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Greetings, we will continue with the unit 7, and our task at this is to get acquainted with

atomic photoionization process and how to get the, if not all the measurable parameters at

least  some of  the  important  ones.  Like  I  said  that  when  you perform a  photoionization

experiment,  when always  likes  to  do  a  complete  experiment  and then  you can  certainly

measure the cross section, which is related to the transition probability.

You can also measure the angular distributions of the photoelectrons and then you can also

measure the spin polarization parameters of the photo electrons. And only of when you make

a measurement of all of these you really do, what is called as a complete experiment, because

all of these measurements are compatible with each other. So, we will set up the theoretical

frame work at least to the extent of discussing, the photo ionization cross section, and also the

angular distributions of the photo electrons.

(Refer Slide Time: 01:19)

 

And  in  our  previous  class,  we  discussed  that  photoionization  of  course,  is  because

electromagnetic energy is absorbed by the atomic system, by the quantum atomic system.

And therefore, the photoionization cross section will be related to how much of power is



pumped into the atomic system, by the electromagnetic field, so that is a parameter of interest

from the point of view of the classical description of this process. And we will conclude our

discussion on the classical description of this process and then today we will also get into the

quantum mechanical description of the photoionization process.

So, we know that photoionization cross section has to do with the photoionization probability,

and this will naturally be related to how much of power is pumped into the quantum atomic

system, by the electromagnetic field. So, we obtain this expression in our previous class,

which  is  to  evaluate  the  average  power  which  is  pumped  into  the  system  a  by  the

electromagnetic field.

And we found that it is related to the imaginary part of the atomic polarizability, so this is the

connection that we got in our previous class. And it is an important one, because a lot of

literature on photoionization process will refer to atomic polarizability, will refer to oscillator

strengths and so on. So, I am preparing the background, so that you can become familiar with

the literature in this field; and the polarizability off force is then related to some macroscopic

properties like susceptibility. And then of course, there is the quantum mechanical expression

for the photo absorption cross section, which I have also we will begin to discuss today itself.

(Refer Slide Time: 03:12)

So, this is the expression for the atomic polarizability, alpha is the a polarizability, d is the

dipole moment and we found that, if you have you divide the modulus of the dipole moment

by the modulus of the electric intensity, to get this atomic polarizability. And if you have asset



of  number  of  atoms  per  unit  volume  in  a  dilute  atomic  gas,  then  you  will  have  the

susceptibility, which is scaled from the atomic polarizability by the number of atoms per unit

volume. So, these are usual macroscopic expressions and then the susceptibilities also related

to the polarization properties of the medium.

(Refer Slide Time: 04:03)

So,  now  what  I  have  done  is  to  multiply  and  divide  by  the  complex  conjugate  of  the

denominators, so that I can extract the imaginary part of the atomic polarizability. So, that is

the quantity of interest as we have already recognized, so I have just multiplied and divided

by the complex conjugate of the denominator. And then I can extract the imaginary part of

this quantity, which is now this is the real part, so the imaginary part of the numerator is this

gamma omega, gamma is connected to the damping coefficient in our oscillatory equation.

And you can play with these terms a little bit, recognized that this is just the difference of two

squares, so you can write this as a plus b into a minus b and there is a whole square here.



(Refer Slide Time: 05:03)

So, you can rewrite these terms in somewhat simple form and what we do is to extract the

omega 0 plus omega has a common factor, from these two terms. So, the second term in the

denominator as to be divided by this omega 0 plus omega whole square, because that is the

term which is taken as a common factor between these two terms. So, outside over here, the

sum of these two is not very different from twice a natural frequency, inside over here the

difference matters and we have to keep track of that.

This is the usual approximation scheme that one employs, that you can always ignore small

numbers, but only when they come together as additive terms to large numbers, so that is all

they raise to it. So, now near the natural frequency, you have these frequency terms omega,

omega 0 is to be nearly equal and then you have got an omega 0 square here, there is an

omega here, so you get 1 over omega as a common factor, and then the rest of the factor

which appears in the expression for the imaginary part of the atomic polarizability.



(Refer Slide Time: 06:16)

Now, notice  that  this  is  related  to  the  actual  power,  which  have  been  pumped  into  the

quantum atomic system by the electromagnetic field. And you have a very simple expression

which is coming from the imaginary part of the atomic polarizability, so you plug in this

imaginary part of that atomic polarizability expression, and get this power which is pumped

in, in terms of this. Now, some of you might already recognize the form of this function, so I

will just draw your attention to that, but you will quickly see what exactly it is.

I have also referred to the relationship that you will find in Fano and Rau's book, which

comes  from chapter  2  of  this  book.  Because,  one  of  my  objectives  is  to  help  you gain

aquatints with what is the most common literature in this field, and Fano and Rau book is a

classic one in this particular context.



(Refer Slide Time: 07:19)

So, if you look at this form, you probably already recognize that this is a delta function, now

the Dirac delta function has got very many manifestations, there are many representations of

the Dirac delta function. Not just this square block, you have got sinusoidal expressions, then

various  there  are  several  shades  number  of  functions  which  confirm  to  the  functional

definition of a Dirac delta function, and you will find most of them in ((Refer Time: 07:55)).

So, this has a form which is similar to a Dirac delta function not surprising, because you

know that the maximum power absorption is going to take place at the natural frequency of

the oscillators. So, what we do is to introduce a definition of what is called as an oscillator

strength, and this is the term which gets used in, which is borrowed from classical oscillator

model into quantum mechanics as well. So, the classical oscillator a model it is defined, in

this  particular  form  this  is  the  definition  of  what  is  called  as  the  oscillator  strength

distribution,  notice  that  it  is  d  f  by  d  omega.  So,  it  gives  you  some  sort  of  a  spectral

distribution over various frequencies, so this is the definition of what is called as an oscillator

strength.



(Refer Slide Time: 08:51)

And using this  definition,  you can  write  the expression  for  the average  power, which is

pumped into the atomic system by the electromagnetic field, in terms of what we have now

defined as the oscillator strength. So, the oscillator strength appears explicitly in this, and

eventually  it  will  get  related  also  to  the  photo  absorption  cross  section.  So,  this  is  the

definition of the oscillator strength, and it is been defined in a very peculiar manner.

(Refer Slide Time: 09:24)

And that is a god reason for it which will become transparent very soon, that as you notice

that this gives you the spectral distribution of the oscillator. And the photo ionization cross



section,  which  we  will  get  from  the  quantum  mechanical  expression,  we  will  get  into

discussing that very soon, it will be related to this average power, which is pumped into the

system per unit intensity of the electromagnetic field. Because, you need to normalize it in a

certain  way,  so  this  is  the  relation  that  we  will  extract  from  our  quantum  mechanical

description.

In the mean time I will let you find the dimensions of the power, and the intensity and find

out what are the physical dimensions of sigma that you expect. And you must get them from

both the quantum mechanical formulation, as well as the classical formulation.

(Refer Slide Time: 10:26)

So, this is your oscillator strength and it is very similar to a Dirac delta function, this is the

exact expression for the Dirac delta function, which satisfies the usual defining criterion of a

Dirac delta. So, you see the connection between the Dirac delta and the oscillator strength,

notice that there is a factor of 2 over here. So, now if you want to integrate the oscillator

strength over  all  the frequencies,  you will  obviously, integrate  from frequency 0 through

infinity.

So, that you have an integral over the entire frequency range, but you have got a factor of 1

over 2, which is included in the Dirac delta. But then you can extend this integration range

from 0 to infinity to a minus infinity to plus infinity, and you can do it without any assail,

because  that  the  electric  intensity  of  the  radiation  field  was  0  at  time  less  than  0.  And



similarly in this context, if you extend this range of integration from 0 to infinity to minus

infinity to plus infinity, all you have to do is to take half of that integral.

So, this is a straight forward extension of the range of integration by doubling the range of

integration and then taking a factor of half. So, you take 1 half of this range of integration,

but now you have got a factor of 2 here and another factor of 2 over here, which will cancel

each other.

(Refer Slide Time: 12:10)

And what you get is the integration of the delta function over the entire range minus infinity

to plus infinity, so you get normalized value which is plus 1, essentially what you discover is

that the oscillator strength has been defined very appropriately. Because, by choosing this

definition as 1 over pi times this factor, we find that the oscillator strength is so defined, this

is  the  choice  that  we are  made.  And it  is  a  very appropriate  choice,  because  when you

integrate it you get unity, so that is how it has actually been introduced.



(Refer Slide Time: 12:55)

So,  now  we  get  into  the  quantum  mechanical  treatment,  because  now  we  have  the

terminology from the classical model of a electrons, which are treated like oscillators in the

atomic system, which are bound to some equilibrium positions by spring constant. There is a

dissipation and we used essentially, the model of a classical damped driven oscillator to get

these expressions. So, now, we get into the quantum mechanical treatment, and you would

have  done  part  of  this  in  your  quantum  mechanics  course,  in  the  context  of  the  time

dependent perturbation theory.

Because, that is the tool which we are going to use, but I will go through it very quickly, so

essentially we will have a simple treatment, in which we will make use of the non-relativistic

Schrodinger equation, we will work within the approximation of independent particle models.

So, that all the many body effects and correlation, and all these other details that we know are

important, they will have to be added on, but we will first develop the basic formalism, for

the simple one electron model using the non-relativistic Schrodinger equation.

And then we can  always  plug in  additional  a  details  like,  relativistic  effects,  correlating

effects  and  so  on.  So,  all  these  many  body  effects,  correlation  effects,  configuration

interactions and so on, will then after we added on later to our consideration, but this is just

the starting point.



(Refer Slide Time: 14:26)

So, our quantum mechanical problem here is this, that you have got an atomic system at there

is a certain coordinate system, which I will make use of, and this is in the presence of an

electric driving field, which is represented by this force F, which is a time dependent. This is

the space and time dependence of the force, essentially you have got the real part which is the

cosine term, and the electromagnetic energy is incident in a certain direction, and I choose

this direction of incidence to be the z axis.

And as a result of photo absorption, one electron let us say is not out of the atomic system,

and it shoots off in what we call as a unique exit channel, in terms of our in going way

boundary  conditions.  So,  it  shoots  off  in  a  particular  direction,  there  is  a  certain  unique

direction in which it takes off.



(Refer Slide Time: 15:26)

And let us say it takes off along a polar angle theta, and an iso methyl angle 5 with respect to

the z x plain, so we will use the cylindrical symmetry in this particular geometry. So, this is

the physical process that we are going to we talking about, it takes off with momentum h

cross k, so this is the photoelectron momentum. And this is the photo electron which is not

out of the atomic system, as a result of absorption of one quantum of electromagnetic energy

one photon.

So, we consider again for the sake of our initial consideration, that the electric component of

the electromagnetic field is polarized along the x axis, so this unit vector e is the same as the

unit vector along the x axis which is e x. So, this is our geometry with reference to which we

will develop the basic formulation, subsequently we can extend this treatment to un polarized

light, or any other state of polarization.



(Refer Slide Time: 16:32)

So, this is what is happening in photo absorption, you have got a certain initial state energy E

0, and eigen state represented by psi 0 and the photo absorption raises it to a certain exited

state. Now, the initial level is sharp and the final state will have a certain width, now this is

characteristic of the un certainty principle. But, uncertainty principle you have to remember,

this is the energy time uncertainty and I did mention this in one of our earlier discussions as

well,  that the energy time un certainty really appears on a very different footing than the

uncertainty for position and momentum.

Because, there is no operator for time in quantum mechanics, when you consider q and p as

position  and momentum,  linear  position  and liner  momentum or  angular  momentum and

angles, any canonically conjugate pairs can be taken as q and p. But, these are dynamical

variables, which are quantized for which you have operators and then q and p in quantum

mechanics  come  out  as  eigen  values  of  the  position  operator  or  eigen  values  of  the

momentum operator and so on. You do not get time as an eigen value of an operator for time,

it is a certain parameter.

But, it still has the same sort of energy time and certainty between the canonically conjugate

variables, and because of this excited state has got a certain width, which is represented by

this. So, the energy actually is a complex number, rather than a real number, energies are

typically real, these are real eigen values of a Hermitian operator, so one should ask as to why

does the excited decay at all.  If you have an atomic system, and if it is excited form the



ground state to an excited state, if the excited state is also a stationary eigen state, it could

actually have infinite life time, if its energy is sharp like the energy of 2 s, 3 s.

It is the same as the energy the energy of the 1 s divided by n square, you divide it by 2

square, 3 square, 4 square whatever it is and you get a single number as a result of dividing

13.6 by 4 or 9 or 16 or whatever you get a single number. And it is a sharp energy, and if it is

a sharp energy level it would have a infinite life, so there is something which is missing in

this consideration, and I hope that what the answer is, if it well and good. If not give it a

taught and you should certainly, we can talk about this some other context, but over here I

just want to draw your attention to the fact, that in real atomic systems you do have these

excited states, which have got a certain width.

(Refer Slide Time: 19:48)

And  now  you  can  set  up  the  Hamiltonian,  for  the  quantum  system  together  with  the

electromagnetic field, so that the generalized momentum is now p minus q a over c. And then

what I have made you this is the, what is called as a minimal coupling, essentially what it

means that  you are  not  taking into  account  the  interaction  between the  field  and higher

multiples of the charge distribution, so you have just the leading term. So, this is the minimal

coupling Hamiltonian for the interaction of a quantum atomic system with an electromagnetic

field.

And you can expand this term remember that p and A do not really compute, p is a gradient

operator, so it will not commute with the vector potential operator A, so p dot A and A dot p



will not be the same. So, you have to take into consideration the del dot A and the A dot A

term very carefully, there is also a term in e square coming from the scalar product of this

operator A with this operator A. So, these are some of the terms, and one would hope to use

perturbation theory, and the whole contention of perturbation theory is that the perturbation is

weak compared to the original Hamiltonian, so that is the most important thing.

(Refer Slide Time: 21:19)

And  this  is  our  generalized  momentum,  notice  that  the  vector  potential  has  got  the

dimensions of energy over charge, and the perturbation Hamiltonian, there are two terms at

the perturbation Hamiltonian. There is a linear term in A, and there is also a quadratic term in

e  square  which  we  have  seen  in  the  previous  expression  for  the  Hamiltonian.  The

Hamiltonian inclusive of perturbation it had both the linear term, as well as the quadratic

term. So, now, if you take the ratio of the quadratic term to the linear term just order of

magnitude  estimate,  it  is  q  A over  2  of  twice  c  p,  so  that  is  the  rough estimate  of  the

importance of the quadratic term, compared to the linear term.



(Refer Slide Time: 22:12)

And this is a very nice problem in shifts quantum mechanics, that if you take the magnitude

of A and just  for the sack of exercise,  take it  for the visible  part  of the electromagnetic

spectrum. Because,  if  you have radiation in a cavity you can estimate how much energy

density is there, you can measure what would be the magnitude of A, for such a cavity at a

certain frequency, because you have got the frequency distribution formula from which of the

planks formula.

So, you can get an expression for the magnitude of A, for visible part of the spectral range,

and you can take it for a cavity at several 1000's of Kelvin's just to be at safe side, because

you want to consider what will happen if you have really strong, high temperatures. And then

for p so that will give an estimate of a number for A, q and c are of course, constants, this is

the electron change and the speed of light, and for p you can take the mechanical momentum

of an electron in the Bohr orbit, just to get some sort of and art of magnitude estimate.

And if you find this ratio, you will find that the quadratic term is much weaker compared to

the linear term, and that is a reason you can related through it. So, you certainly can through

it, but then this approximation has to be justified, and this is the way you discover that the

quadratic term is ignorable. And in fact, in weak fields you can ignore it, when the fields are

very small your are left to photon processes and then you can use the, when you deal with

lasers and so on, very high intensity radiation.



Then, you cannot do this approximation, but we will work within the domain of the weak

fields, and in this approximation the quadratic term can be ignorable. And using the same

analysis, the same line of thinking you will also find that, the linear term is a small fraction of

the original unperturbed Hamiltonian. So, that now you convince yourself that perturbation

theory can actually be used.

(Refer Slide Time: 24:21)

So, we will trough off the term phi use the coulomb gauge, and this is the del dot A operator,

so let us not through it yet, although in the coulomb gauge the divergence of A, which is the

scalar which vanishes. But, here this is the operator this del dot A would operator on an

obituary function of f and then you will get the divergence of a product of two functions, a

vector  function  A and  scalar  function  f.  So,  you  have  to  take  the  product  of  these  two

functions, and take the divergence and that will give you two terms.

One of which will have the scalar divergence of A, which certainly can be thrown in coulomb

gauge, so this term would vanish. But, there remaining two terms would add up, and now you

have got the approximations for these two terms, in the coulomb gauge this is exact, that in

the coulomb gauge these two terms add up to twice A dot del. And that is the equivalent

operator  that  you  can  put  in  your  interaction  Hamiltonian,  which  is  the  perturbation

Hamiltonian.



So, this is now your perturbation Hamiltonian, and we will make use of perturbation theory

the perturbation is time dependent. So, we will make use of the time dependent perturbation

theory, and you will expect to meet forms golden rule in this context.

(Refer Slide Time: 25:59)

So, this is our initial state, this is your perturbation and we introduce an order parameter

lambda, the only values of significance are lambda e equal to 1 and lambda equal to 0. So,

lambda is just a mathematical construct to develop the perturbation approximation and you

expect that the system way function, is now a linear superposition of the unperturbed states.

But,  then you allow the expansion coefficients to be time dependent, in other words you

allow for transitions between various states, because what the transitions will do is to change

the occupation number of different states. So, the probability of occupancy of a particular

state becomes times dependent, so that is the idea over here. So, this is your system way

function, your still working within the domain of perturbation theory, so that you do believe

that  your  system  way  function  can  be  represented,  as  a  linear  superposition  of  the

unperturbed wave function, that is the premise of un perturbation theory.

That the perturbation is not violent that it throws the system out of the Hilbert spaces, that it

originally  belong  to,  so  now  all  we  do  is  to  substitute  this  summation  over  here,  this

summation symbol k is generic, it includes summation over discrete state. And it will also

include an integration over the continuum states, because eigen spectrum consists of both the

discreet part,  which convergences to the series limit,  but above the series limit  there is a



continuum, so do not forget that. And in fact, in photoionization you do have transitions to

the continuum, so that is really important for us.  So, you have got this  expansion of the

system  way  function,  which  is  plucked  into  the  Schrodinger  equation  with  the  full

Hamiltonian, which is H 0 plus lambda times H prime.

(Refer Slide Time: 28:07)

And the expansion coefficients are now time dependent, so here you take the time derivative

of a product of two functions of time, one is the coefficient c which is dependent, the other is

this e to the minus psi omega t. So, you can do these derivatives very easily, and from the two

size of the equation you find that, there are these common terms. Because, this H 0 operating

on psi k will give you the eigen value equation, for the unperturbed Hamiltonian, so you can

cancel these terms with what you have on the left hand side.

And essentially you get a rate equation for these coefficients c k, now let us extract the term

for a particular final state, so the way to do is to take the projection of this whole equation on

a states psi f. So, you just multiply it by psi f complex conjugate, integrate over the whole

space, because that will give you the orthonormality condition between f and k, which will

give you the chronicle delta s delta f k. In case of the continuum functions you will have the

corresponding Dirac delta, when you do the integration, but this whole treatment is generic.

So, you multiply by psi f star complex conjugate and integrate over the whole space, so you

get only one term corresponding to k equal to f, so here you have got the coefficient c f dot,

which is written over here. ((Refer Time: 29:49)) This is i h cross, this psi k with psi f has



given you the delta f k and summation over k has given you a single term, you got the e to the

minus i omega k equal to f, so this is a minus i omega f t over here. And then you have got

the corresponding terms over the right hand side, but when you project this right hand side on

psi f, you get the matrix element of the Hamiltonian, which is the perturbation Hamiltonian in

the states f and k

So, that is the matrix element, which will be a measure of the probability amplitude that the

interaction h prime will induce a transition from the state k to the state f. So, the probability

of the process is going to come from this particular term, as you can began to see, so this is

actively a space integral, it is integration over r theta phi.

(Refer Slide Time: 30:46)

And this is the matrix element which is of importance, so you get the expression for the rate

coefficient, this is the coefficient and this is the rate at which it is changing with time. Now,

we again do a perturbation expansion of this coefficient, because in the perturbation theory

you expect that, this coefficient is expressible in a power series of the order of parameter

lambda. Lambda is the perturbation order parameter, so you will have certain zero th order

approximation to that, and first order approximation and so on.

And depending on how much detail you want to put into your perturbation theory analysis,

you can do either first order perturbation theory, a second order perturbation theory and so

on. So, you have an expansion in this order parameter, so here I have expanded this, this

coefficients c in terms of this  perturbation order parameter, which is  just  a  mathematical



construct in our moral. Eventually we will be interested in only limiting conditions lambda

equal to 0, is no perturbation lambda equal to 1 is a full perturbation, so those are the only

two conditions of physical importance.

So, we find what is a the rate at which this coefficient changes with times, so you get lambda

is an order parameter which is time independent, and you get the time dependent. So, the

doted  represents  differentiation  with  respect  to  time,  and  now  you  can  plug  in  these

expansions, in this expression that we got from first order perturbations. So, you got lambda

on both sides of this equation, and certainly your analysis must be independent of lambda, it

cannot depend on lambda, because lambda is just a mathematical order parameter that you

constructed.

(Refer Slide Time: 32:57)

So, you expect that terms corresponding to the same powers of lambda on the right hand side

and the left hand side are equal, so that is the necessary condition, which you can apply very

comfortably,  and  by  setting  in  the  powers  the  terms  which  come  as  coefficients  of

corresponding powers of lambda. When you take the 0th power of lambda, you get the 0th

order coefficient to be independent of time, it is time derivative vanishes d c by d t of these

0th order coefficient vanishes not surprisingly.

Because, these will certainly not depend on time, but then when you will do the same for a

first order terms you get an expression for the rate at which this coefficient changes with

time, in terms of this matrix element. And now it is in terms of all the other coefficients,



which belong to the unperturbed problem, so you can really go ahead and use perturbation

theory and get this particular factor.

So, you can continue this and by induction in get the expression for the time derivative of this

coefficient for the s plus 1 th term, in terms of the previous one, and you can get all of these

terms in this perturbation theory. Of course, one assumes in this that the perturbation actually

converges, perturbation theory can be used whenever you cannot solve the problem exactly.

But, there are a number, so conditions which have to be satisfied, first of all the perturbation

has to be really small compared to the unperturbed Hamiltonian. But, then it is also taken for

granted  when  you  apply  perturbation  theory,  that  the  perturbation  series  will  actually

converge, which is not always really the case. So, you do run into complex situations in real

systems, when you cannot use perturbative methods and you have to use some other methods.

(Refer Slide Time: 35:07)

But here, we work with in the domain of first order perturbation theory, and we presume that

the perturbation is switched on at a certain instant of time which is take as 0, so t 0 is equal to

0 at this particular instant of time. And at that this instant of time, we presume that the system

is  particular  known initial  eigen  state,  what  it  means  is  that  out  of  all  of  these  infinite

coefficient  c  k  0,  there  is  only  one  coefficient  which  is  equal  to  1,  and  all  the  other

coefficients are 0.

Because, that is the initial state which we presume as a known state, when that this system at

the, when you turn on the potential the system is in a given quantum state, then you know that



the expansion coefficient for that particular state is exactly equal to 1, because the entire

probability is contained in that particular state.  So, you presume that the system is  in an

known initial state i, which means that this coefficient is equal to 1, if k is equal to i and it is

equal to 0, if k is not equal to 1, that is what it means. And you can plug in this chronicle

delta in this expansion, and then you get a single term and the right hand side.

(Refer Slide Time: 36:25)

So, inside of this summation over k you get only one term corresponding to the initial state k

equal to i, so this the expression that you get for the rate at which this coefficient will change

with time. And that will change tell you the probability of occupancy of that level, because

the probability amplitude is the measure, this coefficient is a measure of how the state is

occupied at a given instant of time t.



(Refer Slide Time: 36:57)

So, you take the derivative of this coefficient and this is the equation that we have got, so you

integrate this, you integrate it overtime time t. And you get a measure of the probability itself,

which is just the modulus square of the probability amplitude, which will give you a measure

of the transition probability to the state f from the state i. And this transition probability is the

first  order  transition  probability,  it  is  effected  by  a  certain  perturbation,  which  we  have

already introduced earlier.

(Refer Slide Time: 37:45)



So, this is now our expression for the probability amplitude, and what you have in this are

these integrals, there are these time dependent integrals, there is this integration from 0 to t

the  time is  dummy label.  So,  I  have used t  prime instead of  t,  that  you have  integrated

integration it  from 0 to a  certain time t,  so the time label is  now t prime. And the time

dependent functions to be integrated out are contained over here, in this frequency dependent

term; and there is also in this interaction Hamiltonian you have got a time dependent term

here. So, these are the terms which are time dependent, and you will have to focus the time

integration over those particular terms, the rest of it is a space integral. So, there are two

integrations over here, integration over space, as well as integration over time.

 (Refer Slide Time: 38:56)

So, let us look at the time integrals now, and the time integrals are essentially these functions

as you can see very easily from the previous term, I pointed out that there is a term here, there

is a frequency omega t prime over here, and there is a omega t prime over here. This omega

as got a subscript f i which comes from the energy difference between the final state and the

initial states, so it is a natural frequency between those two states.

So, here this omega is a frequency of the radiation field, you have to subtract from it the

frequency corresponding to the energy difference between the initial state and the final state,

and these are the two time integrals to be evaluated. So, one is with a minus sign and the

other with a plus sign, so here we handle both of them together, the one is with the plus sign



and there is one with minus sign. And ((Refer Time: 39:58)) these are the results of the time

integrals, so it is a very simple exponential function, so you can integrate it quite easily.

So, this is your integration with respect to time, now mind you omega is a certain frequency

of the radiation field, which is a positive number. And omega f i will either be positive or

negative depending on whether your looking, at the difference of energy between e f and e i,

but are you subtracting the energy of e i from e f all the other way round, the sign of this will

change. So, at a given frequency only one of the two things is going to take place, so at a

given frequency you cannot have omega equal to omega f i, and also equal to omega mi equal

to minus omega f i. So, we will focus our attention on absorption process, so out of these two

integrals  these  two  only  one  that  we  will  you  need  to  consider,  corresponding  to  the

absorption process. 

(Refer Slide Time: 41:00)

And this while I was preparing these slides this was few days ago, the 7th of October some of

you use the Google you might have seen this picture. And in this picture Google showed this

transition, for an election jumping from here to here and this is not how quantum transitions

take place. So, I thought that it was an interesting picture, which Google posted and I was

very delighted to see, that was in commemoration of Niels Bohr 127th birthday, on 7th of

October. But,  that  is  not  how the  transitions  takes  place,  and here  we are  talking  about

quantum transitions.
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So, the transition probability is given by this particular matrix element and a time integral and

now, there is only one of the two time integrals that we have to consider. So, we evaluate this

time integral and put the limits, which are over t prime, t prime equal to t prime equal to 0,

and you get rather simple extractions that you are quite familiar with these integrals. So, this

is  the  expression  for  the  first  order  coefficient  that  you  get  from  time  independent

perturbation theory.

(Refer Slide Time: 42:22)



Now, the transition probability itself is the square of the modulus, so let us do that, so this is

the modules square and then you have this quantity multiplied by it is complex conjugate,

which will go into the modulus square. So, that quantity is here multiplied by it is complex

conjugate, and together this product is what I have written as twice F, this is just a simple

notation you will recognize, why this twice a function F has been used. Because, once again

you will find that the Dirac delta comes out of this particular form.

So, that is a reason this factor has been isolated, because it makes our treatment very easy, so

in anticipation of that i have introduced this function F. And this is therefore, the definition of

F, F is defined by this relation, so that twice F is equal to this quantity multiplied by it is

complex conjugate, ((Refer Time: 43:32)). So, this is your expression for the modulus square

of this first order coefficient.

(Refer Slide Time: 43:37)

This  is  our definition of  twice F, and mean we will  be interested in  transitions near  the

resonant frequency, which is the frequency difference between the initial state and the final

state. So, e f minus e i is the energy difference divided by h cross will give you the resonant

frequency. And this difference between omega and this resonant frequency, whatever little

difference there may be there, is what I have write as omega tilde.

So, it is this difference which comes in both of these terms, and this function if you just work

out this product of the complex conjugates, you find that it is given by this sign square theta

over omega delta square term, which some of you perhaps recognize it as a delta function



already.  So,  this  has  got  the  form  of  the  delta  function  and  that  is  the  advantage  of

introduction it, so this is pi t times delta omega. This is the omega tilde which is actually the

between the frequency of the radiation field, and the energy difference divided by h cross

between the two levels.

(Refer Slide Time: 44:56)

So, this is now the modulus square of the coefficient, notice that there is a time dependent

over here. So, if you take the transition rate which is the transition probability per unit time,

you will differentiate this with respect to time, and that twice pi t when you differentiate with

respect to time t will go away and you will get the transition rate which has been written as

W, this is the transition rate it has got this square factor q a over m c square.

Then, it has got the square of this modulus of the transition matrix element, this is the matrix

element for transition that this interaction induces a transition from the state i to the state f.

And then there is this trice at times Dirac delta function, you will expect this to be related to

the  absorption  coefficient.  And  earlier  in  our  class  day, I  had  asked  you  to  look  at  the

dimensions for sigma, I had asked you to look at the dimensions for q over i and ultimately

the  expression  that  you  get  from  this  must  agree,  with  even  you  should  get  the  exact

correspondence, the exact dimensional equivalence.

So, it is a good exercise to find, what exactly is the dimension of W and good idea to get it

from first  principles plug it  the dimension of q, plug in the dimension of A, plug in the



dimension of m, plug in the dimension of c, get it first principles and make sure that you do

not mess out any term.

(Refer Slide Time: 46:51)

So, this is the physical process that we are talking about, and we have found an expression for

the transition rate, which is given by this expression. Now, the process we have considered is

the following, we have considered the electric field to be polarized along the x axis. So, this

is for a given direction of polarization, which is the unit vector epsilon, epsilon carrot and

then we also considered a particular photoelectron ejection in which an exit  channel was

identified to be along the direction, of the photoelectron way vector k.

So, I carry this information as superscript and subscript on this transition rate, because this

transition rate has been arrived at for a particular process, that we have considered. When we

consider un polarized light or when we consider possible photoelectron ejection and some of

the other directions also you need to integrate over these angels. So, this is some information

that you have to keep track of, that we have considered the electric component to be polarized

along the x axis, and the photo electron ejection to have taken place along the momentum

direction k.
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Now, our interest will be in getting an expression for the energy absorbed per unit time in this

process, but we need to normalize it with respect to the energy flux in the electromagnetic

radiation. So, we need to find what is the energy absorb per unit time, and we have to get the

energy flux, which is the energy per unit area per unit time of the electrometric radiation. So,

this is what gives us the differential cross section, it is differential cross section, because it is

with reference to photoelectron ejection in a particular angle.

So, there is certain solid angle which will contain the direction of photo ejection, and this d

omega is a solid angle, this is with reference to this polarization vector of the electromagnetic

field, and the direction of ejection of the photoelectron. And the energy absorbed will be just

this rate that we got in our previous slide, so this rate must be multiplied by the energy itself,

which is h cross omega. And you have divide it by the intensity of the field which is energy

per unit area per unit time.

So, this will give you the expression for the cross section for the photoionization process,

now once the dimensions of this quantity, these dimensions multiplied by energy dimensions

divided by the dimensions of energy, must again give you the correct dimensions for the cross

section.  So, that is  a small  exercise for you now you need to find what is this  intensity,

intensity at a frequency omega.
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So, how do you get the intensity, so you go the vector field which is given by this expression

here, this is the cosine function. And in terms of the vector field you can get the intensity,

because the electric intensity is given by del A by del t in the coulomb gauge phi is equal to 0.

So, the electric intensity is just the rate of change of the magnetic vector potential divided by

c, that is the Gaussian's unit that the using and then the magnetic field is the curl of A.

So, this is the Gaussian, I am not using the psi, so that is the most common system of units

and atomic physics. So,  the intensity is given, then by the average value of the pointing

vector and you have got E which you can get from A, you get H from the curl of A, so all you

have to do is to evaluate this cross product get the pointing vector, and get it is average value

over one time period. And that will give you the electric intensity, which turns out to be

omega square over twice pi c A 0 square, that is how it comes out to be related to the square

of the amplitude of the wave, but there are the other factors, and you cannot ignore them.
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So, the intensity is given by this expression and you can, then plug in this expression for the

intensity, in the expression for the photoionization cross section. And this is what gives you

the complete expression for the photoionization differential cross section, for photoionization

in particular direction k f, when the incident light is polarized along the unit vector epsilon.

So, I will conclude the discussion over here today, we will continue from here in the next

class.

And we will then extend this to the expression for the total cross section for photoionization,

and we will also integrate over all possible direction, and different polarization states, there is

any question I will be happy to take.

Student: Omega square minus omega not square, that you I mean that when gamma tends to

0, that you said Dirac delta function, but when you applied in that particular integration, we

never use the fact that gamma is

No, the gamma which was used in that expression, refer to see it is coming from damping and

remind yourself of damping is, because whenever you say that energy is lost, because fiction

less. Fiction is of course, not an elementary force, elementary force is only electromagnetic

gravity and so on, and they are all conservative. So, strictly speaking there can be no energy

dissipation,  which is  good that  energy, that  is  why energy is  really  conserved.  Now, the

reason damping comes in is because there is dissipation taking place, only because you have



not  set  up the problem comprehensively, you do not  have the atom to be completely an

isolated system.

See you have solved the problem, your done the quantum mechanics of the hydrogen, it

really takes me back to the question, which I raised in the class, and I asked you to think it

over. That if you have an atomic system in an exited state, it as no business to decay at all, it

should stay there forever, it should have infinite life. Why does it decay at all, why does an

exited state of an atom decay, the exited state is also an eigen state, it is a stationary eigen

state. Or at least if it is a stationary eigen state, this stationary means, that del rho by del t

vanishes.

The probability density is not a function of time and therefore, the system will have infinite

life, I am sure some of you will going to have this question in the viva exam, that why does

an exited state of an atom decay at all. It is not meant to decay at all, if it is an eigen state of a

stationary problem, the reason it decays is because you have really not solved the problem for

the entire universe; you have separated the hydrogen atom, as if the hydrogen atom exists by

itself, and that is the thing in the universe and that is the only thing in the universe, is nothing

else.

But, then there is a rest of the universe, and there is this coupling between the rest of the

universe at  this,  and that  coupling is  something that  you missed out  in  formulating your

original problem. Your original problem was set up for Hamiltonian, which is p square over 2

m plus a certain potential, that never made any reference to the interaction of this atomic

system with the rest of the universe. This is the unspecified degree of freedom, which is what

appears in your classical problems, when you have heat laws.

When there  is  an  energy dissipation  it  is  taking place,  because  you have  not  taken into

account these other degrees of freedom, which are also interacting with the system. So, when

you  set  up  an  equation  of  motion,  what  you  call  as  the  free  body  diagram in  classical

mechanics, you do not have these additional degrees of freedom. Likewise when you solve

the  Schrodinger  equation  for  the hydrogen atom, there are  these un specified degrees  of

freedom. And those unspecified degrees of freedom are responsible for the fact, that your

exited state is strictly speaking not a stationary eigen state.

So,  it  has  got  a  certain  life  time,  and that  life  time is  connected  with  the  width  that  is

uncertainty principal between energy and time. So, it is coming from a completely different



considerations, not because you have two non commuting operators for energy and time, you

do not an operator for time. Actually there have been some attempts in the early days of

quantum mechanics to introduce of an operate of time there are some papers in that direction,

but to the best of my knowledge it has not let to anything very concrete, and nothing very

tangible has come out of it.

So, in quantum mechanics time is not treated as an operator it is a parameter, but there is an

energy time and certainty, and as a result of this you have this states, which are coupled to the

rest  of the universe.  Those are the unspecified degrees of freedom, and they manifest  as

damping, they cost of decay of excited state,  so they correspond to the gamma d of the

classical  model.  So,  I  introduce  the  classical  model,  only  because  the  terminology  of

oscillator strengths is carried over into quantum mechanics.

And the oscillator strength terminology comes from this very classical, old fashion idea that

an electron is bound in an atomic system with certain spring constants k, we certainly know

that that is not the case, that is not really quantum mechanics, that does not fit into our model.

But, it is precisely this idea which gives rights to the expression for the oscillator strength, in

fact oscillator strength is defined in terms of this, if you recall the expression for oscillator

strength.

So, the oscillator strength requires you to make use of this model, and unless one is really

familiar with this, it is difficult to appreciate literature in this field papers by Fano and so on.

So, that is the reason I spent some time discussion some time on classical model, and the idea

of damping is related to the width of an exited state, because it decays any another question.

So thank you very much.


