
Select/Special Topics in Atomic Physics
Prof. P.C. Deshmukh

Department Of Physics
Indian Institute of Technology, Madras

Lecture - 37
Stark - Zeeman Spectroscopy

Well, let us continue our discussion on the Zeeman effect, and the Zeeman effect is actually

Zeeman spectroscopy is a whole family of experimental situations. And then there are you

know specific names that acts to various special  features of the spectroscopic conditions,

which are different in different situations. So, then it is called as a normal Zeeman effect or

anomalous Zeeman effect and the paschen back effect.

(Refer Slide Time: 00:49)

So, essentially we reconciled with the idea that you have got the unperturbed Hamiltonian,

which is the kinetic energy Hamiltonian and the potential energy in the field of the nucleus.

And this is to be treated as the unperturbed Hamiltonian, the perturbation comes from an

internal  interaction,  which  is  ignored  in  the  non  relativistic  Hamiltonian.  The  internal

interaction being the spin orbit interactions because spin is a intrinsic angular momentum,

which the electron has and this is then to be included as a perturbation.

And then there is  an external  field,  an external  magnetic  field to  which the atom would

respond as if it had a net magnetic moment. And this magnetic moment would come from

two  sources,  one  is  the  orbital  angular  momentum,  and  the  other  is  the  spin  angular



momentum. So, depending on the relative strengths of these two perturbations, there is a

perturbation source mu dot B and the other is the spin orbit interaction.

So, if the magnetic field is strong then; obviously, the mu dot B would be stronger than the s

dot l the spin orbit interaction. And this is what is regarded as a or it is called as a normal

Zeeman effect, and this is just like a proper noun, so it is like anybody's name is to why he is

has that name is you know, it is for historical reasons then for nothing else. Not because it is

normal and other phenomena are unusual in some sense, then you may have a situation in

which the magnetic field is of the same order, in the sense that it generally an interaction,

which is of the same order as the spin orbit interaction.

And then you need to consider both of these together, and then you may have a situation in

which the spin orbit interaction is really significant, this is what will happen. If the applied

external magnetic field is really extremely weak, and this is what is called as the weak field

effect, and this is sometimes called as the anomalous Zeeman effect. And you will, you know

as the discussion progresses you will see why one is called the first case is called the normal

and the last case as anomalous.

So, that will become quite clear, so let this begin with the strong field consideration, in which

the interaction due to the magnetic dipole moment of the atom. Generates an interaction mu

dot B, which is much larger than those spin orbit interaction, so this requires; obviously, a

strong magnetic field. But, then remember that the magnetic field is not considered to be, so

strong that b square terms become important, so we retain our consideration within the linear

phenomena, phenomena which are linear in the magnetic field.

So, it is strong, but not, so strong as to consider the b square terms, now the unperturbed

Eigen functions in which you must take the matrix element of the perturbation Hamiltonian,

this  is  the  cardinal  rule  that  are talks  about  which  we  have  referred  to  right.  So,  these

unperturbed functions in this situation can be considered to be n, l, m l and m s because if the

magnetic field who was weak and the spin orbit interaction was strong, then j would be a

good quantum number j and m j would be good quantum numbers right and not m l and m s.

So, the strength of the field determines what are the right quantum numbers to be used, so in

this case you will use the m l, m s quantum numbers as generating the Eigen basis of the

unperturbed Hamiltonian.  This is  not something you will  be able  to do if  you are really

dealing with very weak fields, in which the spin orbit interaction is strong. So, your good



quantum numbers in this case are n, l, m l and m s and the perturbation to be determined is

then  due  to  this  magnetic  field,  the  first  thing  you  have  to  do  is  to  get  the  interaction

Hamiltonian, which is the mu dot b interaction.

And you determine  the correction  which  is  the  first  order  perturbation  correction in  this

unperturbed states, and you typically you could in this certain sense ignore the spin. But, you

do not really have to ignore the spin because most of the situations that you come across the

common  phenomena  that  you  meet,  do  not  require  that  consideration  explicitly  as  will

become very clear now. So, this is the interaction now and this mu has got two sources, one is

the  orbital  angular  momentum this  other  is  the  spin  remember  that  the  g for  the  orbital

angular momentum is 1 and that for the electron spin is 2.

So, you have got the bore magnet on keep track of the signs there are two minus signs over

here because mu is minus mu B. And this the first minus sign is coming from here, which is

the interaction Hamiltonian which is minus mu dot B, so there are two minus signs over there

and they cancel each other, and this is the correction that you have really have to determine.

So, this would be the consideration for the normal Zeeman effect, and this is what you choose

to do because you work in the domain of strong magnetic fields not, so strong as to require

the B square consideration, but strong enough to ignore the spin orbit interaction.
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So, this is what we have got now if you consider B to be along the z axis, then l dot s and B

dot s will give you l z and s z operators right and m l and m s are their Eigen values. Because,



m l and m s are  simultaneous Eigen states  of  l  z and s z,  these two sources  of  angular

momentum are completely independent of each other, and the Eigen value of this B dot l plus

2 s will be m l plus twice m s because of this consideration I take B to B along the z axis.

So, this is your energy correction and m s of course, can take two values which is either plus

1 or minus 1. Now, this is the correction now and this correction depends on the sum of m l

plus twice m s, and it does not depend individually on the value of m l and m s. So, various

combinations of m l and m s which will give you the same value of m l plus twice m s,

because you can get to the same sum for different values of the individual components which

go into the sum. So, you really have to consider the sum m l plus twice m s rather than the

individual values m l and m s.

(Refer Slide Time: 08:15)

Now, let us take an example that if you consider the 2 p the Zeeman effect with the for the 2 p

electrons, then for the 2 p l is equal to 1, m l can take 3 values minus 1 0 and 1 spin of course,

is half. So, m s can take two values plus half and minus half, and m l equal to 1 and m s equal

to minus half will give you m l plus twice m s equal to 0, so it will not lead to any change in

the energy. Because, the energy depends on this sum and this sum vanishes right.

Likewise,  if  you  have  m l  equal  to  minus  1  and  m  s  equal  to  plus  half  and  both  the

possibilities are contained over here. So, if you have this possibility then again you will have

m l plus twice m s equal to 0, so in these two cases you do not have any correction for both of

these combinations. So, in this case the magnetic field will not change the energy, and the



degeneracy with respect to this quantum numbers will not be removed. So, what we are going

to do is to first construct a table of various possible values of m l and possible values of m s,

this should be m s. And then we will construct the sum m l plus twice m s, and then see what

energy corrections come out of this consideration.

(Refer Slide Time: 09:49)

So, this is our table which is m l, m s and m l plus twice m s, so m l can take values 1 0 minus

1 0 and so on and m s can take values either plus half. So, the first 3 levels correspond to m s

equal to plus half, and the lower 3 levels correspond to m s equal to minus half, but these 2

levels are degenerate. So, although you see 5 levels over here, you are looking at 6 states the

3 values of m l and the 2 values of m s will give you 3 into 2 6 possible states, out of which

two remain degenerate right.

The correspond to this combination m l equal 1 and m s equal to minus half and m l equal to

minus 1 and m s equal to plus half. So, these two combinations they remain degenerate, and

their energy is not changed because the delta e for that is 0 m l plus twice m s is 0. And the

remaining one you do have an energy, which is different from what you had for the original

unperturbed Eigen state, which is n p and you see that the spacing is proportional to the

spacing between these numbers, and this spacing difference between these numbers is just

unity, so all of there will be equally space levels.

So, you have equal spacing’s because of this reason and the 6 degenerate levels split into 5

levels, these two remain degenerate and their energy also does not change at all. So, now, let



us consider only those levels for m s equal to plus half, this is just for our discussion it is not

that we are going to ignore m s equal to minus half. But, we will find that when we consider

m s equal to minus half we get the same result.

So, to begin with let us take a subset of these levels corresponding to m s equal to plus half.

So, these are these 3 levels you could also consider the other set corresponding to m s equal

to minus half, which at these three levels. So, you take either the top 3 or the lower 3 levels,

and then we will see what kind of you know splitting of the spectra takes place as a result of

this.

(Refer Slide Time: 12:21)

So, let us consider these states for l equal to 2 you have this energy, and for l equal to 1 for

principal quantum number n you have this. So, typically you would have a d to p transition, a

d to p dipole transition in the hydrogenic atom, if you keep this in a magnetic field the mu dot

b interaction will split the n d levels into 5 levels. These are the ones corresponding to m l

equal to plus 2 plus 1 0 minus 1 and minus 2, likewise the n p state will split into 3 levels 1 0

and minus 1 for three different values of m l.

And then you can have transitions from the d levels to the p level right, but now the single

line that would have resulted in the unperturbed hydrogen atom splits into many. And you can

see that there are a total of 9 transitions subject to these selection rules because the dipole

interaction is not going to change the spin, so delta m s is 0. And we have considered only the

m s equal to plus half states in this right.



Because, for the dipole transition the spin is not going to be changed, there is nothing in the

dipole  interaction  which  will  influence  the  smith.  And  then  you  have  transitions

corresponding to delta m equal to either 0 or plus or minus 1, so if it is equal to 0 these are

called as pi lines, and if delta m is equal to either plus 1 or minus 1 these are called as sigma

lines.  So,  the  single  line  subject  to  these  transitions  selection  rules,  splits  into  these  9

transitions.

However, out of these 9 transitions there are only 3 frequencies which result because if you

look at the differences, the difference between this and this remains the same. If because they

are  all  shifting  by an  equal  amount,  which  is  what  we just  discussed in  when we were

discussing the previous slide. So, there are only 3 different frequencies which result from

these  9  lines,  and  these  three  frequencies  are  called  as  the  Lorentz  triplet,  these  where

observed in the Zeeman effect and you have these Lorentz triplet.

And you could now consider the m s equal to minus half and do exactly the same analysis,

once again you will find that the d to p for m s equal to minus half to m s equal to minus half,

with  delta  m s  equal  to  0 that  single transition  will  again split  into  9 levels.  But,  again

corresponding  to  this  3  different  frequencies,  which  will  be  exactly  the  same  as  these

frequencies. So, it really does not give you any new frequency, you get a net sum of a triplet,

even after the consideration of m s equal to plus half and m s equal to minus half.

So, it is not that you have really ignored the spin, so even if you do consider the spin, you get

the same set of levels and this is just what you would get, if you were to ignore the spin. This

is precisely what you would get, if you were not even aware of spin and in the early days of

quantum mechanics when spin was not known, this is what was seen in the d to p spectrum

and this was expected to be what should have been seen, so it was called as a normal Zeeman

effect. And it results not because spin has no role to play at all, but because it does not have

any consequence on the appearance of the spectrum, which appears as a triplet. Now, this is

the case for d to p does not matter whether it is d to p or also p to s.
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So, let us consider the other case, so you have seen the Lorentz triplet in the d to p transitions,

but if you consider the p to s transitions. If you consider the p to s transitions, then again you

would have 6 lines resulting from this, but these 6 lines again correspond only to 3 different

frequencies.  So,  you  can  do  exactly  the  same  analysis  and  you  will  find  that  only  3

frequencies appear, and it is for this reason that this high field or strong field Zeeman effect is

called as the normal Zeeman effect, because most of the atomic transitions in the early days

of spectroscopy were studied between the d and p states or p and s states. And in both cases

you saw a triplet mainly the Lorentz triplet, in both cases it is not that the electron spin was

hidden, but it did not have any major consequence on these sets of transitions, which was

studied in the early days of spectroscopy. So, this is called as a normal Zeeman effect.
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So, now we consider slightly stronger fields, so that v dot mu term is more important than the

spin orbit interaction. But, it is not, so overwhelmingly strong that the spin orbit interaction is

to be completely ignored at all, so this is what is called as the paschen back effect. And in this

case again m l, m s are good quantum numbers, and the reason these are considered as m l

these are considered as good quantum numbers because if the s dot l interaction was strong if

this right hand side of this inequality was stronger than the left.

Then j m j would be good quantum numbers and not m l, m s, so because the right side of this

inequality is still the weaker one. So, if this is still the less important term, so we can continue

to use m l and m s as the good quantum numbers, and in this basis we can find what the

corrections are.
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So, what are the corrections to be studied, now the correction is due to the 2 perturbations,

now we are not going to ignore s dot l interaction altogether. It is not, so strong as to make m

l and m s ineffective making you require make to use j m j. So, you can continue to use m l,

m s quantum numbers, but you must take corrections due to both of these terms in this basis,

and there are two contributors to the paschen back effect. And this is the superscript here

stands for the paschen back Zeeman effect because it belongs to the family of Zeeman effect.

But, this is a special consideration in which the two perturbations are more or less equally

important,  never  the less the magnetic  dipole term is  more important  than the spin orbit

interaction. So, the situation which is under consideration for the paschen back effect, and

this is the correction due to the magnetic dipole terms, and this is the correction for the due to

the spin orbit interaction. Wherever l is not equal to 0 for l equal to 0 of course, the spin orbit

interaction vanishes. So, l is not 0 in this case and these are the two corrections that we must

now estimate and get the correction to the unperturbed energy.
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So, let us proceed to get these let us first get the mu dot B correction this is due to the

magnetic  dipole  moment.  And  the  magnetic  dipole  moment  is  because  of  the  angular

momentum coming from orbital angular momentum, as well as the spin angular momentum.

So, the two sources and the correction therefore, has this l plus twice s over h cross dot B, and

if you consider again B to B along the z axis as we discussed earlier you will get m l plus

twice m s this 2 is coming from the g factor for the electron which is 2. And this is m l plus

twice m s correction, so you of course, get an m l times h cross, so there is an h cross which

will cancel this h cross in the denominator, and this is the correction due to the magnetic

dipole term to the paschen back effect.
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Now, what about the spin orbit interaction, now this is the correction that we have to obtain.

So, the spin orbit interaction we know from the wholly  with hyson transformation of the

direct Hamiltonian, it is got this explicit form which is xi r times and l dot s, and l dot s is l x

s x plus l y s y plus l z s z. And since, you are taking the matrix element in m l m s states l x

and l y or s x and s y can be written in terms of the ladder operators.

And if you did that you will find that from orthogonality of the m l, m s states they will not

contribute  anything to  the  energy correction.  The only  term that  will  contribute  is  the  z

component which is l z and s z, so it is only the z component which needs to be considered,

these two components will not contribute anything to the energy corrections and now you

have to get this l z s z.
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So, let us proceed to do that, so l z s z these two this is a product of this is a direct product of

kits right. So, it is a direct product of l, m l, s, m s, so you will get m l h cross coming from

the operation of l z, and m s h cross coming from this, so now, you have got this correction

for the spin orbit interaction. You now have to evaluate these space integrals because i r has

got this explicit form, and this space integral has to be evaluated to get the correction.

Now, this can be easily done because you know the radial functions and you also know that

the potential goes has Z e over r or minus Z e over r. So, you have to take it is derivative with

respect to r, so you get 1 over r square coming from this derivative, and there is a 1 over r

over here. So, you need the radial integral of 1 over r cube in hydrogenic unperturbed wave

functions radial functions, so these are the radial integrals which can be easily determined,

since all of these radial functions are known.
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And, if you evaluate these radial integrals this is like getting the average value of 1 over r

cube, and then you have got this m l and m s coming from here. So, if you take the average

value of 1 over r cube you get this term over here, which goes as 1 over n cube one over the

bohr radius cube. And then we have seen these terms earlier in our consideration of radial

functions of the hydrogen atom, so this is the correction to the paschen back effect, coming

from the spin orbit interaction.

So, let us rewrite this because it is nice to extract the fine structure constant out of this, so put

in the explicit value of a 0 which is h cross square over m e square. And this substitution

gives you this h cross square over m e square to the power 3 over here. So, we are just

rewriting this expression with explicit expression for the bohr radius.
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And then we extract the fine structure constant because you have got e square over h cross c

you have got e to the power 6 here, e to the square here. So, you have got a total of 8 powers

of e, so there are 4 powers of e here and 4 over here, but by rewriting these terms in this

fashion you can write this as z alpha square. So, that is the advantage in you know grouping

these terms in this form.

So, again you can get the bohr energy expression out of it, and then you find that the paschen

back correction goes as z alpha square, then it is proportional to the energy do not forget the

minus sign over here because E n is minus of this right. So, you have got an E n over here,

and then you have got the l dependence here, you also have the m l and m s. And essentially

this term together depends on both n as well as l.

So, in a simple way it is in a compact manner written as lambda, with a subscript n and l

because  it  will  depend  specifically  on  different  values  of  n  and  l.  And  then  it  will  be

proportional to do the product not to individual values, but to the product of m l and m s;

obviously, it will be 0 if either m l if m l is 0 right m s of course, is either half or minus half.

So,  this  is  a  perturbation  energy  correction,  and  notice  that  this  depends  on  l  and  the

degeneracy with respect to the l quantum number is removed in the paschen back effect.
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So, this is our consideration of both the terms, so now, you combine the two you have got two

contributions, one is this contribution the magnetic dipole contribution, the other is the spin

orbit contribution. The magnetic dipole contribution goes as m l plus twice m s, and the spin

orbit contribution goes as lambda times m l into m s. So, now, you must add the two to get

the correction, and this is where the fun begins because it is not trivial. So, you have to look

at these two terms this is m l plus twice m s this goes as lambda times m l and m s.

(Refer Slide Time: 28:21)



So, if you look at these two energies if you have an excited state n prime, and a lower state n.

Then you can  have  different  transitions  from n  prime to  n,  coming from these  different

combinations, so you will have an excited state corresponding to n prime, and a lower state

corresponding to n. And you can have all  kinds of different transitions because one term

depends on the sum of m l and m s, the other term depends on the product of m l and m s

right.

And it is the same over here for the lower state as well, so you can have many, many different

kinds of frequencies coming out of this. And if you look at transitions corresponding to the

dipole selection rules that delta m equal to 0, and delta m equal to either 0 or plus or minus 1.

Then  these  are  the  possible  transitions  that  you  can  see,  and  they  will  result  in  a

corresponding frequency shift, which is delta E over h cross and all of these are observed in

the paschen back effect.

(Refer Slide Time: 29:34)

Now, comes an interesting situation that you have a weak field, then once you have a weak

field this  term the spin orbit  interaction is  going to dominate.  So,  because the spin orbit

interaction dominates the unperturbed Eigen functions must be considered to be Eigen states

of j square and j z and not of l z and s z. So, now, the quantum numbers you must use for the

unperturbed states  are l  s,  j,  m j  and not  l,  s,  m l,  m s it  is  because now the spin orbit

interaction is the dominant interaction, the magnetic field is weak.



And  therefore,  the  dominant  interaction  is  the  spin  orbit  interaction  the  good  quantum

numbers will be Eigen states of j square and j z, and not l square not of l z and s z. So, this is

what is called as anomalous Zeeman effect it is, in fact a rather common one and in some

sense more important. But, only for extrardical reason it is called as anomalous because when

it was seen in the earlier times it could not be interpreted when spin was not known.

So, it was only after uhlenbeck and goudsmit inserted spin in their discussion, and they got

lucky because they had inserted it  not on the basis  of any physical  understanding of the

phenomenon. But, out of what turned out to be a good guess and later on it was rationalized

in the Dirac theory because it is essentially a relativistic phenomenal.

(Refer Slide Time: 31:28)

So, now, you are good quantum numbers are j m, and these you can express in terms of the m

l,  m  s  spaces  by  expanding  j  m  in  the  uncoupled  basis  of  l  and  s,  and  these  are  the

corresponding clebsch gordan coefficients. So, these are the Eigen functions of l square s

square j square and j z, and this is the interaction Hamiltonian whose matrix element must be

determined the bohr magneton has got both of these components. So, with the 2 minus signs

you have to keep track of the term of both the minus signs.

And now you consider B to B along the z axis, so out of the l dot B term beta and s dot B

term you need to consider only the l z and s z right. But, if you put in s z and l z, you are not

able to operate on an Eigen state of l of l z and s z right, so m l and m s are not good quantum



numbers. So, this is really the tricky part because m l and m s are not good quantum numbers

in this case.

(Refer Slide Time: 33:08)

So, this is really the tricky part, but it can be handled using special techniques including the

Wigner eckart theorem and some other, you know aspects of the angular momentum algebra

which we will discuss now. So, this is what we have got, we have to determine this correction

due to the term l plus 2 s l plus 2 s is the same as j plus s because l plus s is j. So, one of the s

can be observed in j, so this interaction l plus 2 s is effectively j plus s and you therefore,

have to consider the matrix elements of this operator, which is the z component of j plus s.

But, in Eigen states and these j and m j is an Eigen state of j z no problem there, but this is

not an Eigen state of s z. So, for the first term j z you can operate by j z on this, and you will

get m j times h cross, but you do not get an Eigen value equation with s z because this is not

an Eigen state of s z. So, from the first one from j z you get m j h cross together with this h

cross in the denominator that h cross is cancelled, and the first term corresponding to this

contributes this correction to the energy, this second term we have to figure out how to handle

that.

So, this is coming from the j term and the net correction is now due to two contributors, one

which is based on j, and the other which is based on s and now our question is how do we

find this matrix element. So, that is the question that we must address, and it is by no means a

straightforward one, so there are two alternative ways to get this  one uses certain vector



identities, and the other method uses the Wigner eckart theorem. And we will discuss both of

these, because it is good to learn these techniques.

And  you  remember  here  that  you  need  the  matrix  element  in  j,  m  j  state  of  a  certain

component of a vector operator, we do know that the angular momentum is a vector operator.

So, our question onto how do I  get matrix element in  j,  m j  state of an arbitrary vector

operator, if you can get it for an arbitrary vector operator we can use that for the angular

momentum s, which is also a vector operator.

(Refer Slide Time: 36:13)

And now, you will remember that in an earlier unit and believe in unit 2, we defined what is

the criterion that must be employed for an operator to be for a vector to be a vector operator.

And  the  criteria  that  we  discussed  were  in  terms  of  the  commutation  relations  of  the

components of this vector with the angular momentum components, so these commutation

rules are equivalently how they transform under rotations, how the components transform

under the rotations.

And whether you study this response to rotation or study the commutation algebra, the both

give you essentially the same results they are completely equivalent as we have discussed in

unit 2. So, this is the criterion that must be employed to recognize a vector to be a vector

operator in quantum mechanics, and since we are dealing with a vector operator, we know

that these identities are satisfied. And these lead to two additional identities, which come

directly as a consequence of these commutation rules.



So, this is a matter of detail you have to work out a little bit of algebra, but if you construct

the cross product J cross V and add to it V cross J. And uses these commutation rules nothing

else, you will get that the right hand side is twice i h cross V you already can see that a V is J

that is what you get right. So, you have this identity you have likewise another identity which

comes from the same consideration, which is the second identity over here.
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And one of the techniques that we are going to use is based on the second identity, which is

that this commutator is equal to what is on the right hand side. And this is an identity it holds

good for any vector operator V it does not matter what it is, the only requirement is that it

must be a vector operator. So, you checkout if it is a vector operator and in our consideration,

we are certainly interested in the matrix elements of the components of the spin angular

momentum, which we do know is a vector operator, so we will be able to use this identity.

So, you now take the matrix element of both sides the left side as well as the right hand side,

in angular momentum states corresponding to the coupled basis which is l s j m j right. So,

because this is an identity the matrix element of the left hand side is equal to the matrix

element of the right hand side, and now this matrix element of the left hand side, you can

evaluate explicitly using angular momentum algebra. So, using angular momentum algebra if

you evaluate the matrix element of the left hand side explicitly that is again a matter of doing

little bit of algebra.



But, you find that the matrix element of left hand side vanishes, it does not mean that the left

hand side of this identity is 0 it is not. It is only the matrix element in this particular case,

which vanishes, which also means that the matrix element of the operator on the right side

also vanishes. So, you can now use that, so that the matrix element of this part minus the

matrix element of this part vanishes, which means that the matrix element of the first term is

equal to the matrix element of the second term, there is a factor 2 here and a factor 4 here.

So, if you divide both sides you get this matrix element equal to twice of this, and essentially

what you have is using these identities from the left hand side you have a J square operating

on this right. So, what happens when J square operates on this, j m j is an Eigen state of J

square, the Eigen value is h cross square j into j plus 1. So, that will come out and you will be

left with the matrix element of V alone, likewise over here this J square can operate on the

left and again you get h cross square into j into j plus 1.

So, you get h cross square j into j plus 1 is the common factor and you have to obtain the

matrix element of this V and this V. So, twice of V and then there is a factor of 2 on the right

hand side, so those will cancel each other, and on the left side you get the matrix element of

V on the right side you get the matrix element of this scalar operator V dot J and J. And now

you have J operating on m j that is good because we know how the m j Eigen states respond

to the J operator.

So, this is a useful thing and this is what we need with V identified as s you are actually

interested in  only the z'th component.  So,  you can extract that  corresponding component

which is of interest, you can also get this result from the Wigner eckart theorem, and this is

the result that we will use in our next class. But, this result can be obtained also from the

Wigner eckart theorem, and I will like to discuss that technique as well because these are

powerful techniques.

And they have applications in various other spectroscopy's, not just Zeeman spectroscopy, but

in several other branches of atomic spectroscopy, molecular spectroscopy or spectroscopy in

condensed matter and so on. So, these are nice techniques to learn.
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So, this is the Wigner eckart theorem this is the matrix element of an q'th component of an

irreducible  tenser  operator. And this  is  given by the product  of  a  physical  part  which  is

contained in the reduced matrix element, and the geometrical part which involves the clebsch

gordan  coefficient  right.  So,  this  is  a  wigner  eckart  theorem  and  the  clebsch  gordan

coefficient under consideration, comes from the coupling of j and k and what is this j, j is the

angular momentum coming from this right side, and k is the angular momentum like term

which comes from the rank of the irreducible tenser operator. So, this is the clebsch gordan

coefficient that you would get, if you were to couple j with k to get j prime which is the

angular momentum on the left side, so keep that in mind.
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So, this is the Wigner eckart theorem, now k being you are dealing with the vector operator,

so the rank is equal to 1. And we will consider the angular momentum itself,  so we will

consider we will apply the Wigner eckart theorem to the angular momentum, so T k q is J k q.

So, we have written the Wigner eckart theorem for the angular momentum operator, we have

identified k equal to 1 here now, now we have q equal to 0, we will consider a particular case

q can be either minus 1 or 0 or plus 1.

So, we will consider one of these which is q equal to 0, so let us take q equal to 0, so I put q

equal to 0 in this clebsch gordan coefficient. And now I put q equal to 0 here as well, the

corresponding component is the J z, so you get the component j z which is the one of interest.

So, this is the matrix element of J z and on the right side,  you need this reduced matrix

element and the clebsch gordan coefficient with k equal to 1 and q equal to 0.

So, this is what you want on the left side j m is an Eigen state of J z belonging to the Eigen

value m h cross, and then from the orthogonalities of alpha and alpha prime J and j prime and

m and m prime you get this form of a delta. So, the left side can be solved readily, and the

right hand side you have got the product of reduced matrix element and the clebsch gordan

coefficients. The question is how do you get this clebsch gordan coefficient now.
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So, this is the clebsch gordan coefficient that you have to determine, and how would you

determine that, you have to get the clebsch gordan coefficient corresponding to k equal to 1

right.  So,  I  have  sent  you  the  tables  of  clebsch  gordan  coefficients,  then  we  have  also

uploaded this at our course webpage, and from that table the tables for different values of j 2,

the 1 which is relevant in our case for the present case is the one for which j 2 is equal to 1

because k is equal to 1.

So, we will take what is labeled a stable 2 in the set of tables that I have given you, so this is

the table that you will find in what has been sent to you, and this is also uploaded is the

course webpage. So, from this you have to find there are 3 into 3, 9 elements and one of these

is what you want to use which one, so the first thing to do is to notice that q is our m 2, and

this is equal to 0. So, m 2 equal to 0, so we must look at the middle column right.

The other thing you notice is that you have a delta j j prime here right, which means that j

prime is equal to j and in the other case j is equal to j 1. So, we must use the middle row right,

so we must use the matrix element which appears at the intersection of the middle row and

the middle column. So, this is the matrix element to be determined, so all we have to do is to

plug in the values of m and j 1 over here and we will get this clebsch gordan coefficient

which can be inserted here, and then you can use this expression along with the reduced

matrix element.
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So, this is what you have to determine this is the intersection of the middle column and the

middle row, and you have to determine m over j 1 root of j 1 into j 1 plus 1. But, in our case

we have instead of j m we have j prime m prime, so this is just bookkeeping and the Condon

and shortly  notation has  to  be translated into our  notation,  for  the present  case.  So,  our

clebsch gordan coefficient is m prime over root of j into j plus 1, so this is the coefficient that

must be plugged in.

So, this is what you get alright, so this is the left hand side which is m h cross into these

chronicle  deltas,  then  you  have  got  the  reduced  matrix  element  and  the  clebsch  gordan

coefficient which is now evaluated explicitly using the Condon and shortly table, and then

this is m prime over root j into j plus 1.
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So, this allows us to write the reduced matrix element, so you take this term and this term on

the left side, now this m and this m prime has to be equal there is a delta m prime m over

here. So, this reduced matrix element must be equal to root of j into j plus 1 coming from

here, h cross into these two chronicle deltas coming from here, and the root 2 j plus 1 coming

from here, when you do the cross multiplication right. So, this is what you must get, and if

you see Cowan's book the theory of atomic structure and spectra, this is precisely the result

that you will find.

However, if you see bransden and Joachim equation if 453 you find this result which is;

obviously, different what is a difference, the root 2 j plus 1 is different. Because, it can always

be observed in the reduced matrix element, if you remember when we discussed the Wigner

eckart theorem, we had mentioned that the Wigner eckart theorem is both a theorem and the

definition, it is the definition of the reduced matrix element. And it is possible to incorporate

the root 2 j plus 1 in the definition of the reduced matrix element. So, you can include this

and  then  the  two  results  are  completely  in  conformity  with  each  other  there  is  no

contradiction between them.
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So, we will use this result and this is a matrix element that we were interested in determining,

which  is  the  product  of  the  reduced  matrix  element,  and  the  clebsch-gordan coefficient,

corresponding to k equal to 1. Now, this is what we did for the angular momentum, what we

want is for an arbitrary vector this we get from the Wigner eckart theorem, applied to the

vector operator v. And now, if you take the ratio of these two that the ratio is an completely

equal to the ratio of these two reduced matrix element.

And notice that any further consideration of this result will be independent of the definition

of the reduced matrix element because in this ratio the root 2 j plus 1 would go off, so there is

no ambiguity coming because of that. So, now, you have got this ratio which you have found,

so now, the matrix element of the q'th component of this vector operator is given by this

factor here right, this is the ratio which is some constant. And then there is the remaining

matrix element to be determined, but this is the matrix element of the angular momentum

operator.
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So, this is the constant C which we have used, and now if you look at V dot J because you

had the matrix element of V dot J right that is operator which we had to consider. So, now,

you have the V dot J operator whose matrix element, and you can sandwich the unit operator

in between, so sum over m prime going from minus j to plus j j m prime ket bra j m prime

gives you the unit operator. So, I have sandwiched the resolution of the unity in between, and

then take the dot product of these two.

So, this is the matrix element of the dot product of two vectors, and this comes exploiting this

resolution of unity in terms of the dot product on the matrix element of the corresponding

operators. So, using this, this is the matrix element of V which we know is a matrix element

of  J  scaled by this  factor  C, and now this  alpha dot  J  this  is  the term that  you want to

determine, which we know over here is C alpha prime j prime. So, we take particular values

we drop the primes here.

So, when alpha prime is equal to alpha and j prime is equal to j you take alpha j m V dot J

alpha j m in this case, so you can always take a special case of that to get C. Because, the

value of C does not depend on the geometry, it does not depend on the azimuthal quantum

numbers m. So, you take a particular case and for this case, you have the same relation which

holds good, now J square operates on j m giving you an Eigen value h cross square j into j

plus 1.



So, this give us a value of C explicitly in terms of this matrix element divided by h cross

square j into j plus 1. So, now, C being independent of the m quantum numbers we can

exploit this, and we can use this value of C over here because we are looking at the matrix

element  of  the  q'th  component  of  V. And  now  you  have  got  the  C,  but  the  C  is  now

determined explicitly in terms of this V dot J. So, this result is called as projection theorem in

quantum mechanics, and you will find it in sakurai's book or in many other books, so this is

the projection theorem.
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And using the projection theorem, if you now consider m prime equal to m this is just a

special case of the projection theorem for m prime equal to m. Now, this is a relation which

holds  good for  every component  q,  so if  add the three  components  and multiply  by the

corresponding unit vectors e x e y e z that relation will hold good for vector as well right. So,

you have got this matrix element of the q'th component this relationship can be generalized,

write the matrix element of the vector operator itself.

And  this  is  just  the  result  that  we  had  got  in  earlier  using  the  identities  for  the  vector

operators, but now we got the same result using the Wigner eckart theorem. So, this is a result

that we have got, and now we are interested in this because we need the matrix element of the

z component of S and our body was that since the operate the opponent over here, which is

this ket is not an Eigen state of S z we had to figure out how to proceed.



So,  we have found a  result  which  is  going to  be useful  in  getting this  particular  matrix

element, and we got this matrix element using two alternative procedures, one using vector

identities, and the second using the Wigner eckart theorem. So, this is what we will do in the

next class which is to use this result, which comes out of the theorem that I just mentioned,

the projection theorem. And using this result, we will figure out how to get the weak field

Zeeman effect, because we need the matrix element of S z over here. Questions.

Student: The will contain s z again will contain S z will be acting on the j m j.

We will handle it, but this is may able to result which is going to be useful. So, in the next

class we will get the complete expansion, any question?

Thank you.


