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Greetings, so today we will conclude unit 7 and this will be some sort of bridge class,

which will invoke everything that we have learnt about photoionization including the

boundary conditions. And then it will bridge this course work with some literature, so

that you can read original literature in photoionization research. We will arrive at the

COOPER ZARE formula for angular distribution of photoelectrons, I will not derive it in

very great details, but I will certainly outline the essential pines, which lead us to, what is

famously known as a COOPER ZARE formula for photoelectron angular distributions.

(Refer Slide Time: 01:06)

So, let us quickly recapitulate the relations that we have with us, so this is the expression

for the photoionization rate. For photoionization process, in which a photoelectron is

rejected along the unit vector k f and the electromagnetic radiation is considered to be

polarized along the direction epsilon. And then we have this e to the i k dot r term in the

expression for the matrix element, and if you take at a expansion of e to the i k dot r then

you have higher order terms in r over lambda.



So, you can truncate this series for large wave length, so for large wave length, r over

lambda will become a small quantity and higher powers of r over lambda can be ignored.

And if you take the leading term, it is just e to the i k dot r equal to 1, which is known as

the dipole approximation, in which case this matrix element of the gradient operator and

this e to the i k dot r set equal to 1 gives you this relation in terms of the matrix element

of the position operator.

We discussed in the previous class, how to connect  the position operator, the matrix

element of the position operator with matrix  element of the momentum operator. So,

these are related to each other in a certain approximate way means, depending on the

potential being local and so on. So, these are some of the details that we discussed in the

previous class, what you have in this rate expression is the modulus square. So, you get

cos square gamma term here and then the square of the modulus of the matrix element of

the position operator.

And to get there with this e square and this square of the matrix element of the position

operator, you have got the matrix element of the dipole operator, which is why e to the i

k dot r equal to 1 is refer to as the dipole approximation. Because, it is only when e to the

i k dot r is set equal to 1, that you can develop the rest of the steps. So, this is the long

wavelength approximation  and it  works reasonably well  for 5 to  6000 electron volts

above the ionization threshold, broadly speaking there are exceptions.

(Refer Slide Time: 03:45)



And  then  we  also  introduced  the  oscillator  strength,  we  introduce  the  quantum

mechanical oscillators strength for transition from i to f. And then in the classical model

of photoionization, we had the frequency distribution of the oscillator strength. So, there

is a corresponding expression in quantum mechanics, which gives the oscillator strength

per  unit  frequency  and  that  is  a  very  similar  expression  compared  to  the  classical

expression.

But, it incorporates this quantum mechanical expression for the matrix element of the

position operator as well in the length form. So, this oscillator strength, this is in the

quantum mechanical expression, so these two relations are combined and you get the

quantum  mechanical  description  of  the  oscillators  strength,  which  is  the  oscillators

strength per unit frequency. This is the frequency distribution of the oscillator strength or

this is for a single transition.

(Refer Slide Time: 04:48)

But then you need to sum over all the transition, so there is a summation over all possible

discrete states, which you incorporate and you will find an extension discussion on this

in Fano and Rau’s book. So, this is the quantum mechanical description of the oscillators

strength and it has been so defined such that, you can carry out certain extrapolations of

very important dynamical properties across the ionization threshold, when you go from

discrete to the continuum.



(Refer Slide Time: 05:29)

And I will draw your attention to this figure from Fano and Cooper's review of review,

which appeared in reviews of model physics and this is available also in Fano and Rau’s

book. And this is an oscillator strength distribution, so you have got the discrete part on

the left  of this  vertical  line,  so this  is  the discrete  part.  And on the right side is  the

continuum part and you have plotted in this the oscillators strength distribution, which

has been defined according to the prescription.

And there is a certain normalization procedure and I will not going to those details, but

just  draw your attention  to  this.  What  it  allows you to do,  is  to  find that  there is  a

continuity you notice that, if you extrapolate this curve, you have a certain continuity,

which  allows  you  to  get  property,  to  connect  properties  in  the  discrete  part  of  the

spectrum to  properties  in  the  continuum.  And in  particular,  what  are  call  this  Eigen

amplitudes  of  the  transition  matrix  elements,  these  are  slowly  varying  functions  of

energy across the ionization threshold.

So, the ionization threshold is over here and over here if you take a very small energy

region delta e near the ionization threshold, in this region the matrix element is almost

independent of energy rate, is hardly changing with respect to energy. And this allows

you  to  study, to  connect  properties  of  the  discrete  spectrum  with  properties  in  the

continuum. And there is a good bit of work, which has been done by Seaton and Fano



and this takes has to, what is known as the quantum defect theory, which is applicable

from any electron atoms.

Here, I have shown this spectrum for the hydrogen atom, which is the single electron

atoms but then it is utility and it is power is most exploited for many electron systems,

for which we do not exact solutions. And then you develop approximation methods and

quantum defect method is one of the approximation methods, which gives us great, an

excellent handle on this.

What it also does is that, it expresses energy not just as a function of n, which is the case

for the hydrogen atom, according to the which has got the SO 4 symmetry, but other

atoms will not have the SO symmetry when you have more than one electron. And then

the 1 over n square formula has to be corrected by 1 minus 1 upon n minus mu whole

square and mu depends on l, so the energy depends both on n as well as l. So, mu is what

is called as quantum defect and all these goes into the formulation of the quantum defect

theory developed by Seaton and Fano.

And as a matter of fact, there is the huge of number of references an atomic physics to

Fano’s work and the number of citations to Fano work in fact, exceeds the number of

citations to some very famous papers including by a Niels Bohr's, Schrodinger’s and so

on. So, this is one of the classic works in quantum mechanics and atomic physics, which

is the great importance. So, it is good to get introduced to that.

(Refer Slide Time: 08:56)



So,  our  interest  is  in  determining this  matrix  element,  this  is  the matrix  element  for

transition from an initial state to of final state. We are studying photo ionization, but we

are going to use techniques  from quantum collision physics and we known that,  the

solutions of quantum collision physics and photo ionization at connected to each other,

prove  time reversal  symmetry, which  we studied in  the unit  6.  So,  we will  use this

relationship  of  getting  the  final  state  wave  function  according  to  the  ingoing  wave

boundary conditions, which we studied in the previous unit.

(Refer Slide Time: 09:33)

And the advantages of this is, that we have seen that in the photoelectric effect, when you

have the electron  ejected,  that  is  the only direction  with reference to  which you can

measure different angle. Because, that is the unique direction, there is no electron in the

initial state in the photoionization process. The initial state consist of a photon and an

atom, it is a final state which has got and ion and an electron, which is similar to the final

state of electron ion scattering.

So, in the initial state, there is no electron direction to reference to, what you have is the

photoelectron escape direction, which is a unique channel. And this is the direction with

reference to which, angles will be measured and the two processes are connected to each

other through the time reversal symmetry as we have learned.



(Refer Slide Time: 10:27)

So, we will use that in writing our expression for the total wave function c l, this is an

expansion  in  terms  of  the  angle  of  functions  at  the  radial  functions.  But  then  the

expansion  coefficient  c  l  of  these  partial  waves  must  be  chosen  according  to  the

boundary conditions. At the boundary condition of relevance over here, is the ingoing

wave boundary condition. And what is that c l must be given by e to the minus i delta l,

that is the boundary condition that we discussed in unit 6.

So, c l is given by e to the minus i delta l, here by making use of this spherical harmonics

addition theorem, you can expand this in terms of this m going from minus l to plus l and

this is was done in unit 6. So, this is what will lead us to the COOPER ZARE formula,

this expression using the ingoing wave boundary condition.
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So, let us have a look at this, so here you find that the 12 plus 1 and this 12 plus 1 will

cancel each other. I have use the spherical harmonic addition theorem to expand the p l

cos theta, so the 12 plus 1 in the enumerator and the denominator cancel each other. And

you can write this total wave function according to the ingoing wave boundary condition

in terms of this radial function, which is this, which includes the scattering phase shift.

This is written as R, radial function R of r then there is spherical harmonic Y l m of r,

which is coming from here.

And then everything else which includes this i to the l and e to the minus i delta l, the

phase shift, this factor 4 pi and the spherical harmonic corresponding to the direction of

the photoelectron escape direction, which is the unique direction. That goes into an angle

of  factor, which is  written  compactly  as  a l  m,  because it  will  depend on l  and the

dependence  includes  the  dependence  of  the  phase  shift  delta  on  l.  It  will  also

parametrically depend on the energy, because of phase shift depends on energy.



(Refer Slide Time: 12:47)

So,  this  is  what  you want  to  determine,  this  is  the  matrix  element  and you want  to

determine the matrix element of the position operator. So, we take the r dot e x, e x is the

direction of polarization and this angle is cosine gamma. So, this is the gamma, which is

the angle between the polarization direction, which is along e x and the photoelectron

escape direction. So, this is like measuring a polar angle, not with respect to Z axis of

here, but with respect to the direction of polarization.

So, theta, this is an uppercase theta as opposed to this theta, so there are two theta angles,

this theta angle is a polar angle with respect to the Z axis, as we typically use is spherical

polar coordinate system. This is a different theta, which is like the uppercase theta and

this  is  the  polar  angle  measured  with  respect  to  the  polarization  direction  which  is

epsilon, which is along the X axis, which is along the e x unit vector. So, theta is this

angle between epsilon and this direction of polarization and the photoelectron escape

direction, so this is the angle that is of importance in the present context.
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So, this cosine gamma is a spherical harmonics for l equal to 1, m equal to 0, you can

always  write  it  like  that.  And  this  is  the  direction  with  respect  to  which,  you  are

measuring  the  angles  and  it  is  useful  to  introduce  what  are  called  as  renormalized

spherical harmonics. They are same as spherical harmonics as you can see, there is just a

constant factor root of 4 pi over 2 k plus 1, which is like normalization, which is called

as renormalization of the spherical harmonics.

So, it is just the size which is scaled by this root of 4 pi over 2 k plus 1 and this matrix

element is therefore, written in terms of the matrix element of the renormalized spherical

harmonics.  So,  there is  a factor  of r  over  here and there is  the rest  of  the  spherical

harmonics and then there is this root of 4 pi over 3, so that is already contained over

here.  So,  you  can  write  this  as  the  matrix  element  of  the  renormalized  spherical

harmonics, so that is for k in this case, which is Y 1, so k is equal to 1. So, you have 2

plus 3 in the denominator, it is root 4 pi over 3 as you get it.
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So, this is the matrix element of the renormalized spherical harmonics and now, you have

the matrix element of this r into C in an initial state, which is hydrogenic. So, we are

using the non relativistic formulation at this point, so this will be n l and m, so I am using

n prime, l prime and m prime for the initial state. So, this is the wave function for the

hydrogenic initial state, the final state wave function we have written in terms of this

expansion, which we have just discussed.

So now, you plugin this matrix element, sandwich it between these final state and the

initial state. So, this is the final state, this is the initial state, you got a summation over l

and m and this is essentially, what is this, this is the space integral. This matrix element is

essentially space integral and it includes integration over r going from 0 to infinity and

also integration over the angles theta and pi, which will go over the entire space. So, this

is radial integral, so this is an integration from 0 to infinity of r square d r is the volume

element.

You have  got  the  radial  function  of  the  initial  state,  initial  bounds  state,  this  is  the

continuum state radial function, which includes the phase shift, was argument includes

the phase shift. This is the operator r, which is coming in from here, this is the matrix

element of r into C, so this r comes in over here. So, this is the radial integral and then

there is an angular integration, which is the matrix element of the renormalized spherical



harmonics between the angular functions of the final state, for which you have got the Y

l m of r and the Y l m prime of r.

The  rest  of  the  angle  of  factors  are  contained  in  the  a  l  m,  so  this  is  the  angular

integration, which is to be determined. So, there is one angular integration over here and

the space integration over here then multiplication scaled by this factor a l m and then

you need to some over l and m. So, that is the matrix element, that you will have to put

and that will give you the transition rate and then it is modulus square will give you the

transition probability, which we have related to the photo ionization cross sections so

that, you will get the complete distribution. But then it will also be connected to the d

sigma by d omega, which is the angle dependent cross section. So, it is the differential

cross section for units solid angle, so a l m, we have already defined earlier on the slide

131, we will use that from there.

(Refer Slide Time: 18:41)

And now, we need the matrix element of this renormalized spherical harmonics and to

get this, we use the Wigner Eckart theorem. And that will give factor of all the matrix

element of C 1 and it will give us Clebsch Gordon coefficient or a Wigner 3 j symbol,

they are all related to each other. So, I will let you work with the details and using the

Wigner Eckart theorem, you get this expression. So now, the angular part and the space

part and the physical part is already taken care of.



And this particular matrix element of the reduce spherical harmonics from elementary

angle of momentum algebra is given by this space factor time square root of l large,

where l large is the larger of l and l prime, and g is given by this l prime minus l plus 1

by 2. So, this is what you get and once you put in all of these expressions, you get the

matrix element in terms of this angular factors including the Wigner 3 j symbol, which is

essentially Clebsch Gordon coefficient and then you have got the radial  integral over

here, so we will have to use the radial integral explicitly.

(Refer Slide Time: 20:05)

And we are now going to  plug it  back into  the expression  for  the differential  cross

section, which was essentially the matrix element of this operator, the gradient operator.

And then in the dipole approximation, you get the connection between the momentum

and the position operator, so that is all coming together now. And all of these relations

are going to come together, because we are now looking at the matrix element of the

position operator, the x operator, which is r cosine gamma, which is the matrix element

of this T.

But then psi f is to be used according to the ingoing wave boundary condition, as we

have just discussed. And we will of course, need the modulus square of this and this

matrix  element  is  now includes  these angular  factors,  the Wigner  3 j  or the Clebsch

Gordon coefficient  as we have.  These radial  integrals,  these angle of factors and the

summation over l and m and l of course, goes from 0 through infinity. However, you do



not  need  these  infinite  summations,  because  you  are  working  within  the  dipole

approximation. So, transitions only to delta l equal to plus or minus 1 will be involved,

so you will have to deal with fewer terms.

(Refer Slide Time: 21:46)

And then when you take the modulus square, you have the psi f T psi i and then the

complex conjugate of that, so this is the modulus square that you are going to need. So,

we have this expression for the matrix element of the operator T and you will need the

complex conjugate of that, to multiply this. So, you will have a summation over l in one

of these expressions and again a summation over l and m in the complex conjugate. So,

you will have summations over l 1 and l 2, there are two summations over l quantum

numbers and two summations over m quantum numbers.

You  will  of  course,  exploit  the  orthogonality  relations  of  the  Clebsch  Gordon

coefficients, so you are then left with an averaging over all the m prime stage, because m

prime goes from minus l to plus m. So, there was a division by 1 over 2 l plus 1 when

you average out overall those states, so you got 1 over 2 l plus 1 factor and you now have

a relation, which has got a quadratic term in the radial integral. This is the radial integral

d,  it  comes  twice,  once  from here  and the  other  from here,  so there  is  no  complex

conjugation, because the radial integrals are real.

And then you have got two of these 3 js and the corresponding phase factors and the

square root of the orbital angular momentum quantum number. And then two of these a



factors,  the  angle  of  factors  a  l  m,  one  coming  from this  element  and the  complex

conjugate coming from here, so those are all the terms, so everything is taken care of.

(Refer Slide Time: 23:49)

So, you have got plenty of summations, but you do not really need the prime anymore,

because there is nothing, which we are no longer using l, because you are using l 1 and l

2, so you do not need the prime any more. So, I drop the prime in this relation now, if the

same relation written with l instead of l prime, just to make the notation a little simpler,

we do not need the prime any more. We needed it only when we were distinguishing

between l and m prime, but for l, we have used l 1 and l 2, so we do not have l anymore.

So, that is a reason we can do away with the prime now, so you have got l 1 here and l 2

here and l over here, instead of l  prime. So, that was the orbital  angular momentum

quantum number we have used for the initial state.
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So,  this  is  what  we  have  got  and  now, a  l  m’s,  we  already  have  from our  earlier

discussion.  And because we are using the dipole approximation,  you do not have to

worry about summation over l 1 and l 2 going from 0 through infinity. Because, only

those transitions will take place, for which delta l is equal to either plus 1 or minus 1,

everything else will vanish, that these selection rules again as we have discussed earlier

come from the Wigner Eckart theorem.

So,  delta  l  is  equal  to  plus  1  or  minus  1  and  it  is  because  we  have  the  dipole

approximation, which is the operator which comes in when you set e to the i k dot r equal

to 1 by ignoring higher powers of r over lambda. So, it is a low energy approximation

and in this approximation, you have only delta l equal to plus or minus 1. And from these

double summations, you can have a maximum of four terms, two terms coming from one

corresponding to delta l equal to plus or minus 1 and another two coming from the other

summation over l 2.

So, at the most you have to work with four terms so that, really makes life easy, all of

these infinite summations immediately collapse into, just no more than four terms, so

that should make us happy. And then all we have to do, is to get the values of the Wigner

3 j and these are available in various stables of angle of momentum coefficient in Schiff's

quantum mechanics or Lanthanium Schiff's or any book, an angular momentum algebra

will  give  you standard  tables,  you can  also  get  them from first  principles  using the



recursion relations, so that is not a big deal. So, you evaluate these, which are given by

the factors, which I have written over here, so these are the values of the 3 j’s.

(Refer Slide Time: 26:48)

So, now, you have got everything, except for the radial integrals and the a l m’s, which

include the spherical harmonics, the phase shift and so on. The phase shifts are e to the i

delta terms, so these include the cosine delta and the sin delta terms, so these are the

trigonometric functions, the cosine delta and the sin delta term. So now, you can write

this whole expression in terms of trigonometric functions and the radial integrals, which

and there are two of them, so you have will get an expression, which is quadratic in the

radial integrals.

What else will it include, it will include the phase shifts and the phase shifts will appear

as  arguments  of  trigonometric  functions  as  cosine  and sin  term.  So,  what  COOPER

ZARE did  was,  to  introduce  a  parameter  which  includes  these  terms,  so  there  is  a

quadratic term in the radial integral, which is sigma. So, sigma l minus 1 is the radial

integral from l prime to l prime minus 1, so that is the transition to the final state in the

continuum, whose orbital angular momentum quantum numbers is less by 1 compared to

that of the initial state.

So, there is a term in sigma l minus 1 square, there is a term in sigma l plus 1 square and

there is a cross term in sigma l plus 1 and sigma l minus 1. Then there are the phase

shifts, they appeared over here, they come as a difference of this cosine argument. So,



this is manipulating that trigonometric terms, so it is a little bit of algebra that one has to

do and COOPER ZARE were able to put it in a form, which is extremely compact by

introducing this parameter.

So, this parameter is a dynamical parameter, it is of course a function of energy, because

your matrix element depend on energy, your phase shifts depend on energy, so it is an

energy parameter. And by introducing this  parameter,  you can  write  this  expression,

which is a rather complicated expression, but you can present it in very simple of form,

which is called as a COOPER ZARE formula. So, this radial integrals are in some people

written as sigma, we have used d over here and in some literature, they have used capital

R, now this capital R is not the radial function, it is this radial integral.

So, the notation is different in different pieces of literature, so that need not confuse you,

so when you see a quadratic term over here, whether it is sigma or this capital R or this d

square, you know it is a radial integral and you know that, this is the radial integral that

is been referenced. So, these are various notations, which are used in literature and using

this  expression  for  beta,  the differential  cross  section,  which  seems to have  a  rather

complicated structure, can now be written in a very simple form, which is sigma over 4

pi 1 plus beta times this Lagrangian polynomial for l equal to 2.

Lagrangian polynomial for l equal to 2, is this half of 3 cos square theta minus 1 and this

parameter  has  got  the  information,  which  you  need  to  get  the  angular  distribution,

because we are developing the expression for the differential cross section. So, d sigma

by d omega is  the differential  cross  section,  it  is  a measure of transition probability

corresponding to  photoelectron  escape  in  a  given direction.  What  is  the direction  of

escape, it is along k f, it is along the unit vector k f, corresponding to electromagnetic

radiation being polarized along certain direction, which we have refer to as epsilon.

In our analysis, we have taken it to be the X axis, but it can be any direction in space, it

does  not  matter, but  with a  reference  to  that,  this  uppercase theta  is  the polar  angle

corresponding  to  that  direction,  whatever  it  is,  that  is  what  we  are  found.  So,  with

reference to the direction of polarization of the electromagnetic radiation,  theta is the

corresponding polar angle.  It is not the polar angle with respect to the Z axis of the

original geometry that we have, but it is the polar angle with reference to the direction of

polarization of the electromagnetic radiation.



So, this is the theta and this is the measure of, how much of photoelectron yield you will

expect in this direction for this direction of polarization, it is a measure of that. And it is

given by this total cross section, it is a certain part of the total cross section, because

when you integrate this overall angles, you will get the total cross section. So, you need

to integrate this over all the angles to get the total cross section, but this is a part of the

total and this part is the corresponding part, which is relevant to the direction theta.

So, if you keep a detector in the direction theta, this is what you are going to measure,

this is the amount of yield that you will measure with reference to certain collaboration

procedure. So, essentially, beta is then giving you the angular distribution, which is why

it is called as a photoelectron angular distribution parameter. This is again in the dipole

approximation, so this is called as the dipole angular distribution asymmetry parameter.

So, this is the COOPER ZARE formula and I have uploaded the COOPER ZARE paper

at our course web page, so you can go through the details in this paper.

(Refer Slide Time: 33:25)

And this is now, a summary of what we have got, this is the differential cross section,

which is now written in very compact form, which is part of sigma, sigma divided by 4

pi and then you have got the 1 plus beta and the Lagrangian polynomial for l equal to 2.

So, beta is angular distribution asymmetry parameter, now differential cross section of

course, is a positive quantity, it is transition probability. So, it is a positive quantity, it has

to be greater than or equal to 0.



Therefore, 1 plus beta times P 2 cos theta must be greater than or equal to 0 and that put

some limits on beta, that automatically generates some limits on beta. What are those

limits, because this beta over 2 times this, must be greater than or equal to minus 1 and

theta can only take values between 0 and pi, corresponding to which cos square theta can

take values only between 0 and 1. So, those are the minimum and the maximum values

of cos square theta.

So, if you put the corresponding values minimum and maximum values of cos square

theta over here, you will get the minimum and maximum value that beta can take. So,

what are those, so if you take cos square theta, the maximum value is 1, so beta has to be

greater than or equal to minus 1 and cos square theta minimum value is 0, so beta has to

be  less  than  or  equal  to  2.  So,  these  are  l  m  s  of  angular  distribution  asymmetry

parameter, it can at the least be minus 1 and at the most it can be plus 2. So, you will

always find angular distribution asymmetry parameter in these limits and you can find

the discussion of this also in Bransden and Joachain book or in Fano and Cooper and the

Fano and Rau and the number of other sources.

(Refer Slide Time: 35:22)

So, this is the COOPER ZARE formula for the angular distribution of photoelectrons,

now let us take a special case, if you study photoionization of l equal to 0 and it does not

matter what the m quantum number is. Because, for l equal to 0, this term will vanish,

this is l into l minus 1, this term is 6 into l time something, so this will also vanish. This



is l plus 1 times l plus 2, so l is equal to 0, so this is 1 and this is 2, so you get twice

sigma square in the numerator and in the denominator l equal to 0.

So, 2 l will be 0 and this will be one time at rest, again l is 0 via, so this term is vanish

and you will have the remaining term, which is l plus 1, which is 0 plus 1, so it is again

sigma  square.  So,  you  get  2  sigma  square  over  sigma  square,  corresponding  to  the

transition dealt l is equal to plus 1. And the radial integral contribution, the quadratic

term in the radial integral in the numerator and the denominator cancel each other, it does

not matter what the value is.

So, no matter  what  energy you are talking about,  the radial  integral  is  a function of

energy of course, the phase shifts are functions of energy, it does not matter, whatever

they  are,  beta  turns  out  to  be  a  constant  number  which  is  equal  to  2.  So,  for

photoionization from the n s sub shell, it does not matter what is the value of n, 1 s 2 s 3

s 4 s whatever. For photoionization from the n s sub shell of any atom, beta must always

be equal to 2 and independent of the principle quantum number, also independent of n E.

And you can develop similar relations for other values of l, for special cases for example,

we have discussed Cooper minimum and when you have the Cooper minimum in the l

plus 1 channel for example. If the transition corresponding to delta l equal to plus 1, that

matrix element is going through 0, which is a Cooper minimum then sigma l plus 1 will

go to 0 over there. This sigma l plus 1 will also go to 0 and then you will have only the

remaining terms.

So, you can simplify the expressions for beta for special cases, where you have Cooper

minimum, either in the l plus 1 channel or even in the l minus 1 channel. But, typically

you have Cooper minimum in the l plus 1 channel, but that is a matter of detail that you

can  read  in  Fano  and  Cooper's  paper.  So  now, for  s  sub  shell,  if  you  look  at  the

expression for the differential cross section for the special case of l equal to 0, which is a

photoionization of the n s sub shell, when you put beta equal to 2 in this expression over

here and you get this simple cos square theta distribution.

So,  photoionization  from all  s  sub  shells  will  be  typically  given by this  cos  square

dependence. Now, there are of course further modifications, because we have used a non

relativistic  approximation.  So,  when  you  do  this  whole  analysis  using  relativistic

consideration, you will have transitions, two different final states, which are split by the



spin orbit interaction. And there will be a spin orbit splitting also in the initial state, so

there are some details that you need to consider.

And then the relativistic formula which we will not discuss is, what is given by Walker

and Waber and then we have still not taken into account, even after taking into account

relativistic interactions, you have to plug in other details, because there of course, are the

electron  correlations  in many electron atoms that  you must include.  So, you have to

include relativistic corrections, you also have to introduce many body corrections due to

the coulomb correlation.

And these are not included in the Hartree Fock or even in the direct Hartree Fock, which

is the relativistic self consistent field study. Even then in the relativistic self consistent

field, you do not have the electron correlation and you must take those into account. And

this is a matter of details, which goes beyond the scope of our discussion in this course.

But then they have been studies, in which these correlation have been included and the

relativistic many body correlations. Those expressions are developed by Johnson and Lin

in the random phase approximation, so some of these things are matches of details for

further study.

(Refer Slide Time: 40:32)

And then of course, one can also go beyond the dipole, because the dipole approximation

essentially by it is very name as we know it,  is an approximation.  Because, we have

truncated e to the i k dot r only equal to 1, is what gives us the dipole approximation. If



you take the next term, you already go beyond the dipole and this will already introduce

certain corrections. So, what kind of corrections as it introduce, you need to consider

matrix elements of some other operators.

It is not just a dipole operator, but you get the some other operators like the electric

quadruple operator and the magnetic dipole operator. So, these get into the picture and

you have to include corrections for these when you go beyond the dipole approximation

and what was left out of the COOPER ZARE formula. The COOPER ZARE formula had

only this dipole angular distribution, it had only this beta over 2 times 3 cos square theta

minus 1.

But now, you have additional terms and delta and gamma are now the non dipole angular

distribution asymmetry parameters. So, you have to go beyond the dipole approximation,

as  a  matter  of  fact,  even  at  low  energies  means,  we  have  argued  that,  the  dipole

approximation  is  a  good  approximation  for  low  energies,  it  is  a  high  wavelength

approximation. But then nevertheless it is an approximation and then even at low energy,

sometimes depending on the kind of measurement  you are carrying out and you can

carry out extremely high precision measurements.

Because, now the electronics is very powerful, the detection devices are very powerful,

light sources are very powerful. Typically these measurements are done at synchrotron

radiation laborites, where we have got a very powerful light source over a wide spectrum

of energies,  over large wave length regions.  And in India,  these experiment  are now

possible at the Indus synchrotron and that is only place, where we have synchrotron in

India.

But, there are good number of synchrotron in the world and many of these measurements

are carried out at various synchrotron laboratories. And you can actually measure these

non dipole angular distribution asymmetric parameters and the theory has to be good

enough to be able to correspond to those experiments. So, it has to include relativistic

effect, it also has to include the many body correlation effects. So, these are the non

dipole  angular  distribution  asymmetry  parameters  delta  and  gamma  and  here  is  the

reference, in which you can read further about it.



(Refer Slide Time: 43:15)

So, one can carry out measurements, which are really very interesting, there is a may

technique which is known as the time of flight spectrometer. And you can setup three

time of flight spectrometers and finally, these are measurements which experimentally

carry out. And you locate these detectors not over all space, because you do have to get

angular distributions, it does not mean that, you have to carry out measurements at every

single angle.

You can get all that information by carrying out measurements only at some of the angle

and then get information about everything else. So, how do you do that, in fact if you

have 3 analyses in the time of flight spectrometer, one at theta equal to 0 and pi equal to

90 degrees, another at 54.7 degree and phi equal to 90 degrees and another at 54.7 degree

theta and phi equal to 0 degrees. Then you can get all of these information how, because

what happens at theta equal to 0, sin theta vanishes, so the these terms go away.

And at 54.7, the cosine term gives you 1 over root 3 cosine of 54.7 is 1 over root 3, so

you got the square of that, so that one third, so one third times 3 will give you 1, so 1

minus 1 vanishes. And pi is 90, so cosine pi is 0 and what you get, you get d sigma by d

omega  equal  to  the  total  cross  section  divided  by  4  pi.  So,  by  just  carrying  out

measurement at just this one angle,  just one angle single angle,  you get a total  cross

section.

So, it is like magic, which why it is magic angle.



Student: ((Refer Time: 45:17))

Because, it depends on n and l quantum numbers, it is for a particular n l initial state, all

the terms are l dependent.

Student: ((Refer Time: 45:38))

Yes, the expression for beta, the angular distribution asymmetry parameter, it has got l

everywhere.

(Refer Slide Time: 45:52)

Look at this, so this certainly depends on the orbital  angular quantum number of the

initial state, but this is the non relativistic expression. In the relativistic expression, you

need the Kappa quantum number, not the l. So, beta of course, is l dependent, so the

differential cross section is for a given initial state, which is describe by n and l in non

relativistic quantum mechanics, which is the expression that we have. But then in the

relativistic  expression,  you  will  have  the  Kappa  quantum  number,  which  we  have

discussed, rather than the l quantum number.



(Refer Slide Time: 46:33)

And you have at this magic angle, you can get the total cross section by carrying out

measurement just at this angle, which is called as a magic angle. Then you can carry out

measurement at pi equal to 0 and at phi equal to 0, cosine phi will be 1 and then sin theta

which is sin of 54.7 is 0.816. But then this is the magic angle, so this term will vanish

and  the  dipole  terms  go away and you get  only  the  non dipole  angular  distribution

parameters from this.

So, sometimes this is very important analyzer, because you get the non dipole parameters

from this. So, if  by carrying out these measurements  intelligently by setting up your

detectors at very special angles, you can get a lot of information. So, you can get some

references over here in this paper.



(Refer Slide Time: 47:26)

So, I will give you some of the essential references then we conclude discussion on the

angular distribution of photoelectrons and also this unit. So, this is the classic paper by

COOPER ZARE, which I have uploaded on our course webpage already, the Walker

Waber  gives  you  the  relativistic  formula.  And  then  when  you  include  the  electron

correlations, then of course, you do not have exact solutions, when you have a many

body problem, you do not have exact solutions.

So, one of the very powerful method to include the electron correlation, even if it not

exact and there is no exact solution, but one of the very powerful techniques is, what is

called is a relativistic random phrase approximation developed by Johnson and Lin. And

you  will  find  the  expression  for  the  angular  distribution  asymmetry  parameters

developed in this paper by Johnson and Lin and with that, I will conclude. But then my

usual goodbye slide, I thought I will modify a little bit, because I found one interesting

slide on the internet, which will ensure that, you have understood everything that I have

said.



(Refer Slide Time: 48:40)

It will give you some confidence in what you have learnt, because I am sure you are

going to say yes, you do not want to continue the class. So, by saying yes, you will gain

some confidence, so thank you very much. If there any questions, if you are really not

understand something, please ask, I am very happy to answer, but otherwise say yes and

go with confidence that you have understood everything or also I repeat, questions.

Student: ((Refer Time: 49:17))

In the non relativistic approximation, this is the non relativistic, relativistically you have

transitions to the singular ((Refer Time: 49:27)). And you can have the matrix element

changing and beta can actually go to minus 1 at Cooper minimum in one of the two

chance, even for us, even for low Z atoms. So, sometimes you have relativistic effects

become extremely important means, the usual belief is, that they are important only for

high Z atoms, but even for low Z atoms.

Because, you have these two channels and the Cooper minimum in one channel, beta can

go to minus 1, it can also go to minus 1 in the region of photoionization resonances. So,

these are the several details that one can discuss and go beyond this. But, I hope that, this

will introduce you to original literature in this field, any other question.

Thank you very much.


