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Greetings, so with today’s class and the next one we will be concluding the unit 7, basically

on  Photoionization  Cross-Section.  And  we  will  also  get  expression  for  the  Angular

Distribution of Photoelectrons.

(Refer Slide Time: 00:28)

And we found that the differential cross-section,  which is the cross-section per unit  solid

angle, for a given direction of incidents with respect to which you describe this geometry.

And if you have the incident electromagnetic radiation having electric vector polarize along,

the unit vector epsilon and you set it up along this X axis, for our consideration k f is the unit

vector along the photoelectron momentum as it escapes the atom. Then you express it  in

terms of this matrix element modulus squared and essentially this is coming from the time

dependent perturbation theory, and an application of Fermi's golden rule as we discussed in

our previous class.



(Refer Slide Time: 01:23)

We also found that the differential  cross-section has got the dimensions of l square,  it  is

usually measured in units of mega bond, which is 10 to the minus 18 centimeter. And then if

you integrate it over various directions of polarizations and all the polar angles, then we find

that the cross-section certainly drops as the energy increases. So, the rate at which it drops

with  energy is  e  to  the  minus  7  by  2,  so  obviously, the  photoionization  cross-section  is

maximum at the photoionization threshold,  that is when the photoelectron energy will  be

roughly 0.

So, right at the threshold you expect the photoionization cross-section to be maximum and

then it would fall monotonically, according to this power law which is e to the minus 7 by 2.

Now, of course, a number of approximations gone into this, the bond approximation and there

are several other considerations, as a result of which there is a departure from this e to the

minus 7 by 2. Also the fact that the cross-section is not always decreasing monotonically, it

can go down and go up and there are these additional considerations that one really has to

talk about.  It  also goes as the 5th power of Z and has n to the minus 3, where n is the

principle quantum number. So, we will have a closer look and this matrix element, which

goes into the photoionization cross-section.
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And this matrix element is the matrix element of the gradient operator, so you write it in

terms of momentum operator, so you get a factor of i over h cross outside and you have got

the momentum operator inside the matrix element. And here you have got e to the i k dot r

which you can expand as a power series in r over lambda, k dot r is k r cos theta, k is 2 phi

over lambda. So, e to the i k dot r is actually a power series, if you take the leading term you

have e to the i k dot r nearly equal to 1, which is called a dipole approximations.

And I will explain why it is called as a dipole approximations, so tentatively we will use the

term dipole  approximation,  and  very  quickly  we  will  recognize  why  it  is  called  dipole

approximation. And this is will work for low energies for large wave lengths, and this will

work for low energies, which are not all that low, they can this works all the way up to about

5 or 6000 electron volts above the ionization threshold. Although there are exceptions and

one has to make corrections for them.

And if  you now set this  e to the i  k dot r  equal to 1,  then you have an equality in this

approximation in which you no longer have to write, the e to the i k dot r explicitly, because it

has main approximated to unity that is set equal to 1. So, the last expression that you see over

here is appropriate within the dipole approximation, although one has to go beyond the dipole

approximation, but that is the matter of detail.
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So, now, we have an expressions of the dipole approximation for this matrix element, which

enters our expression for the differential cross-section. And although we find that this is the

matrix element of the momentum operator, and momentum in proportional to velocity this

formal the matrix element sometimes called as the momentum form or also as the velocity

form. But, you can also write it in another form, which is known as the position form or the

length form and the reason you can do it, is because a position operator and the momentum

operator, these two operators have got well-known commutation relations.

So, you can convert from one to the other, and this is the commutation between r and P

square, the reason I am considering the commutation between r and P square is because in the

Hamiltonian you have got the potential energy operator, which depends on r. And you have

got  the  kinetic  energy  operator,  which  depends  on  P  square.  So,  if  you  consider  the

commutation between r and P square, you find using basic commutation relation that this is

equal to twice i h cross P for each component k, k going from 1, 2, 3 for X, Y, Z.

And that tells us that the Hamiltonian would have a commutation relation with the position

operator, which is given by the commutation of r with the kinetic energy operator it will of

course, commute to the position with the potential energy operator, which depends on r alone.

So, it would commute with the potential energy operator, and the commutation with P square

would give us i h cross over m P k for the kth component, so this matrix element, which is the

matrix element of P k, so this is the matrix element of the kth component of the momentum



operator. So, this can be written in terms of the matrix element of the commutator of the

position operator and the Hamiltonian, scaled by this m over i h cross which is coming from

here.
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So,  you can write  the matrix  element,  in  terms of the matrix  element  of  the momentum

operator, or effectively in terms of commutator x with H 0. And now you take the x H 0

commutator explicitly, which is x as 0 minus H 0 x, so you will get two terms in the right

hand side, but then i and f are both Eigen states of the unperturbed Hamiltonian H 0. So,

when H 0 operates on f, you will get E f times f, and when H 0 operates on i, and it would

operate on either sides it is imation operator.

So, you will get E i times the state vector i and using this you find that this matrix element is

equal to that this m over h cross square, and you get E i minus E f and you have this ((Refer

Time: 08:24)) matrix element. So, the matrix element of the momentum operator this is the

quantity  which  we  want  to  evaluate,  but  equivalently  we  can  also  evaluate  this  matrix

element,  which is  the matrix element  of the position operator  rather  than the momentum

operator.

The  differences  that  when  you  have  the  momentum operator  you  will  have  to  take  the

derivative  of  the  function  on  which  it  is  operating,  and  then  carry  out  then  integration,

whereas for the position operator you will only multiplied out, because both of this are space

integrals.  But,  when  getting  the  space  integral  in  one  case,  you  will  have  to  take  the



derivative of the function on which it is operating, so which is what you will have to do in the

momentum operator.

(Refer Slide Time: 09:19)

And in either case you must get the same result, because there is the complete equivalence

between  the  matrix  element  of  the  momentum operator,  with  the  matrix  element  of  the

position  operator. All  you have  to  do is  to  multiply  by this  i  m times  the  frequency of

transition, this is the circular frequency, because you get the energy over h cross. Now, these

two forms of the matrix elements are called as the momentum form in the length form of the

matrix element.

And it is a matter of rate pride with which I like to report this particular thing, because the

different form of the matrix element, the length form the momentum form and in fact, there is

a third form also, which is known as the acceleration form. And this analysis was done by

Chandrasekhar, and this is reported in the astrophysical journal, volume 102. And this is a

very beautiful paper by S. Chandrasekhar he is of course known, very well known for a lot of

excellent work in astrophysics. But, this is also at this goes back to Chandrasekhar and his

contribution spectroscopy.
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So, you will nevertheless need to recall a discussion from unit 4 on Hartree-Fock, because

whereas in the for the hydrogen atom, the length form in the momentum form will give you

the exact identity, it does not matter which form you are using. For a real atom when you

extend this analysis for many electron systems, and you carry forward the formulation from

single electron atom to many electron atoms, and use the same kind of formulation. You have

to take account of the fact that, in a real atom there are large number of electrons, and column

interaction between them is what needs to be handled correctly.

And when you take into the account the column interaction and also the anti symmetrical the

wave function, your lead to the Hearty-Fork equation, and this is the Hearty-Fork equation

that we discussed in the unit 4. And let me remind you that there are two potentials over here,

one is the direct potential in which q gets integrated out. So, this the direct potential is then it

depends only on the coordinate q 1, but the exchange potential is a global potential, because

here if you integrate 2, you have to keep track of the fact that this is u i and use this u j.

So, you really need to solve this equation for all the electrons, so this is the potential which is

the global potential, it is not a local potential. And since this is not a local potential you have

the Hearty-Fork potential which is some of these two terms, the direct potential and exchange

potential. But, the exchange potential makes the Hearty-Fork equation looks very similar to

an Eigen value equation, but as we discussed in unit 4 it is a deceptively simple form, it is not

an Eigen value equation. And the reason it is not an Eigen value equation, is because of the



nonlocal potential. Now, what is the consequences of the non local potential in the present

context.

(Refer Slide Time: 12:34)

The non local potential will cause a breakdown of the equivalence between the momentum

form, and the length form of matrix element. Because, the equivalence between these two

forms that you just have a multiplier i m omega, and this is the only thing which connects. If

you just multiply the length form by this factor i m omega, you should get the momentum

form  this  thing  assumes  that,  the  position  operator  commutes  with  the  potential  energy

operator.

And the potential energy operator, if it is nonlocal it does not depend just on the argument r,

but it also depends on r times. So, the position operator will not then commute, with the

nonlocal potential and you will not then get an equivalence between the length form and the

momentum form of the matrix element. So, when you do the calculation, you will get one

result if you use the length form, you will get another result if you use the velocity form, so

this are certain details.

The other thing that I mention is that, if you just look at this e to the minus 7 by 2 law, you

get the feeling as if you know the cross-section, the photoionization cross-section will have a

certain maximum value of the threshold. And from there on it will only fall monotonically,

according to e to the minus 7 by 2, so there may be you will expect that, there will be some



corrections it may not be strictly e to the minus 7 by 2, but at least qualitatively it will always

decrease with the energy.

Now, even qualitatively this  does  not  happen necessarily  in  all  cases,  even in  the  single

particle approximation, and the reason it does not happen is because the cross-section it falls

goes through a local minimum raises again and then falls.

(Refer Slide Time: 14:38)

So, this local minimum is what is called as Cooper minimum, and the reason it happens is

because  of  a  very  simple  reason  which  I  will  mention  in  brief  that,  if  you  look  at

photoionization of neon atom. Now, neon as got tan electrons, so you have 1 is to 2 is to 2 P

6, so 2 P is the outer shell of neon, and you consider the photo ionization of the 2 P electrons

from the neon atom, which are being knocked out into the continuum by absorption of the

electromagnetic energy.

So, now, let us have a look at the 2 P wave function, the 2 P wave function, if you look at the

matrix element of the position operator all you have done is to sandwich the position operator

between the initial state, which is 2 P and the final state which is the continuum what it is

continuum P to d transition. So, let us consider dipole transitions from 2 P to d that can also

be a transition from 2 P to s, but the dominant contribution comes from 2 P to d, so we will

consider the 2 P to d transition.



And this is the d continuum wave and to get the none zero matrix element over here, this is

the matrix element which is contributing to the photoionization cross-section. This matrix

element is coming from the overlap of the 2 P wave function with the continuum d. Now, if

you consider instead of neon just the next atom in the periodic table just below neon, which is

argon which is a very similar atom, it is chemical property is very similar both are inert gas

atoms. But, then there is a significant difference in the nature of the wave function of the

outer 2 P wave function for neon, and the outer 3 P wave function for argon.

What is the difference 3 P as got one node, the number of nodes are radial function has as we

studied earlier is n minus l minus 1, so for n equal to 2, 2 P is node less, but n equal to 3, 3 P

has got one node. So, here you see that 3 P goes through a node, and now if you look at the

overlap between the continuum d state, and the initial state, for neon it is positive whereas,

for argon this overlap is negative. And then as the energy increases the continuum d state will

go more and more into the core, and then all there will be more oscillations of the continuum

d state in a region.

And at a certain point, the positive contributions of the overlap and the negative contributions

of the overlap will actually cancel, and from this negative later on you can also get a positive

sign  of  the  matrix  element.  So,  the  sign  of  the  matrix  element  of  position  operator  will

actually change as a function of energies in the case of argon, but that is not going to happen

in  the case  of  neon.  So,  what  does  it  do to  the matrix  element,  matrix  element  actually

undergoes a change in sign, and when it undergoes a change in sign it will go through a 0;

and when it goes through a 0, the matrix element is 0 there will be no photoionization.

So, the cross-section will actually go to a 0, but then as energy increases again the oscillator

strength build up, now this is what is called as a Cooper minimum it is not always l this

strength 0, but that is again a matter of detail. Because, you can have a transition into various

channels not just between 2 P to d, but you also has transition P to s. Then again 2 P is not a

single state, you have 2 P 3 half and 2 P 1 half and then from 2 P 3 half you do not have

transitions to a single d state, you have transitions to two different d states.

So, you will have a transition from 2 P 3 half to d 5 half 2 P 3 half to d 3 half and this are the

channels in which photoionization will take place. And the cooper minimum in each channel

will not be necessarily at the same energy, so the cross-section itself will not be necessarily 0,

but it will certainly be a minimum and this is what is called as cooper minimum.
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So, this is a picture of matrix element for neon it is positive and then eventually it goes to 0,

as electron energy photo electron energy increases, in the case of argon and krypton also,

certainly the matrix element eventually goes to 0 at high energies. But, then it starts out as

negative goes through a 0, cuts the 0 line over here turns positive and then goes to 0, so argon

and krypton will have a cooper minimum, but not neon.

(Refer Slide Time: 19:43)

So, here is an example of copper minimum, in which you see that the photoionization cross-

section, this is a calculation of the mercury 6 s, you see that the photoionization cross-section



has  dropped,  it  goes  through a  minimum and then it  raises  gain.  So,  it  is  not  always  a

monotonically decreasing function of energy.

(Refer Slide Time: 20:03)

So, this is what we have found so far, and it is coming because we are looking at the matrix

element in the dipole approximation, in which we consider the length and velocity or length

and momentum forms of the matrix element. So, this is the expression for the matrix element

and I written superscript d for the dipole approximation, which is what we have got. But, if

you take the next term over here, so e to the i k dot r, if you take the next term you will then

get corrections to the dipole approximations. And then you will get higher multi poles and

from dipole you will go to quarter poles and so on. So, you have Cooper minimum also in the

quarter pole approximations, so this is the quarter pole cross section of the same atom which

is mercury.
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And you have got  similar  phenomenology governing the  dynamics  of  photoionization in

higher multi pole approximation as well, here the cross-sections are extremely small, so this

is like 10 to the minus 5, this is on logarithmic scale. So, this is 10 to the minus 5 mega

bonds, this is 10 to the minus 6 and these are extremely week cross-section. So, usually they

cannot be detected, but there effects can be seen through other measurements like angular

distribution of the photoelectrons, so it is nevertheless an important property to investigate.

So,  now let  me show you the  result  for  mercury  4 f  and in  this  case  you have  a  local

minimum over here.

(Refer Slide Time: 21:41)



And it would be tempting to suspect that this is a Cooper minimum, but then it is not, the

reason it is not a Cooper minimum is because your initial state is 4 f and from 4 f you can

have dipole in the dipole approximations. Transitions where delta l is either plus or minus 1

and delta j is plus or minus 1 or z, so these are the dipole selection rule that we get from

Wigner's. And using these selection rules, that the initial state which is 4 f spin orbit double it,

so you got 4 f 7 half and 4 f 5 half, there are two levels.

And then you can have transitions with under these selection rules either to g states or to d

states, but then again to continuum g states, which will also be spin orbit split. So, now, you

consider all channels from the initial spin orbit double it to all possible final states, which

also  realistically  split  and  consider  all  transitions,  which  are  possible  within  the  dipole

approximations.  So,  it  is  not  just  a  single  channel  any more,  but  you have a  number of

channels, so you have three channels which go from f to g, and another three from f to d.

Now, what happens is that the centrifugal barrier the g waves is much larger, you know what

centrifugal barrier is, in the hydrogen atom radial equation we had this term l into l plus one

by r square. So, that is the one which is refer to as the centrifugal barrier potential it is the

shudder potential, it comes because of the reduction of three dimensional problem to this one

dimensional radial equation. But, then it will have real effects and this means that as a result

of this centrifugal barrier, which is repulsive potential.

The continuum final states, which will have larger l that will not be able to penetrate into the

core and I had discussed this also in the context of scattering, that the continuum states, if

they have larger of angle of momentum, they will not be able to penetrate into the core. But,

then  the  penetration  will  increase  if  the  photoelectron  energy  or  the  photonenergy  will

increase. So, the cross-section will  be minimum at the threshold,  but as you increase the

energy at which photoionization is taking place, then the cross-section in those channels will

actually go up.

So, in the case of mercury 4 f photo ionization, you have the 4 f to g photoionization it

increases from the threshold, whereas the photoionization from 4 f to d waves that decreases

monotonically. And the sum of the cross-section is what you see from integrating the cross-

section and all of this x channels, so it starts dropping down from the cross-section goes to a

minimum; and then raises again, because oscillator strain picks up in the other channel.



So, this is not the Cooper minimum, but then it has a similar behavior, so notice over here

that  the  photoionization  cross-section  is  not  monotonically  decreasing,  it  monotonically

decreases  only  beyond  this,  but  there  is  a  delayed  maximum.  This  is  because  of  the

centrifugal barrier effect, and there is a local minimum which is coming because there is

competition between oscillator strengthen f to d channel and f to g channels. So, these are

some very interesting details, which one as to be concerned with, and we cannot apply these

are all without additional considerations. So, let me now remind you the definition of the

oscillator strength that we had in the classical model.

(Refer Slide Time: 25:47)

And now we are using the quantum model, in which we are considering explicit transitions

from quantum state E i to a quantum state E f. So, in this  case the quantum mechanical

definition of the oscillator strength is now revised, and it is given in terms of this dipole

matrix element. So, this is the definition of the quanta mechanical oscillator strength, and in

is much as this classical oscillator strength definition, give you an integral of the oscillator

strength over all the frequencies to be equal to 1. In the quantum mechanical definition, you

have this omega which is the difference between E f and E i.

So, this can be either positive or negative depending on whether you talking about absorption

or emission. So, the oscillator strength can be either greater than 0 or less than 0, which

allows for whether you talking about absorption or emission. And similar to a sum rule over

here,  this  is  the  sum rule  that  all  of  the  oscillator  strength  when  you integrate  over  all



frequencies adds up to 1. So, the quantum mechanical oscillator strength also adds up to 1,

this is known as the Thomas-Ritchie-Kuhn sum rule and we will derive this rule now.

(Refer Slide Time: 27:00)

So, this is by definition of oscillator strength and this is for position vector, let me write the

corresponding expression for a single component, one of the three components of the position

vector like x. So, this is what this definition Boyze on to for the X component, and similarly

there are corresponding expressions for the Y component and the Z component.

(Refer Slide Time: 27:31)



Now, let me take the expression for the X component, this is the modulus squared for this

matrix element, so I write this modulus square in this form, which is i X f times it is complex

conjugate. Now, we already have equivalence between position form and the moment form,

so using this form we can write these elements in momentum form. So, I have written the

first  of  these  elements  in  terms  of  the  momentum  operator,  so  one  is  in  terms  of  the

momentum operator, the other is still if the terms of the position operator.

And this is the process that we are talking about that you have got two quantum state c i and e

f and u talk about the energy difference, but of course the omega i f is equal to minus omega f

i, because one energy is above the other. So, the two frequency which are coming here omega

f i and omega i f, so this have got opposite sign. So, they do the numbers cancel each other,

but they leave a minus sign that you must track of, and the m of course, in the denominator

cancel this m and this is what you get for the oscillator strength.

So, now you have this expression, the matrix element for this can also be written in terms of

the  momentum  operator.  And  if  you  take  into  account  this  same  relationship  and  the

equivalence  between position,  and position  form and the  momentum form of  the  matrix

element, you have this again omega i f and omega f i over here. So, you will get again a

minus 1 psi and then the common factor like m cancel out and then you are left with a rather

simple expression.

So, this is got a very similar form, but it is important to keep track of these details, because

you will see that it leads as to a very important result. So, this is the form that I will like you

to keep track off, I am going to use it on the next line and then also I am going to use this

form which is completely equivalent to this.
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So, this is the last from that we got, and all I have done is to write this i in the numerator, so

now it because minus 2 i over 3 h cross, now this is the form which I had on the previous

slide,  and  both  of  these  forms  are  completely  equivalent.  So,  I  can  write  the  oscillator

strength, as half of what is over here plus half of what is over here, because both are exactly

the same. So, before I do that let me take bring this minus i also to the top and then I change

the sign, so this is 2 i over 3 h cross. And now I can write the oscillator strength as half of this

expression in this red loop, and half of this expression in the red loop.

So,  if  I  add these two pieces add half  of each of  this  pieces,  I  should get  the oscillator

strength, now when you take half the 2 3rd will become 1 3rd in both, so you get this 1 3rd

and this is the some of these two terms. And this allows us to this is the matrix element

corresponding to the transition of from i to f, but now I can sum over all the final states. So,

carry out a summation over all the final states and this is a summation of over all the final

states of the left-hand side, also on the right-hand side.
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And what you have on the right side, when you can carry out a summation over all the final

states you get the unit operator over here, that is the resolution of unity. So, the resolution of

the unity, when you consider all the final states allows you to recognize that here you taking

the difference between these two terms. And the operator whose matrix element is under

consideration is nothing but, the commutator between position and momentum, it is P x X

minus  X  P  x  and  that  is  something  that  you  know  from  the  Heisenberg  principle  of

uncertainty, which is i h cross.

So, plug it in and when you put this term over here, you find that all of these oscillator strains

when you sum over all the final states gives you 1 3rd, but that is only for the X component,

you get a similar result for the Y component and similar for the Z component. So, when you

add the three pieces for the X, Y and Z, you find that there is a some rule very similar what

you had seen in the classical case and this is the Thomas-Ritchie-Kuhn sum rule as it  is

called. Now, it is rather exciting to observe that we arrived at the Thomas-Ritchie-Kuhn rule,

using the uncertain defensible.

So, if you know the uncertain defensible, suppose you can get the Thomas-Ritchie-Kuhn rule

on the other hand, if you have reasons to believe that the sum rule should be correct, but did

not know the uncertain defensible. And ask a question, what is it that will make the sum rule

valid, the answer would be that position and momentum operate is do not commute, and they



are commutator is actually equal to minus h cross. This is in fact, exactly how Heisenberg got

it, Heisenberg was working with a large number of problems in involving, and so on.

He was working with spectroscopic some rules, and this was one of the inputs which lead

him into discovering the non-commutation, between the position and momentum operator, so

you will find a reference to this formal invoiced book, so this is really very nice.
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And now let me go back to this definition of oscillator strength in quantum mechanics, this is

for one electron atom, for N electron atoms, you can sum over j going from 1 through N for

all the electrons. Because, they will be a similar oscillator strength for each electron, and

when you sum over these terms for all the N electrons, then you find that this summation will

be equal to N, not equal to 1. So, if N is equal to 1 you get the Thomas-Ritchie-Kuhn sum

rule as we derived, but then for N electrons it  will  give you N, which is the number of

electrons.

So, these are the sum rules and notice that, there is a 2 m over h cross over here, so I can

rewrite this sum rule, which is this, which is the summation of all of these terms. But, if I

write this sum rule without this 2 m over h cross factor, so sum over f omega times the

modulus square, this will obviously be equal to h cross over 2 m. So, you can write this as a

sum over f of omega to the power 1 of the modulus square, this same thing except that and

making all of us conscious of the fact, that this is the first power of omega.



And you can construct such summations for other  powers of omega as well,  like omega

square,  omega cube,  omega to the power N, and there are many several other some rule

which I will not go into details for this course. But, there are large number of some rules, so

we have got only the first one which is Thomas-Ritchie-Kuhn sum rule, but there are other

sum rule for other moments. So, these are called as moments of the frequencies of omega to

the  power  1  is  what  we  are  considered,  but  there  are  higher  powers  also  that  can  be

considered.

(Refer Slide Time: 35:52)

So, this is what we have got that, this is the expression for the transition rate in the dipole

approximation, we arrived at some simple expressions, this is the dipole approximation. And

in which e to the i k dot r is set equal to 1 you have got epsilon dot r, so that is cosine term,

which is cos square omega. And now you have got e square in the numerator and the square

of the matrix element of a position operator, that is the dipole, do you see that, because you

have got e square and d.

So,  you can write  this  in  terms of  the square of  the dipole operator  and this  is  possible

because you approximated that e to the i k dot r equal to unity, so whenever you set e to the i

k dot r equal to unity, when you going to do it, you will do it for large wave lengths. When r

over lambda, e to the i k dot r which is a power series r over lambda can be truncated at the

leading term, which is equal to unity, so that is a low energy approximation, it is called a

dipole approximation for the reason that is now obvious to you, so this is why it is called a



dipole approximation. And you can certainly integrate this out over various angle, if you take

the average of cos square gamma over all the different angles, then you get an expression. So,

you get 1 over 3 for the dipole approximation for this transition rate.

(Refer Slide Time: 37:48)

And this just for the sake of completeness, I will show that these expression correspond to

what you might have learned as Einstein coefficients A and D. So, those are directly related to

this, because you would expect them to be related to the absorption and emission process. So,

you have got in the dipole approximations this transition rate per unit energy density, if low is

the  energy density  at  frequency omega,  then  you have 2 divided by rho,  but  the  energy

density is intensity over the speed of light.

So, you got this i over c in numerator as well as in the denominator, so these terms will cancel

each other and you are left with this transition rate per unit energy density, and this is what

corresponds  which  is  defined  as  Einstein's  B  coefficients.  So,  this  is  the  Einstein  B

coefficients for stimulated absorption from i to f.
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Then you have a similar term for the emission also, but then emission can be because of two

processes, either spontaneous or simulator. So, for spontaneous emission you have got a rate

which depends on the number of atoms in the final state multiplied by rate coefficient, which

is the Einstein's a coefficients. And then for the simulator process, you will have the rate

determined  not  just  by  this  number,  but  also  by  the  density  of  radiation  field  at  that

frequency; and another coefficient which is the third Einstein's coefficient which is B i f.

So, there are three Einstein coefficients to talk about, and these are the three coefficients and

then the rate at which the population will change is determined by number of atom’s per unit

time making the absorption transmission i to f, which will be given by this rate expression

with the absorption.
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And now you have these expressions now both for absorption as well as emission, and if have

equilibrium then these two rates will be necessarily equal. So, you just set them equal to each

other, and you are find that this ratio is given by the ratio of the population, which is given by

an exponential factor depending on the absolute temperature of the system.

So, this  gives  you an expression for the ratio  of two populations and you can swap this

equation play with this, and get the expression for the energy density and this frequency.

What must this correspond to, it must correspond to Planck's law, it must be the Planck's law,

and this is the Planck's law. So, now, if you required if you demand equivalence between this

expression and this expression, it is obvious that it will hold good if B i f is equal to B f i and

A i f is equal to h cross omega cube over this factor times the B coefficients. So, this the

relationship between the three Einstein coefficients.

So, with this I will conclude today’s class, if there are any questions I will be happy to take

otherwise, we take it from here, we need one more class in which I will get the expression for

the angular distribution of the four electrons.

Student: (( ))

Well as long as you can make an approximation that, the potential is a local potential, so if

you a have nonlocal potential, so in the Hearty-Fork you will not get the equivalence between

the length form and velocity form. However, if you make a local density approximation to the



Hearty-Fork, like the slater exchange approximation or any local density potential, so if you

make a local density approximation to the Hearty-Fork exchange potential, then that effective

potential will again become local and that is required for the equivalence between the length

form and velocity form.

So, typically the equivalence holds good for local density potentials, or other potentials to

which you make a density approximation, but then there are some other situations also, like

when you do many body theory. If you do a complete many body theory using the random

Farris  approximation  for  example,  you do get  equivalence  between  the  length  form and

velocity form, but that is different reason. It is not because the potential is local, but it is for

different reason, so there are some other situations also, any other question.

So thank you.


