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Greetings, so we will begin a new unit today, this will be on spectroscopy and in a particular

what is called as Stark spectroscopy, the stark effect. And also the Zeeman spectroscopy and

we will deal with various aspects of this.

(Refer Slide Time: 00.33)

So, I will like to begin with the comment on symmetry of the Hamiltonian, because it plays a

central role in getting the Eigen states of any contemn system. Now, quite often that problem

in quantum mechanics is quite complex, especially when you are dealing with larger system,

if you are dealing with molecules or clusters bulk matter and so on. The quantum mechanical

problem  is  quite  challenging,  and  what  you  can  do  is  to  exploit  the  symmetry  of  the

Hamiltonian, because if you have an operation which leaves the Hamiltonian of the system

variant.

Like you have an object like this, if you rotated through an arbitrary angle about X axis of

symmetry, then you have a rotational symmetry about the certain access, but not about the

every access. And sometimes the symmetry can be through rotation through a finite angle, all

through  infinitesimal  angle,  it  could  be  a  reflection,  it  could  be  the  combination  of  the



reflection and rotation  and so on.  So,  if  you have a  symmetry operator  R and there are

number of symmetry operators, like R 1, R 2, R 3 and so on.

And if you stack them together, and let us say there are h number of such operations, which

leave the Hamiltonian invariant,  so that for every i  the Hamiltonian commutes symmetry

operator, it remains variant. Then these operators which have been stack together in this set,

which I have called as G, is what is called a group of Schrodinger equations. And this is very

advantageous,  because  since  these  two  operator  commute  each  other,  they  can  be

simultaneously diagonalize, and you can get simultaneous Eigen states of the two operators.

So, which means that if you want to find the quantum Eigen states of the system, instead of

solving  the  quantum mechanical  problem,  you  solve  mathematical  geometrical  problems

from group theory. And those solutions will give you a basis of functions among which you

can  search  for  a  Eigen  states  of  the  Hamiltonians.  The  problem in  quantum mechanics,

benefits from converting that at least partially into a problem in mathematics, in group theory

or  geometry.  So,  that  is  the  big  advantage  which  connects  group  theory  and  quantum

mechanics. And my favorite reference for this thing Camp's book group theory and quantum

mechanics, which I strongly recommend.

(Refer Slide Time: 03.38)

And since, we are now dealing with the group of Schrodinger equation, if you have these two

operations R i and H which commute, then there i j th element of this commutator would go

to  0,  the  i  j  th  element  of  the  commutator,  this  is  the  i  j  t  h  element  of  the  matrix



representation. So, you can have a matrix representation in a certain basis and if you solve the

geometrical problem, you get the Eigen states of the symmetry operator. And in the Eigen

states of the symmetry operator, the matrix representation of the operator R will obviously, be

diagonal.

So, now, you construct an Eigen basis of the symmetry operator, these are not necessarily

quantum mechanical  Eigen states,  these are the Eigen state of the symmetry operator, in

which the symmetry operator is diagonal. And if you use the fact that the i j th element is 0,

then necessarily it means that, if you sum over R i k H k j minus sum over k H i k R k j, then

this sum would vanish. But, R is diagonal, so R i k will implicitly include a chronicle delta, it

will be non zero only 5 is equal to k, and here because of this chronicle delta, delta k j this

element R k j will be non zero, only if k is equal to j.

So, the summation over k will contract and you get i i i H i j minus H i j R j j equal to 0, and

now you can factor out H i j is common and you have this product, which vanishes which

means that if one of the factors is not 0, the other must be 0. So, that is the comfort we get,

that  you  do  not  have  any  off  diagonal  elements  which  connect  functions  of  different

symmetry, and this provides tremendous advantage in getting the quantum mechanics Eigen

states of a system.

(Refer Slide Time: 06.04)

And this is a feature that we exploit when we look at the stark effect, because this is related to

a question of degeneracy, you can see how it is related to degeneracy, because if you have psi



n, which is the Eigen function of the Hamiltonian. And then if you operate on the Schrodinger

equation by a symmetry operator P, then P simply taken the Schrodinger equation, and I have

P operating from the left on both the left side as well as the right side. And on the left side

that O and H commute, so H can now be written behind P and on the right side E is the

constant.

So, you find that the states psi n and the state P psi n are essentially degenerating, which is

why the symmetry of the Hamiltonian, whenever you have a symmetry of the Hamiltonian

you have degeneracy. And you can break the degeneracy by applying the perturbation, if the

perturbation Hamiltonian has got symmetry which is different from that of the unperturbed

Hamiltonian. So, in stark effect you break the symmetry of the Hamiltonian by applying can

electric field, and the Zeeman effect you use the magnetic field.

So, the degeneracy can be removed by breaking the symmetry of the Hamiltonian, and you

may break the symmetry either partially or fully. And then, you can look for spectroscopy

transition between the states of the full Hamiltonian, which is the unperturbed Hamiltonian

plus the perturbation Hamiltonian. So, you can have the transition between that, and this is

what stark spectroscopy and Zeeman spectroscopy is about.

(Refer Slide Time: 08.04)

So, the first experiment were done by stark in the early part of the 20th century, and he

examined the spectrum in atomic spectra in electric fields. So, let us consider the hydrogen

autumn placed in an electric field, now let us say that the electric field is applied long the Z



axis. And if you now plot the potential seen by the electron it is the coulomb potential which

goes like this, it is minus 1 over r, but I am plotting get as a function of Z for a given value of

a x 0 and y 0, for a given value of X equal to x 0 and Y equal to y 0. So, which are finite it

does not go to the minus infinity, it goes to it cuts the vertical axis the potential axis over

here, because that Z equal to 0 the denominator is not 0.

So, this is the coulomb potential that you have, this is plotted as a function of the Z axis and

in addition to the coulomb potential, which is generated by the proton nucleus, you have the

applied electric field which is the linear field. So, this will have a linear interaction, which is

charged time electric field and then, you have got this e E z this is the interaction Hamiltonian

of  the  charge  in  the  presence  of  the  electric  field.  So,  now, you  have  the  unperturbed

Hamiltonian for which the Schrodinger equation solutions are well known to all of us, these

hydrogen atom solutions.

And then the problem you are dealing with is that of the four Hamiltonian, which include the

unperturbed  Hamiltonian  plus  this  which  is  the  perturbation.  So,  we  are  going  to  use

perturbation theory, which you have done in your earlier course in quantum mechanics, but I

will review some of the more important parts of that for the sake of completeness.

(Refer Slide Time: 10.19)

So, we will deal with the spin later, so we will deal with the non relativistic Schrodinger

equation and it is solution, were the Eigen states are given by the quantum numbers n l m,

which are good quantum numbers in this situation. And the perturbation is e E z, this script E



is the electric field, this little e is electric field, and later considered the ground state of the

hydrogen autumn. And use the result of the first order perturbation theory, from which we

know that the first order perturbation correction will simply be the matrix elements of the

perturbation Hamiltonian in the ground state.

So, all you have to do is to get this first order correction, and what will this turn out to be this

is the 1 as state of the hydrogen atom, this is got a symmetry of X axis. So, this is got a parity,

which is odd this state ((Refer Time: 11:24)), this state as well as this state both have got even

parity, so this integral will essentially vanish. Because, the contributions of the plus Z will

cancel the contribution from the minus Z, when you take the integral over the whole space.

So, this integral vanishes and essentially what we find is that there is no stark effect at all, it

does not change the ground state energy of the hydrogen atom. If you keep it in a electric

field, it is energies not going to change because the matrix element in the first order at least

does not contribute anything, now so far so good what about second order perturbation effect.

(Refer Slide Time: 12.07)

In the first order we do not have any correction, what about second corrections and there may

be some, so let us not assume that they also vanish and in fact, they do not. So, let us look for

the second order correction.



(Refer Slide Time: 12.30)

And the second order correction is given by this term, according to the perturbation theory,

this I am sure you would have done your earlier course in quantum mechanics, so I will use

that result straightaway. And this is the result of the second order correction and you can

already see that it will not be 0, it will not be 0 you need to sum over all values of n. So, this

is your hydrogen atom bounce straight spectrum, everything converging to the Reebok surrey

limit at E equal to 0.

And then, this E 1 minus E n for n not equal to 1, will be non zero and then you have got non

zero terms l square, so this will give you non zero correction; now, this is the correction that

we need to estimate. So, let us see how to do that first thing to recognize is that, the ground

state  will  certainly  be lower, because  here these  are  squares,  so they will  be necessarily

positive here, in the numerator also you have got to square. So, the sign of the entire sum will

be determined by this sign and E 1 is the lowest state, so E 1 minus E n will be negative, and

this will have a negative sign.

So, the energy of the ground state will be lower by second order correction, so that is the first

thing we know at least a qualitative level, so let us extract this minus sign that is all we have

done in this step. So, the denominator is written as E n minus E 1 in this state of E 1 minus E

n and this is of course, different for different values of n, the denominator is different. But,

notice that this E n minus E 1 denominator, this difference will become larger and larger as

you go to higher value of n.



So, let us take the least value that is possible and that is for n equal to 2 and that means, you

get a certain bound, which guarantees that this second order correction will be greater than

this difference in which you have extracted 1 over E 2 minus E 1 outside the summation sign.

So, this is the certain bound that you get and now what we want to determine, to get this

bound is this summation over all values of n, n going from n not equal to 1. So, it will go

from 2 all the wave up to infinity and then of course, you need to sum over corresponding

value l and m as well, so this is the quantity that you want to determine.

(Refer Slide Time: 15.19)

Let us see how we do that, so to get this summation that we do not want to include n equal to

1, but how does it matter, we can also include n equal to 1. Because, we have already found,

but if we did not include n equal to 1 it contributes 0, so you can always add a 0 to an entire

sum. So, we can extent this summation, which was from n not equal to 1 to infinity to include

n equal to 1 to infinity. So, we need not restrict n not equal to 1 anymore, because what it is

adding to the total sum is only a 0.

So, this is the summation that we want to get and this is the modular square, so this is the

product of the matrix element of Z times, the complex conjugative of this and you recognize

of the advantage of extending this some to include n equal to 1. Because, that is what makes

this is what the salvation between a unit operator that is the resolution of the unity, and that is

possible because, we have included the n equal to 1 state. So, we recognize resolution of



unity and we find in that what we are looking at is essentially the matrix element, not the

product of the matrix element of Z, but actually the matrix elements of Z square.

So, there is a Z to the power of 1 here ((Refer Time: 16:50)) and Z to the power of 1 here, so

that gives you Z square, so the sum over all state of this modules square of matrix elements of

Z is equal to the matrix elements of the Z square itself.  And that is not very difficult to

determine,  because  so  far  the  hydrogen atom in  the  unperturbed state  is  concerned  it  is

completely symmetrical, it does not recognize any difference between Z and Y and Z. So,

there will be an exactly identical expression for X square and Y square as well, so this will be

1 3rd of R square. And the average value of the R square, the expectation value of the T

square can be very easily determined for any Eigen state of the hydrogen atom, which is for n

equal to 1, it is a 0 square by Z square, so now we have this result a 0 square by Z square.

(Refer Slide Time: 17.46)

And we have found the quantity that we needed, this is the a 0 square over Z square that we

have found and using this is a 0 square over Z square. We find this bound which is the second

order correction to the ground state of hydrogen atom, due to the stack effect will be certainly

greater than this quantity over here, which is 1 over E 2 minus E 1 and what E 2 minus E 1 is,

so you can find that out. So, you all do is to plug in the numbers and you can get this ((Refer

Time: 18:19)).



(Refer Slide Time: 18.20)

Now, there are some other consequences of this, because if you look at the energy of a certain

charge distribution, whatever it is. And if the overall charge distribution is neutral, then it will

have depending on the centre about, which you find the multi poles the energy of this charge

distribution will be given by the minus T dot E term. And then, there will be a quadratic term

and there will be this complete multi pole expansion that you can look at, and that there will

be other powers of E.

So,  you  look  at  you  have  got  the  dipole  moment  d  over  here,  alpha  is  the  academic

polarizability  and  this  is  the  classical  example,  this  is  straight  out  of  classical  electric

dynamic. And then you compared it with the result that you just found in quantum mechanics,

so this is exact this is n not equal to 1 and this is exact. So, here you have the unperturbed

energy, that energy of the in n x state will be given by, the sum of unperturbed energy plus the

energy correction in the second order, the first order correction vanishes.

And in the second order correction you have got the quadratic term in the amplitude of the

electric contentcity, and now you can compare the quadratic term, because the comparison of

these two quadratic term gives you the automatic polarizability. You can equate this to terms

and you find the atomic polarizability is given by the summation term that we just discussed.

So, from this you can also get the dipole moment, because it is proportional to the electric

contentcity through the atomic polarizability.



(Refer Slide Time: 20:18)

So, now we have found that there is no stack effect in the first order ground state, we found

that the second order stack effect on the ground state. It had quadratic dependence on the

electric intensity, and now we ask what happens to the excited states.

(Refer Slide Time: 20:41)

Now, we have to be a little careful because, once you go to the excited state like n equal to 2,

so let us take the first excited state of the hydrogen atom, and that the energy of the excited

state will be given by with this 1 over n square formula, for the hydrogen atom. But, then you

also know that these states are n square for degenerate, this comes from the SO(4) symmetry



for hydrogen atom. So, you do not have a unique Eigen state belonging to a given Eigen

value, you have more than one Eigen function.

And in a particular n equal to 2, you have got the 2 s and the 2 P states, and the 2 P states

again it is triply degenerate. So, you have the total of four degenerate states here, for n equal

to 2 and these four states are written out over here, so for n equal to 2. So, you have 1 coming

from l equal to 0 which is the 2 s and 3 coming from l equal to 1 which are the 2 P state with

m equal to minus 1 0 and plus 1. So, these are the four state and all of those four states, from

r going from 1, 2, 3, 4 they all belong to the same Eigen value, which is the unperturbed

Eigen state corresponding to n equal to 2.

So, there are all  degenerate,  so now you can ask the question that,  if  you applied in the

electric field which was to remove this degeneracy. And now, you switch off the electric field

to which of this states, to which of this four states will the perturbed wave function collapsed

in two, you cannot get the unique answer, because, there are four alternatives over there.

(Refer Slide Time: 22.25)

So, you have to remember that all of these four states, are orthogonal to each other and there

also are orthogonal to all the states for m not equal to 2. So, whenever m not equal to 2 and I

have an additional quantum number over here and additional index s, because the m not equal

to 2 state, it may also be degenerate and if this degeneracy is m d 4, then you will have 1, 2, 3

up to m d linearly independent functions, which belongs to the same Eigen value for m for

the m th state.



And the n equal to 2 state is orthogonal to each one of them, so this is the degeneracy of the

m th state and of course, these four state are orthogonal to each other within themselves. So,

for r not equal to s this projection this inner product would vanish, so we need to use what is

called as degenerate perturbation theory in this case.

(Refer Slide Time: 23.41)

And we will consider first order correction to the n equal to 2, which is the first excited state

of the hydrogen atom using degenerate perturbation, so you have got these four states which

are degenerate. And the perturbation is e times script E time z, this is the charge the script E is

the electric field and the perturbation order parameter is lambda, lambda equal to 1 gives you

the full Hamiltonian, lambda going to 0 will give you the unperturbed Hamiltonian.

And now you can write the Schrodinger equation with full Hamiltonian, so this is H psi for n

equal to 2, which includes the perturbation now, E equal to E psi and this E will be different

from this E 0 and this Hamiltonian is this H 0 plus the perturbation, so one might expect that

this E, which is the Eigen value of the full Hamiltonian for different values of r may be

different,  but  not  necessarily  so because  it  depends  on  to  what  extent  the  degeneracy is

removed by this perturbation, the degeneracy may be removed either partially or fully and

that is something, that we will have to take into account. So, in this case in fact, it will turn

out  that  the  degeneracy not  fully  removed,  but  it  is  partially  removed and that  is  good,

because it is produces our problem considerabely.



(Refer Slide Time: 25:12)

So, this is the Schrodinger equation with the full Hamiltonian, and we will expand and the

perturbed  solution,  the  Eigen  state  of  the  perturbed  Hamiltonian  as  an  expansion  in  the

perturbation order parameter lambda. So, you have got the term to the lambda power 0, which

will  be  unperturbed  state,  but  the  unperturbed  state  is  not  unique,  it  will  be  a  linear

superposition of all the four Eigen states. And then you will have corrections, in the first

order  corrections  and  the  second  order  and  so  on,  and  typically  lambda  is  small  tiny

parameter. So, the series can converge hopefully not that is always does.

So, this unperturbed part is a linear superposition of the four unperturbed Eigen state, we

have already met them these are the four linearly independent Eigen functions, which belong

to the same Eigen value of the hydrogen atom for n equal to 2. So, this is e equal to 2 and s

takes four values going from 1 through 4 and then, these coefficients C we do not know yet

we will have to find a mechanism to determine these coefficients, which is the part of this

exercise.

And  this  is  the  expansion  for  the  wave  function  and  you  have  got  the  corresponding

expansion also for the energy, this is the energy of including the perturbation. So, it will be

the unperturbed energy plus the correction in the first order, the correction in the second order

and so on.  So, this  is  the perturbation order  for expansion and you have got the similar

relation for each value r going from 1 through 4.



(Refer Slide Time: 27.00)

So, let us look at this wave function now, and this unperturbed part is a linear superposition

of the four degenerate unperturbed Eigen states. It cannot be unique, because there are four

linearly independent function and these coefficients C our yet to be determined, so we now

look at the first order correction. The first order wave function will again, because of the

perturbation theory we expect it to be written as a superposition of all the unperturbed states,

otherwise the perturbation theory will not work.

So,  the  perturbation  theory  works,  because  of  our  contention  that  the  perturbation  is

expressible, in terms of superposition of unperturbed states. So, this is the superposition of

overall quantum number is m of this unperturbed state, but for the each value of m, there may

be d number of degenerate Eigen states. And you already know that there are n square 4,

there  is  than  n  square  4  degeneracy, so  you must  include  a  summation  over  all  of  this

degenerate states.

So, the coefficient will therefore, be index by r and also by m and s, and this is the coefficient

coming in the expansion for the perturbation solution for the n equal to 2, so I carried that

index n equal to 2 as well. So, the coefficient a here has got the number of n dices over here

and  all  of  them  are  important,  suppose  that  you  have  followed  by  each  index  is  of

significance.  So, this is off course the unperturbed Eigen state corresponding to the m th

degenerate state, but this depends on towards extent the level E m is degenerate. And this will

again go has 1 over n square n equal to m, so that is the degeneracy of the m th state.



(Refer Slide Time: 29.20)

And now we can put all of this together by in the full Schrodinger equation, which is the full

Hamiltonian  operating  on  the  full  wave  function,  and  this  wave  function  is  a  linear

superposition, which is expanded in the perturbation order parameter. So, you can substitute

this expansion over here, as well as on the left hand side, as well as on the right hand side.

The energy is similarly a expansion over the lambda parameters, which is the perturbation

order parameter and you can substitute this expansion over here.

And the Hamiltonian itself H 0 plus lambda, so you have rewritten this Schrodinger equation

for  the  full  Hamiltonian,  now  using  the  lambda  parameters,  but  now  that  all  terms  in

corresponding powers of lambda must be equal, so you can equate the terms for lambda equal

to 0 on both side of the equation to each other. Likewise you can equate the terms lambda

equal to 1 on both side to each other.



(Refer Slide Time: 30.32)

And if you do that, then the coefficient of lambda which is equal to 0, so from that you get

this unperturbed solution, but the Eigen state is actually a superposition of this degenerate

state. And the superposition consist of this coefficient C r s both r and s can take the four

values, you have got the similar relation for the each value of r, but the summation over four

states. So, s will go from 1 through 4 and these are the coefficients to be determined.

If you now do the same equate the coefficient of the left hand side with the coefficient of the

lambda power 1 on both side, left hand side and right hand side. Then you get H 0 and then

you have 1 lambda to the power here on the left hand side, and then here is the term which is

called lambda to the power 1. So, you got H 1 operating on this chi 0, so these are the two

terms that you get on the left hand side, at the right-hand side this is the lambda to the power

0.

So, you will have this term to gather with the term corresponding to lambda for the force

power which is this, so you get E 0 psi 1. And then you have the second term, which is

lambda 1, but the lambda 1 and this term will give you the second power of lambda that is

quadratic term, but in first order perturbation theory you will throw it. So, in the first order

term, you will have only lambda 1 and this is lambda to the 0, you will get E 1 psi 0, which is

what you have over here, so E 1 psi 0.

So, this is what you get on right on side, so essentially what we are doing it is first order

perturbation theory of the degenerate state. Now, the first order correction we have seen is



written  as  a  superposition  of  all  the  unperturbed  state,  the  superposition  consist  of  the

coefficients a, for all values of m which appears an index m. But, then it also must include

summation over all the degenerate state, which belongs to the same Eigen value for the given

value of n. So, there is a summation over s going from 1 to the degeneracy m th state, so there

is an additional index m over here.

(Refer Slide Time: 33.05)

So, this is the first order correction, which we have found and this unperturbed state is a

superposition of all the degenerate, unperturbed state corresponding to n equal to 2. So, now

you can write the summation, the double summation over here and this summation over here.

And this whole equation can be rewritten with H 0 and this chi 1, which is the first order

correction which is written in terms of the expansion, so that goes into this bracket plus H 1

operating on this chi 0.

But, this chi 0 is this expansion over four degenerate state, so this is the chi 0 on the left hand

side, and the right hand side you have got E 0 psi 1. So, you have got E 0 psi 1 is this

expansion over m and then, the last term is E 1 chi 0, so which is expansion over s, so this is

E 1 chi 0. So, all we have done is to substitute corresponding expansions, so that is not really

very difficult and all we have done is to substitute these terms.
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And now notice that this H 0 when operates on psi 0 will give you E 0 psi 0, and you have

got similar terms on the right hand side as well, but which are the Eigen value of the and

perturbed Hamiltonian. But, mind you here the unperturbed Eigen value is that corresponding

to n equal to 2 state, whereas in this case this m will take the entire spectrum. So, you have to

be careful about it, but then you have got similar expression in the first terms and then, you

have got the remaining two terms.

The second term on the left-hand side and the second term on the right-hand side, which has

been written or rewritten just as it is, so\ I take all the terms to the left and set everything

equal to 0 instead of having left hand side and the right hand side, have taken all the terms on

the right hand side to 0 change the sign. So, on the left hand side I will get this E n 0 minus E

n 0 from the combination of these two, and on the right hand side I will get these coefficients

are the same.

So, it is summation over s going for 1 through 4, C r s this coefficients are essentially the

same in  both  and  then,  you will  have  H  1  minus  E  1.  So,  this  is  just  the  perturbation

correction, but this is unperturbed Hamiltonian, which is this is the perturbation Hamiltonian

which is e times E the script E time z, so this is the perturbation and Hamiltonian.
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So, it is easier to look at this using the Dirac notation, so this same expression has been

rewritten here in the Dirac notation.

(Refer Slide Time: 36.20)

And having written it Dirac notation over here I take the projection, for 1 of the 4 degenerate

states of n equal to 2, anyone which does not matter, so I take the projection on one of them

which is labeled as u, but then I can do it for all values of u going from 1 through 4. So, I

know u and s both go from 1, 2, 3 and 4 and when I take the projection, if you look at this

term, in this if m is equal to 2, this difference in energy will vanish.



And if  m is  not  equal  to  2  than  this  projection  will  vanish,  because  E  states  we know

orthogonal to each other. So, we do not get any contribution from this side, when you take the

projection and then you have left with a system of linear homogeneous equations coming

from here. So, you have got for every r a system of linear homogeneous equations, there are

four unknowns for every value of r. And this is the system of equation that we know now

want to solve, so is standard mathematical techniques which your familiar with, so this is

how you solve linear homogeneous equation.

(Refer Slide Time: 37.46)

You know that non-trivial solution were come for this condition, this is the condition that

must be satisfied that the determinant of this matrix over vanish. So, this is the condition to

get non trivial solution and the roots will give you the corrections, the energy corrections that

you are looking for. So, these are the four roots that you are looking for, they may all be

different from each other, if the degeneracy is only resolved, if not some of them may be the

same or they may or be the same, so you have never done.

But, these are the solutions that you are looking for and the degeneracy will be resolved, if

the Hamiltonian is perturbed, if the original Hamiltonian is perturbed, which has got this

entry which is different from that of the original Hamiltonian. So, the residual degeneracy

there may be some, it can be either removed by higher order perturbation or else it can even

persist to all orders. And then, you might want to if you need to break it you may have to use

different perturbation altogether, this particular perturbation will not do it.



So, that depends on what is this symmetry of the perturbation Hamiltonian compared to the

symmetry of  the  original  Hamiltonian  as  we have  seen earlier. Because,  degeneracy and

symmetry goes together, the degeneracy can be broken only, if you break this symmetry of

the Hamiltonian.

(Refer Slide time: 39.30)

So, this is the system of equation that we want to solve, and the solutions are given by the

roots of this equation, so what you will do is for each value of r, you can put after you get the

roots of the equations, you can put those roots and then get the coefficient c. So, now you

know how to determine the coefficient C, because these where the undetermined factor which

we had, but we have found a mechanism to determine this by plugging in the roots that you

get. And for each route you can solve this set of equations and from the set of equations, you

can get the corresponding coefficient C r s, so that is the mechanism to get the solutions.



(Refer slide Time: 40.21)

So, let us illustrate this for a particular case I will take the case of r equal to 2 just any one of

those four values, and you take the roots corresponding to r equal to 2, whatever it is. And

then for each value of u, u going from 1, 2, 3 and 4 you will have four sets of equations, so

this is the equation for u equal to 1. So, all we have done over here is to put r equal to 2 and u

equal to 1 in this and then, there are four terms coming in from here and this is the fifth the

term.

But, this term has a chronicle delta, delta u s, so it will give you non zero contribution only

when u is equal to s, so you will have a total of these five terms, and there is a similar set of

terms for u equal to 2, a similar set of terms for u equal to 3 and a similar set of terms for u

equal to 4. So, all you do is to substitute the different values of r, u and s, we are illustrating

here this example for r equal to 2, and solving this equations will give you the coefficient C.

And you notice that in this system of equation, you have the matrix element of H 1 which is

the perturbation Hamiltonian in the unperturbed states corresponding to n equal to 2, to all

those four degenerate states.
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And you need to determine this matrix element, and now you can put in the exact explosive

expression for the perturbation Hamiltonian, which is this e E z and you have to get this is the

overall integral that you must determine. So, this integration is a space integration, integration

overall value of r theta and phi, phi going from 0 to 2 phi theta going from 0 to phi and r

going from 0 to infinity. So, you separate the radial part and the angular part carryout the

integration, here you have got z, has got an angle dependent factor as well, because z is r

cosine and theta.

So, z contains r as well as cosine theta, so cos theta however, is the general polynomial for l

equal to 1, so you can put the spherical harmonic in this angular integration. So, you first

carry out the angle integration over phi, but this is cos and theta for m equal to 0, so which

means that the only the m quantum numbers, which will come are those from this Y l prime

m prime and from Y l m, because this is got l equal to 1 and m equal to 0. So, essentially in

the five integration you will have integration over phi of each of the i m prime minus m times

phi, this is m prime and this is m, so you get m prime minus i times phi.

And ((Refer Time: 43:52)) this is non zero only in the case that m is equal to m prime, that is

the only case which is of interesting, and that really offers main disadvantage in our case. It

also means that the degeneracy is not fully removed, and you will see this, we will discuss

from this point in the next class, I will conclude today’s class by recognizing that the only



terms  which  will  give  you  non  zero  values  to  this  matrix  elements  of  the  perturbation

Hamiltonian, are those corresponding to m equal to m prime.

And you will remember that in the four degenerate states, you have the 2 s and the 2 P, so the

2 P has got m quantum numbers going from minus 1 to plus 1. So, the terms corresponding to

minus 1 and plus 1 will make no contribution, only the term corresponding to m equal to 0

will contribute. So, we will continue from this point in our next class, if there is any question

I will be happy today, yes.

Student: expressing perturbation in the Eigen basis of original Hamiltonian, so how is that

symmetry different between the original Hamiltonian and that perturbation Hamiltonian.

The  symmetry  of  the  perturbation  is  of  course,  different  from  that  of  the  unperturbed

Hamiltonian, but the premise of perturbation theory is that, whatever the perturbation does is

expressible as a linear superposition of unperturbed Eigen state. So, there is no conflict in this

at all, perturbation theory works essentially on this basis, that the perturbation does not throw

the system outside it is Hilbert space. The unperturbed Hamiltonian has got a certain Hilbert

space, so there is a certain basis, Eigen basis of the unperturbed Hamiltonian.

And even after you impose the perturbation, the solution will be expressible as a linear super

position of basis function of the unperturbed Hamiltonian, that is the whole contention of the

perturbation  theory.  That  certainly  does  not  mean,  that  the  perturbation  as  to  have  the

symmetry  of  the  Hamiltonian  as  a  matter  of  fact,  if  the  perturbation  does  not  have  the

symmetry of the Hamiltonian, it is not go to ever break the degeneracy, there is absolutely no

complicity.

The contention of perturbation theory is that the perturbation results in a new wave function,

which  is  never  the  less  expressible  as  a  linear  superposition  of  the  Eigen  state  of  the

unperturbed Hamiltonian. So, whatever you do to the unperturbed Hamiltonian it is not so

wild  that  you  cannot  express  the  total  wave  function,  as  a  linear  superposition  of  the

unperturbed state; that is the whole premise of perturbation theory. And that does not require

the symmetry of the perturbation to be the same of the, as a symmetry of the unperturbed

Hamiltonian, there is absolutely no such requirement.

Why would there be such a requirement,  the question of symmetry relates to a different

aspect of this issue, which is the degeneracy of the state. So, the symmetry is important in the



context of degeneracy that, if the perturbation has got the symmetry, which is different from

that of symmetry of original Hamiltonian; it would remove the degeneracy either partially or

fully. Whether  it  does  so,  fully  or  not  depends on certain  details,  which is  what  we are

examining over here, like we have already seen that you get are non zero connection between

the states, only if m is equal to m prime not at the y.

So, m equal to minus 1 and plus 1 states of the 2, n equal to 2 quantum number for n equal to

2, the non relativistic hydrogen atom has got four degenerate states n square, which is the 2 i

s. And the three linearly independent Eigen functions of 2 P which is for n equal to 2, l equal

to 1 and m going from minus 1, 0 and plus 1. So, out of these three the m equal to minus 1

and plus 1 will not contribute anything to this matrix element, so that is where the question of

symmetry comes in. And it does not put any restriction on expanding the system Eigen state

of  the  perturbed  Hamiltonian  of  the  four  Hamiltonian,  as  a  linear  superposition  of  the

unperturbed state.  In  fact,  that  is  the  very  premise  of  perturbation  theory, yea  any other

question, so good bye for now.


