2 l over 2 l plus 1.
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So, this is the resolution of the energy levels and the application of the magnetic field, if you

look at the n p state, this is like the 2 p state in the hydrogen atom if you like, or the 3 p state

in the sodium atom. Or if you take any of the group one elements, the outer electron is the n s

1 and when it gets excited to the n p level. So, these are the levels which are involved in the

sodium atom spectrum, the famous d 1 to d 2 lines of sodium, they come from the transition

to from 3 p 3 half and 3 p 1 half to the 3 s level.

But, now the 3 p 3 half level will get split into these four levels and the 3 p 1 half level get

split into these two levels, so you will have the d 1, d 2 lines split to very many lines, and the

same thing will  happen to all  the alkaline atoms spectrum. So, the rebellion spectrum or

transoms or anything in the first group they will have, they will show this features.
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So, this is the resolution of this spectra, so n p 3 half splits into to these four levels, j is equal

to 3 half, so m j can go from minus 3 half to plus 3 of in steps of , so minus 3 half minus half

1 half and 3 half, so this are the four levels into which the n p 3 half state splits. And the n p 1

half state splits into these two which is corresponding to m j equal to minus half and plus half

and likewise, the n s half levels split into these two corresponding to m j equal to plus half

and m j equal to minus half.

And the d 1 d 2 lines split into 10 lines, so what were originally only 2 lines, now we will

show of s 10 lines, so there are 4 lines coming in from n p 1 half and we are sketching those

line which correspond to the dipole selection roles. So, the line which are possible under the

dipole selection rules, there are 4 lines which come from the n p 1 half, but n p 1 half is no

longer or single level they are two of these. So, two come from the upper level corresponding

to m j equal to half and two come the line number 2 and 4 come from the lower level, which

corresponds to m j equal to minus half.

And likewise the transitions from n p 3 half splits into these 6 lines, and these are the 6 lines

which come from the n p 3 half  levels,  so these are all  the transitions which take place

corresponding to the dipole selection rules. Now, the question is, first of all we have to write

these quantum states for j m j quantum states, in terms of the m l m s bases, so these are the j

m j quantum numbers. So, l is equal to 1 for n p, for all the p orbital’s l is equal to 1, s always

half, j for this state is 3 half and m j for this state is 3 half, so these are the l s j m j quantum



numbers for this upper most level.

For the next level the l s j m j quantum numbers are 1 half 3 half and 1 half, the last quantum

number is the m j quantum number. And this way you can write the j m j quantum numbers

for all of these 4 into 6 into 8 there are 8 levels for which you must identify the quantum

numbers. And these are the l s j m j quantum numbers for the p states and then for the s states,

l is equal to 0 for the s orbital, so l is 0, s is always half and j is always half, because l is 0.

So, j can take only one value which is half and m j can take two values, which is either plus

half for the upper one and minus half for the lower one, so these are the l s j m j quantum

numbers for these eight states.

(Refer Slide Time: 14:26)

And you can write these coupled vectors j m j, in terms of the m l m s bases by looking at the

Clebsch-Gordan coefficients, so here you are coupling l with s, and s we know is half. So, the

appropriate table to be used is the table number 1 from corner is shortly which we have with

us,  it  is  also uploaded on the  course  webpage,  so this  is  the  table  of  correspond of  the

Clebsch-Gordan coefficient that we can use. And using these tables we can write the j m j

quantum numbers, in terms of the uncoupled direct product of uncoupled vectors.
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So, let us take let us illustrate this for one of these, so let us take the case when j is 3 half and

m j is 1 half just to illustrate one of these, and what will these be, so your expand it the

uncoupled bases along with the Clebsch-Gordan coefficients. And here is the sum over m l

going from minus 1 to plus 1, and m s going from minus half to plus half, so how many terms

will we have on the right hand side, 3 into 2 we will have 6 terms.

But, the Clebsch-Gordan coefficient will vanish and less m j is equal to m l plus m s, so out

of the six terms you really do not have to find the Clebsch-Gordan coefficient for all the six

terms. You can find the coefficient only on those cases for which m l plus m s will give you m

j and that means, that there are only two terms which you need to consider and these terms

are those corresponding to m l equal to 0 and ms equal to half or m l equal to 1 and ms equal

to minus half. So, these are the only two terms that you need to consider, because both of

them give you m l plus m s which is equal to half which is the value of m j here. So, now, you

need to find the Clebsch-Gordan coefficients for these two terms only.
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And let us take one of those, so let us take the case when m l is 0 and m s is equal to half, so

for  this  what  is  the  value  of  the  Clebsch-Gordan  coefficient.  And  you have  to  find  the

corresponding Clebsch-Gordan coefficient also for the other case, in which ml is equal to 1

and m s is equal to minus half. So, these are the two coefficients that you want to determine

from the table.

(Refer Slide Time: 17:11)

So, let us take one of these and notice that m s is equal to half, so you can look at the first

column here, this is the first column, since m s is half. And then look at how j is related to j 1



and you find that you have j equal to 3 half this is the value of j, which is 3 half and it is

coming from j 1 plus 1. So, when do you have j equal to j plus half you have it in the first

row, so first row and first column is what you must look at, so this is the matrix element that

you must look at.

And all  you now need to do is  to  plug in the quantum numbers in this  formula,  for the

Clebsch-Gordan coefficients, you can always determine the Clebsch-Gordan coefficient from

first principle using the recursion relations that you have learnt. But, these Clebsch-Gordan

coefficient tables are available in all books and quantum mechanics, there are available in the

internet, they are available as Clebsch-Gordan coefficients, or is n j symbols and so on. So,

you can take it from any source and then plug them in, so this after you plug in these quantum

numbers, so j 1 m and half, so you put 1 half and plus half and you find that this coefficient

terms out to be root 2 over 3.

(Refer Slide Time: 18:39)

Now, you need the other one and in this case and m s is minus half, so you must look at the

second column instead of the first column, but then you continue to have j equal to j 1 plus

half. So, you look at the first row and this is the formula that you must used, so what you get

from this, you get root over 1 over 3 and actually you could a guess that, because the some

others squares must be equal to 1. But, then you would not have got an necessarily the correct

face, so that is why you have to use the this table, otherwise you would not get the right face.

You would get the magnitude root 1 over three from the normalization, but not the phase it



could be either plus root 1 over 3 a minus root 1 over 3. So, normalization cannot be used as

the method of find the coefficient, it should always be used as a check, because if you get this

wrong, the normalization would tell you that is wrong.

(Refer Slide Time: 19:36)

So, these are the two coefficient that we needed one is root 2 over 3 and other is root 1 over 3

and using this coefficients in this expansion, so out of these six terms only two terms will

contribute, these are the two terms. And when you see, so many numbers sometimes you fill

dizzy, and that is when it helps to look at these angle of brackets, because this side as got a

rounded bracket this side has got an angle bracket.

So, you keep the track which was uncouple part and which is the couple part, because that is

part of the reason, when I introduce the Clebsch-Gordan coefficient are the very beginning

are used this notation, not that it is the mandatory most books do not use it, but it is very

useful when you look at expression of this kind. Because, there are, so many number and you

really feel busiest to what is what and which side is what. So, it helps to keep track of which

is the this is the angle of bracket here, now this is the circular bracket and this is the angular

bracket here. So, this is the uncoupled part, so this is the m l m s and that this is j and m j, so

when you are dealing with practical application the notation of this kinds sometimes useful,

which is why I introduce written unit 2.
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So, these are the two terms and this is your expression for this state, but then there are you

can write it in not just the Dirac notation, you can also write it as the Schrodinger notation is

well. Because, what you have for l equal to 1 and m l equal to 0 is the spherical harmonic y l

m, which is the spherical harmonic for l equal to 1 and m l equal to 0. So, likewise this is also

spherical harmonic for l equal to 1 and m l equal to 1 and this is 1 minus of, so this is really

the spin down state and this is s equal to half and m s equal to plus half, so this is the spin up

state.

So, the first term is a product of the spin up state of which I have written as alpha, the second

term  involves  the  spin  downstate  which  is  beta.  And  then  you  have  got  the  spherical

harmonics y 1 0, coming from this 1 and 0 and y 1 1, this is l equal to 1 and m l equal to 1.

So, you can write this is a linear super position, this of course the coordinate representation of

this vector. But, you can go from the Dirac notation to the de Broglie Schrodinger notation

back and force, just by taking the coordinate presentation of the vector, so this is the linear

super position of the j m j states.
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So, let us write this for all the eight states that we are concerned, we found that the 2 p 3 half

split into 4 straights, 2 p 1 half into 2 and 2 s one half also into 2, so there are total of eight

states for we should write this expression. Four of these come from our 2 p 3 half and by

getting the coefficients you can write this directly, there is only one term over her, there is

only one term which can contribute to m j equal to 3 half there is none other, so this is unique

this is, therefore this is got a coefficient of 1.

And then you have m j equal to 3 half, 1 half minus, half and minus 3 half, so m j equal to

half will give you this, m j equal to minus half will you give you a similar linear combination.

But, notice that this is the superposition of alpha y 1 and this is beta y 1 plus alpha y 1 minus

once, so this is the different super position. And how to get it, illustrate for it one of these and

you can use the same procedure use the Clebsch-Gordan coefficient and get all the states

written explicitly. So, m j equal to minus 3 of again is a unique contributor to this which is

got a coefficient of unity which is beta y 1 minus 1.
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What about the 2 p 1 half states, this is got two states, one with m j equal to minus half and

the other with m j equal to plus half, so this is what you get for m j equal to plus half and then

you get another term for m j equal to minus half, which is the different combination. Mind

you have got a minus sign here and minus sign here, so the phase of the coefficients is of

important, and this is the phase that you would miss out, if you did not use the Clebsch-

Gordan coefficient tables correctly. So, these are two states for 2 p 1 half.

(Refer Slide Time: 24:36)

And likewise, there are two states for the 2 s 1 half, so that gives us all the eight states.
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And now you can look at the transitions between various states, these are the tent transitions

which take place between these eight states as we have seen, according to the dipole selection

role. And as a spectroscopes as an experimentalist, when you carry out your observations,

you would be interested in looking at the intensity of the this lines. If there is the transitions

first of all there will be a certain intensity that you will measure, if there is no transition the

corresponding intensity would vanish.

And you will need to calibrate your spectra meters, you will be measuring intensities on a

certain relatives scale when you do the calibration and so on. And you will be interested in

comparing the intensities of transitions from one initial states to a final state, and that is the

effected by the transition matrix operator, the transition operator here is omega. So, this is just

the general expression for an interaction omega which is responsible for transition from i to f,

and what this matrix elements gives you is the probability amplitude, that this transition will

take place. It is moldiest square will give you the probability and when you multiplied by

appropriate contents and so on, you will get the line intensities.

So, the information about the intensity of the spectrum is contained in this matrix element,

and we know that this matrix element by the Wigner-Eckart theorem can be factor into a

physical part, which is the reduce matrix element and the geometric part, which includes the

Clebsch-Gordan  coefficients.  So,  to  get  the  transition  intensities,  if  you  just  look  at  the

Wigner-Eckart  theorem,  it  would  seen  that  you  will  need  not  only  the  Clebsch-Gordan



coefficient, but also the reduce matrix elements.

Because, this matrix element has got these two factors and on the phase of it would appears,

as if you will need both the reduce part as well, as the geometrical part. Now, this as a turns

out is not necessary, if you are interested in comparing the line intensities which is what the

common of interest of it. Because, anyway there is a certain calibration which is a involved,

there  is  the  certain  normalization  of  the  intensities,  these  intensities  are  normalize  with

respect to one of them and then you really measure the ratios of intensities.

So, we will now studies this question that do we really need the reduce matrix elements, and

in some cases in spectroscopy in a good number of cases you really do not. Because, when

you take the ratios they get canceled out, and that is what we are going to the discuss now.

(Refer Slide Time: 27:38)

Now, so let us take two of these spectrum lines, so will take just to illustrate this argument

will take line number 5, which is from this level to this level. And take line number 10 which

is from this level, which is 1 1 1 half 3 half 3 half to where is it go, it goes all the way here

which is the lowest level which is 0 half 1 half minus half. So, let us take these two cases, the

first one is line number 5 which is the transition from 1 half 3 half minus half to 0 half half

minus half state.

So, these are these are the expression in terms of the uncoupled bases, this is the matrix

element that you want to study, this is the transition operator whatever it is, we know that



these transition in the dipole approximation are induced by an operator of rank 1, that is all

you really need here. You do not even need it is explicate form all, you need is that it is the

dipole it is the vector operator of rank 1, it does not matter if you looking at the length form

of the matrix element or the momentum form the matrix elements it does not matter.

Because, that only thing that is the importance is the rank of the operator, so this rank of the

operator is 1, so you are going to put a equal to 1 in your Clebsch-Gordan coefficient. And

this is one of the transitions that we will study, and we will compare it is intensity with the

intensity of line number 10, which is the transition from 3 half 1 half state to 1 half 1 half, so

let  us  see  how this  works  out.  So,  this  transition  matrix  element  is  represented  by  this

operator, which typically is the dipole operator, operator of rank 1 and this is the operator

which  is  sandwich  between  the  initial  state  and  the  final  state,  and  you  got  a  similar

expression for line number 10.

(Refer Slide Time: 29:55)

So, let us first take the line number 5 and this is the matrix element that you want to study,

now this is the matrix element of in irreducible tens or operator of rank 1. You can resolve it

using the Wigner-Eckart theorem as the product of the physical part,  which is the reduce

matrix element and we have define it with the root 2 j plus in the denominator, that you can

define it differently also it does not matter. So, this is the reduce matrix elements part and

geometrical part, which is the Clebsch-Gordan coefficient.

And this Clebsch-Gordan coefficient, what we know about the Clebsch-Gordan coefficient,



what about quantum numbers we know we should plug them in. So, we know j 1 which is 3

half we know j 2, which is the rank of the operator which is k we know that is equal to 1. We

know that m 1 is equal to minus half in the state, this is m 1 this one and we know these

quantum numbers what we do not know is m 2, so since we know that we are coupling angle

momentum j 1 equal to 3 half with 1, which is equal to 1 j 2 comes from rank of the tenser

operator  which  is  responsible  for  transition,  you  will  use  table  number  2  from  corner

Schrodinger.

So, this condition however, must be satisfied that m n plus m 2 most be equal 2 m, so this

tells us that q must be equal to m 2, because both of these are minus half, so m 2 will have to

be 0. So, q must be 0 and you can plug in q equal to 0 over here, so this comes from the

selection rule which makes a Clebsch-Gordan coefficient non zero, so you use everything that

you have learned and put it all together.

(Refer Slide Time: 32:12)

So, you have this table, table two for j 2 equal to 1 and we have got all the necessary quantum

numbers, we have m 2 equal to 0, so m 2 equal to 0 means that you should use this middle

column here. And what else do we have, now we need the relation between j and j 1 and what

is that this is the third row that you must use, because j is equal to j 1minus 1, j 1 is 3 by 2

and j is 1 half. So, 3 half minus 1 is equal to half, so this j this half is equal to 3 half minus 1,

so you must use a third row and this is the coefficient that you need. So, now, plug in the

quantum  numbers  j  1  m  and  so  on,  that  will  give  you  value  of  the  Clebsch-Gordan



coefficient, it comes with an appropriate sign And if you just plug in the numbers in turns out

to be minus root 1 over 3.

(Refer Slide Time: 33:12)

So, this is the coefficient you needed to write the geometrical part of line number 5, this is the

physical part, this is the reduce matrix elements. Times the geometrical part which is root of 1

over 3 with the minus sign, and we will now ask what is the corresponding expression for line

number 10.

(Refer Slide Time: 33:35)

And for line number 10, this is the transition for line number 10, from 1 half 3 half of to 0



half half and half, again we know that k is equal to 1, so you break it into the physical part

and the geometrical part put in the quantum numbers, put k equal to 1 over here for find that,

in this case also the m 2 quantum number must be 0. For the same reason that in the previous

case you had both m 1 and m equal to minus half, in this case both m 1 and m are equal to

plus half. So, there is the similar, but it different reason, which is responsible for the fact that

m must be 0 and using the table for j 2 equal to 1.

(Refer Slide Time: 34:26)

Since, m 2 is equal to 0 you use the middle column, which is the column for m 2 equal to 0

and then you will see this difference this is j equal to half, this is j 1 equal to 3 half the

difference is 1, so it is j 1 minus 1, which will you give you the value of j. So, again you must

look at the third row and you look at this expression and plug in the quantum numbers, again

it turns out to be root 1 over 3 with a minus sign, but for a different reason. In the previous

case you have two factors in the numerator and the under root, and the first factor was 3 half

plus half and the second factor was the 3 half minus half; in this case these two position are

swapped, but the numerical value turns out to be the same.
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So, this is the matrix elements, which you have factored into the reduce made part and the

geometrical part, which is minus of 1 over root 3, for line number 5 we had already found out

what the factorization was. And here also you had minus of root 1 over 3, so what is our

conclusion, when we take the modeless square and take the ratios the root 2 j plus 1 would

cancel that does not surprise us. Because, they could have been observed in the definition of

the reduce matrix element any way, but then the reduce matrix elements themselves cancel, is

the same reduce matrix element which appears in more.

So, the ratio is then given only by the ratio of the Clebsch-Gordan coefficient, so without

looking at the explicit form of the reduce matrix elements, that we have discussed the explicit

form  of  the  reduce  matrix  elements  in  some  cases.  For  example,  when  we  study

photoionization, we actually determiner those in integrals, we plugged in the dipole operator,

found what is the transitions probability from the initial state to the final state. We put in the

radial functions for the hydrogen atom, so all of that had to be explicitly done, in this case we

have not have to do it.

So, without even looking at the reduce matrix elements by taking advantage of the Wigner-

Eckart theorem, we find that those terms which contribute to the reduce matrix elements, they

cancel each other. And then all  you need to consider at  the ratios of the Clebsch-Gordan

coefficient this particular case, they happen to be equal, so we can conclude easily that the

spectroscopes  going  to  sign,  see  these  lines  to  be  equaling  tense.  So,  without  actually



calculating the reduce matrix element which otherwise, is certainly required, when you look

at this matrix element.

(Refer Slide Time: 37:28)

Because, this matrix element is given by a term like this, there is the transition with this

operator is responsible for which effects the transition from an initial state to final state. And

if you were to determine this  explicitly, you will  certainly have to evaluate all  the space

integrals,  but  by  exploiting  the  Wigner-Eckart  theorem,  we  could  factorize  this  matrix

element into two part. The first part is the reduce matrix element, second is the geometrical

part and then we find that when you are looking at comparison between the intensities of

various  lines,  which  is  the  most  common  situation  that  experimental  concern  with,  the

spectroscopes are concern with.

Because,  anyway  they  are  going  to  do  some  standardization  with  respect  to  some

normalization, so this normalization can also be observed in the normalization, when you do

the calibration of the intensities. So, this is the power of Wigner-Eckart theorem which is an

extremely  powerful  theorem  in  all  branches  are  spectroscopy,  whether  it  is  atomic

spectroscopy, molecular spectroscopy, nuclear spectroscopy, no matter what when you look at

transitions of condense matter form one state to any other.

The Wigner-Eckart theorem is an extremely powerful one, and it gives you a excellent very

powerful of handle on estimating the intensities of the transitions. But, then of course, there is

more to follow that weak, started out with this non realities Schrodinger equation we had the l



and m quantum numbers, then we learnt that the speed of light is not infinite it is constant.

And we must accommodate all consequences of that, and what comes out of that is the Dirac

equation, what comes out of the Dirac equation is the electron spin.

So, the angular momentum is then no longer just the orbital angular momentum, but l plus s,

which gives the total quantum number total angular momentum which is j, but even that is

not the ultimate angular momentum of atomic system. Because, a nuclease is got a spin, the

nuclease contains elements of articles the protons, neutrons, and they have their own internal

spin properties they are fermions, protons and neutrons. And depending on the number of

neutrons, on the number of protons the atom may have a net angular momentum, which is

either integral or half integral and then you have either boss atoms or fermi atoms.

So, when you consider the nuclear spin, then the nuclear spin I will couple to the net angular

momentum  J  and  you  will  get  another  angular  momentum,  which  is  the  total  angular

momentum inclusive of I and J. And this is a relatively weak interaction as one would expect,

because the nucleus spin will involved not the bore magnetron, but the nuclear magnetron.

You will remember, that the bore magnetron had the mass and the denominator, now you will

have the mass of the nuclease in the denominator, and the mass of the nuclease is much larger

than the mass of the electron.

So, that makes the nuclear magnetron much smaller and as a result of that, this is a relatively

weak interaction nevertheless it is an important one. And this is what gives rise to the hyper

fine structure coming from this interaction I dot J do just like to hand, the L dot S interaction,

you now have the I dot J interaction which gives you the high prefine structure. And then this

high  prefine  structure,  which  lead  to  further  spreading  of  this  Zeeman  levels,  and  that

splitting will be very small very tiny, but that is very nice.

Because, you can have very nice control when you look at those transitions, and some of

those transition in the high prefine spectra of alkaline atoms are very common transitions.

That you can control in laser cooling and other exponents and atomics physics like bioscience

and condensation and so on, so today’s class we conclude over here.


