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Scattering Phase Shifts and Boundary Conditions

Greetings,  so  we  will  discuss  Scattering  Phase  Shifts  and  how  they  are  related  to  the

Boundary Conditions and also to the normalization of the way function.

(Refer Slide Time: 00:30)

So, we have seen that free particle solution has got the general form the l'th solution for l

quantum number, when the potential is 0 which is the case of free particle as a special case of

spherically symmetric potential. And this is the general solution, now if V is not really equal

to 0, you really have a scattering potential which is the case of interest, then the solution is

exactly like this, it is sinusoidal function with 1 over r in the denominator. The argument is k

r minus l pi by 2 in both cases, except that in this case when V r is not equal to 0, there is

additional  space  shift.  And  this  space  shift  is  scattering  space  shift  which  contains

information about the potential.



(Refer Slide Time: 01:32)

So, let us have a look at this problem and we look only at the radial part because the angle of

the  solution  we  already  know  those  are  the  spherical  harmonics.  And  we  set  up  this

differential equation for y, where y over r is radial function, so with this choice y will need to

satisfy differential equation, which is given over here. And if you remove these constants by

defining the potentials twice and V over h cross square, you can write it in a way which is

rather simple and concise.

So, that you do not have to write too many constants needlessly, and we will now discuss

how the potential V r produces the pressure that is the result that we made use of in the

previous class, that the scattering potential generates a space shift. Today initially we will

first demonstrate, how the scattering phase shifts generate the potential, so the potential that

we are going to look at is of this form, that as r turns to infinity any physical potential, will

have you know an influence which will become weaker and weaker as you go farther away

from the center of the potential.

So, as turns to infinity in the asymptotic region the potential will become very weak, and we

presume  that  no  matter  what  is  the  detailed  structure  of  the  scattering  potential,  in  the

problem of our interest. It is weak enough in the asymptotic region that is a fairly acceptable

assumption, we nevertheless have to discuss by weak what exactly do you mean is 1 over r

weak enough is 1 over r square weak or is 1 over r cube weak these are all weak potentials.



They all go to 0 as r is equal to infinity right, 1 over r cube also goes to 0, 1 over r square also

goes to 0, 1 over r also goes to 0. So, all are these case admissible in our treatment the answer

is no, and what exactly is this restriction is what I am going to discuss now. So, we will

answer this  question as to  what  we mean by the potential  being weak in the asymptotic

region.

(Refer Slide Time: 04:23)

So, this is the form of the differential equation that y must satisfy, and assuming that this

potential is weak, and we will define what is meant by weakness. The solution will be given

by  this  exponential  function  multiplied  by  some  other  r  dependant  function,  which  is

represented here by capital F, if this potential was weak enough, so weak that you can simply

pretend that it is not there it is 0. Then you have the case of free particle right, and in that case

the entire r dependence would be contain in the exponential function e to the plus or minus i k

r would be the exact solution, with this potential vanishing.

The exact solution would be given by e to the plus or minus i  k r, but when this  is  not

completely 0, but only weak. Then the function F would not be a constant, it could depend on

r, but it could only be weakly depend on r, so now, we know that when we are dealing with a

weak potential. A potential that is weak in the asymptotic region as r tends to infinity, the

solution would be given by this exponential function multiplied by a factor, which is not a

constant.



It does depend on r all the r dependencies extracted in the e to the i k r function, but the

residual r dependence is packed in this function F, which is not quite a constant. But, it is not

very strongly dependent on r which means r changes the function would change, but not very

rapidly, but rather weakly right. If it is completely independent of r it would be flat, if you

plot it as a function of r it would just be a horizontal line that is a function that does not

depend on r.

If it depends strongly on r it would have very many wiggles ups and downs, if it is only

weakly dependent on r, it will have very gentle ripples over a constant line that is what is

meant by weakly dependent function. So, F is a weekly dependent function of r, it would. In

fact, be a constant if the potential were 0 and this is the case that we are considering. So, now,

we know something about the function F that it is a weekly dependent it does depend on r,

but only weakly, so.

And, I put the two potentials there is this real physical potential U which is coming from real

physical potential V, so other than this scale factors 2 m over h cross square. So, U is the real

physical potential, l into l plus 1 over r square is the centrifugal potential, which has come

from a reduction of three dimensional problem to the one dimensional problem. So, the one

dimensional effective potential is U r plus l into l plus 1 by r square this is the effective

potential. And this is the differential equation that we want to solve, what we do know that y

can be written as a product of these two functions, and you can take the derivative of y as a

product of these two functions of r.



(Refer Slide Time: 08:04)

So, this is what we have got F is a weekly or slowly varying function of r, so you can take it

is first derivative, which is the derivative of product of these two functions. So, it is plus or

minus i k F times e to the plus or minus i k r right, and then you have the derivative of F.

Similarly you take the second derivative, and you have two terms which are similar, so you

can add them together and after adding these two terms you have got plus or minus twice i k

F prime. And this is and these are three terms that you get for you y double prime. So, now

you have got your function y expressed in terms of F you have y prime, and you also have y

double prime. And you can put all of them in this differential equation.

(Refer Slide Time: 09:03)



So, let us do that this is the differential equation, you have got y, you have got y prime and

you got y double prime, And when you put them all together in this differential equation, you

will discover that F must satisfy a differential equation, in which you have put all of these

terms right. So, it is very simple to do it is a matter of simple substitution, notice that these

two terms cancel, this is plus or minus i k square and this is k square.

So, now you are left with only these three terms in this bracket, and these three terms add up

to go to 0, what does it tell us about the ratio of F double prime to F. Because, you can divide

each of these three terms by the function F, so you got F double prime by F in the first, you

have got F prime over F in the second, other than this constant plus or minus twice i k. And

then you have got U which I have moved to the right hand side.

(Refer Slide Time: 10:13)

Now, this is what we have got our interest let me remind you is in those cases for which F is a

slowly varying function of r, what does it mean. If F was completely independent of r, f prime

would be 0 e f by d r would be 0 right, so F prime is small it is not 0, but it is small. And F

double prime will be smaller still right, so compared to F, F double prime is ignorable at least

much more ignorable, than F prime.

So, if you look that first two terms, the left hand side the left hand side is a sum of two ratios,

one is F prime over F, the second is F double prime over F. But, in our case F is a slowly

varying function of r, which makes F prime weak and F double prime weaker still. So, the



first  of these two terms is  certainly ignorable compared to the second, do you recognize

approximation here.

When you do that, you can throw off the first term, so for this case where F is rather slowly

varying function of r, you throw off this term and you are left with this result. Now, you can

actually integrate that because you have got F prime over F and you know what it is integrals

right.

So, you have got F prime over F which is nearly equal to this plus or minus 1 over 2 while k

comes here, and you have got effective potential which is a sum of the physical potential plus

the centrifugal term. If you integrate this, you get F will be given by e to the power 1 over

plus or minus 2 i k and the integral of this effective potential right, if you have an effective

potential which you know is U plus l into l plus 1 over r square.

Now, we recognize the constraints if the physical potential was a coulomb potential, then v

would go as 1 over r U which is proportional to v would also go as 1 over r. And as r turns to

infinity 1 over r plus 1 over r square would go as 1 over r because 1 over r square goes to 0

much faster than 1 over r does. So, the effective potential will go as 1 over r and the integral

that you will need to determine over here, will be the integral of 1 over r is that right.

So, if you have coulomb potential which is a common case, which is the case of the hydrogen

atom actually right. If you had a coulomb potential, you would need the integral of 1 over r

and that  would  give  you the  logarithmic  function,  and you have  e  to  this  constant  time

logarithmic function, and what does it tell us for F, F would not be independent of r. We

started by saying that our consideration will be valid for those cases, for which the potential

is weak.

And then F must become only weakly dependent on r and it cannot be dependent on r, but if

the potential that we are dealing with is actually coulomb potential. We find that F would not

be independent of r, which means that this method is not going to work for the coulomb

potential it does not. But, it does work for all potentials which go to 0 as r turns to infinity,

faster  than  the  coulomb  potential,  so  that  is  the  condition  which  is  emerging  form this

analysis  is  this  is  the  point  I  wanted  to  discuss.  When  I  said  that  we  are  dealing  with

potentials which fall, whose physical influence falls of in the asymptotic region.
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But,  at  what rate  it  must  fall  is  given by this  that  the potential  must  fall  faster than the

coulomb potential, that the potential if it falls faster than 1 over r as r tends o infinity. Then

our method will  be applicable for those potentials,  which go as 1 over r  specifically the

coulomb potential, somewhat different techniques have to be used, and some of our analysis

is not applicable to it directly. It has to be modified one has to introduced what is called as

coulomb phase shift, that requires different techniques.

And we would not have the time to discuss that, but you know this is nicely discussed most

books on quantum mechanics, likes shifts quantum mechanics, ((Refer Time: 15:25)) shifts

are good sources, one of our masters students Renumathai had a very good report on the

continuum functions of the coulomb potential. So, that copy should also be available in our

lab, you can go through it and wish that the coulomb problem is discussed in great details.
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But, we will restrict our discussion to those cases, those potentials which do go to 0 as r turns

to infinity. But, at a rate which is faster than the coulomb potential, which is faster than 1

over r, so it is 1 over r, r to the power of 1 plus epsilon, epsilon could be no matter what;

however, small, but it must be greater than 0, if it is 0 this method it is not going to work. It

could be small as long as it is small it will work, and in this case since F is nearly constant.

You can write the solution as a super position of e to i k r and e to the minus i k r, this is the

super position of spherical in going waves and spherical out going waves, you can do that.

But, instead of writing this as a super position of spherical in going and outgoing waves, you

can also write it as super position of sin and cosine functions, it does not matter because a

function you can represent as a super position of linearly independent pair of function, and as

long as the basis is complete you can use any basis.

So, you can use either spherically in going or outgoing waves, you can use the basal function

at the Neumann functions or you can use the Henkel functions of the first kind and the second

kind. So, they are alternative basis pairs that you can use, and here I have written this instead

of the exponential functions, as a super position of cosine and sin functions. And once you

have it, you can easily write it as sin of k r minus l pi by 2 and add a phase shift here, because

sin a plus b is sin a cos b plus cos a sin b and you get the previous form directly right. 

So, instead of the constant c 1 and c 2 you have two other constants, which are a and delta,

and you can get 1 as the tan inverse of the ratio of the other two terms, so it is a straight



forward thing to do. And what you discover is that your radial function, which is y divided by

r is simply this sinusoidal function, which is the same thing as you get for a free particle with

and additional phase shift and you write this sinusoidal function, again in terms of spherical

out going waves, and spherical in going waves.

And this is the form that we have used in our analysis in our previous class, so the phase shift

does not [FL] come out of the blue, it is directly the consequence of the scattering potential.

Nevertheless, there are certain conditions that the potential must satisfy, and in particular this

method does not work in the case of coulomb potential, somewhat different techniques are to

be used. But, for most of the potentials and most of the physical potentials that you work with

r not exactly 1 over potentials because there are other electrons and screenings and so on. So,

in other case is you find that this is a fairly good approximation, and the radial function is

then given by in terms of the spherical ingoing and outgoing waves.

(Refer Slide Time: 19:00)

This is the form that we used to write the total wave function, and this pretty much completes

the analysis that we completed in our previous class. I will go through some of the essential

steps, just to reinforce the point that you have to the total wave function, which was written in

terms  of  the  spherical  harmonics,  and  the  basal  functions  with  appropriate  boundary

conditions. And here there is a space shift delta coming due to the potential.

And then these C l m these were the unknown coefficients, but then in these true forms this is

the  phenomenological  expression,  this  is  the  total  solution  to  the  s  i  equal  to  the  e  psi



Schrodinger equation, these two solutions must be equal. And they must guarantee that the

coefficients of the outgoing waves are equal, this coefficient involves c l m, but this we have

already used earlier. We obtained this c l m explicitly in our previous class.

(Refer Slide Time: 20:05)

So, now you can set these coefficients equal, so you get the coefficient of the outgoing wave

e to the i k r over here, you will get the a k you will get the sum over i l 2 l plus 1, you have

this e to minus i l pie by 2, which is which is coming here you have got the 1 over 2 i k r

which is here. You have got the legendary polynomial, and then from this term you have got

the scattering amplitude and 1 over r.

So, this is the term which multiplies the spherically outgoing wave, in this form and the lower

form you have got and exactly you do the same thing extract the co efficient of e to the i k r.

In which you also have the c l m, so you plug in the c l m from the result that you have

obtained from the previous class, and now all you have to do is to equate this with this, those

are the two coefficients of the spherical outgoing waves.
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So, once you equate them and then you cancel common terms simplify, and essentially you

get the Faxen Holtzmark’s scattering amplitude. Because, you have this scattering amplitude

over here, you move this term to the right and you get this e to the 2 i del 2 i l minus 1 over 2

i k which is the scattering amplitude.

(Refer Slide Time: 21:37)

So, it  is a very simple analysis  and this is sometimes referred to as partial  wave method

because there are, so many partial waves with different l quantum number, which contribute

to the scattering amplitude. There are infinite of those because l goes from 0 to infinity, the



linear momentum is a good number or free particles, but angle of momentum is not. And

therefore, you need the super position of the entire basis which includes l going from 0 to

infinity, and it would be a very burdensome competition if you had to do all of these infinite

partial waves.

But, you do not really have to because as l increases the radial function of the continuum, the

radial part of the continuum function will go as r to the power of l. And it will not be able to

penetrate into the core into the scattering region, so only a few partial have to be considered.

And we have done calculations in which only about 8 to 10 partial waves l equal to 0 up to l

equal to 8 or 10 are sufficient. Sometimes you need more than that you can take 10, 20, 50,

100 people  and even do a  1000,  but  certainly  not  infinite.  And even 1000 is  a  tangible

number, it is not something which is not manageable, and the centrifugal barrier is the main

reason that you can truncate this partial wave expansion to certain limit.

(Refer Slide Time: 23:15)

Now, we are going to get  the boundary conditions  and we will  see how these boundary

conditions are recognized, we have already been discussing these boundary conditions. We

already  use  these  boundary  conditions,  but  we  will  discuss  them further  to  recognize  a

particular element in the boundary condition, which is of importance and to be able to do that,

we first write the incident plain wave which is this in equivalent form over here.

This is completely equivalent form, but I will demonstrate very quickly how this is these two

forms are equivalent. And once we do that, we will write the total wave function also in a



form which is similar to this second form, and then we shall proceed to discuss the boundary

conditions, these boundary conditions are different for collisions. And for photo ionization,

our eventual goal in this discussion is to relate the boundary conditions for photo ionization

and collisions.

And we have already seen in some of the diagrams that I have discussed earlier that they both

have the same final state, but the initial states are different and there is a certain time reversal

symmetry, which is involved which connects the two. So, that is our goal for this discussion

we will get to that, and to be able to get to that we first want to write the total wave function

also in a form, which is similar to this second form. So, let us write that, this is hung up a

little bit alright.

(Refer Slide Time: 24:59)

So, this is your incident plain wave this sinusoidal function you write as e to the i k r e to the

minus e to the plus i theta e to the minus i theta divided by 2 i, and this i to the l you write as

e to the i l 2 pi by 2. So, you can multiply both of these terms by e to the i l pi by 2 that will

cancel this e to the i l pi 2, and here you will get e to the i l pi by 2 into e to the i l pi by 2, so

you will get e to the i l pi in the second term right.
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So, that is what you have got minus 1 to the l because e to the i pi is minus 1 right, so now,

you have got the incident wave which is the plane wave which is written in the form of

legendary polynomials. And you have got this spherical outgoing wave and spherical ingoing

wave, which is multiplied by minus 1 to the l and this minus 1 to the l you take this p l cos

theta, and multiply both of these terms by p l cos theta you have got p l cos theta into minus 1

to the l, what is p l of minus cos theta right. So, that is what it is you have got the legendary

polynomial for minus cos theta over here, so this is your incident wave.

(Refer Slide Time: 26:36)



So, you have got your P l cos theta into the i 8 i k r and P l of minus cos theta into e to the

minus i k r. And now let us write the total wave function, in exactly the same form this is also

written as P l cos theta into i k r, but now we know that the total wave function must have the

scattering phase shift delta l, the coefficient of e to the minus i k r is again is P l cos theta is

exactly as the same we know, except that there is an additional phase shift.

So, that goes over here right, but then you do not know what is c l s, this is the unknown

coefficient in the total wave function. The question is how will you determine the c l, what is

the boundary condition which gives you the c l, this is I know this is what you have to find

out.  Now, we do know that the total  wave function is the sum of incident wave and the

scattered wave right. So, you have got the incident wave, you also have the total wave.

So, if you subtract the total wave from the incident wave, you must get the scattered wave,

and that condition will give you what the c l must be. And now you know what the scattered

wave is, scattered wave is known is it not this is the scattered wave e to the i k r over r

multiplied by the scattering amplitude, we have just determined that right. So, now tell me

what the c l should be because all you have to do is to subtract this incident wave from the

total wave to give you the scattered wave, you have got all the pieces now tell me what

should be value of c l got it.

You should just get it by observation, if you were listening what should be c l, what value of c

l will give you the scattered wave. It cannot take time come on if you just take a look at one

of the terms you will get it do not even have to see, you want to remove this part what is it,

you got p l cos theta e to the i k r come on I think you are not even trying, it is very easy no it

is too simple.

Student: ((Refer time: 29:46))

If you look at any one of these terms, there are two terms how do you subtract this term from

this term, to get this. This one has nothing in the e to the minus i k r right, all you need is put

C l equal to e to the i delta l that is all you need to do. If you put C equal e to the i delta that is

it, do you see it you are not even trying I am afraid it is taken care of you got e to the minus i

delta l here. So, that is what gives you the C to the 2 i delta here right. So, this is the beautiful

result that the choice of the coefficient, and this is an extremely important choice.



Because,  this  is  what  determines  that  the  process  you  are  talking  about  is  a  collision

phenomenon, we know that the answer is a collision scattering amplitude right, which is what

gives you the faxen, holtzmark’s scattering amplitude right. And you get it by choosing C l to

be e to the i delta l C l r you know until we recognize it to be this e to the i delta, it is just the

multiplicative factor in the super position right. It is an arbitrary multiplicative factor, but it

no longer remains arbitrary what is it that pins it down.

It is a boundary condition that the solutions will give you the scattering, the solution to the

scattering problems which is the sum of this incident plain wave plus a spherical outgoing

wave, scale by one 1 r and an angle dependent scattering amplitude that is the boundary

condition. And this choice is completely equivalent to C being e to the i delta, now notice this

will also the value of C will also affect the normalization.

So,  when  you  make  this  choice  you  often  say  that  you  have  normalized  the  solution,

according to the outgoing boundary wave function. Because, that is what you have in your

scattered part, in the scattered part you have got a spherical outgoing wave that is the only

thing you have got in the scattered part of the function.

There  is  no  ingoing  component  in  the  scattered  wave,  which  is  why  this  is  called  the

normalization according to the outgoing wave boundary conditions. So, this is normalization

according to the outgoing wave boundary condition, and you have got the scattering phase

shift, which we know is coming from the potential itself.

(Refer Slide Time: 33:34)



Now, let us look at the solution further this is our total wave function, and we will put in the

value C equal t the i delta l in this, and with this you have got this total wave function which

is given as e to the i delta l will give you this particular solution.

(Refer Slide Time: 34:04)

And let us try this together with the time dependent term because that is more important to

see. Because, the net wave function must be multiplied by this e to the minus i omega t that is

the thing that tells you whether the wave is a travelling wave, where it travels from left to the

right or right to the left, from the centre to farther away or in the other direction. So, when

you put this e to the i omega t you get k z minus omega t from here and k r minus omega t.

So, you recognize this as a plain wave, and this as a spherical outgoing wave.

So, this is the picture that we have been using everywhere, and this picture now really makes

sense.  Because,  it  shows  how  a  surface  of  constant  phase  propagates,  this  travel  is  of

importance this is what tells you, what nature of the solution without the time dependence

actually it does not mean anything e to the i k z is not necessarily a function, which is moving

along the plus z axis. What determines is what is d z by d t is d z by d t positive or is it

negative, if it is negative it would actually be a wave that is going in the negative direction.

So, likewise e the i k r by itself does not determine that it is a spherical outgoing wave, the

argument with reference to time is k r minus omega t. So, that the surface of constant phase

will be given by k r minus omega t being a constant, and that will require d r by d t to be

given by a positive number. And since d r by d t is positive, you have got the radius of the



surface of the constant space which increases that is what makes it a spherical outgoing wave.

So, now our solution is complete inclusive of the time dependent term, and what gives us this

corrective form is the choice C equal to e to the i delta, and this is of tremendous importance

in our discussion of photo ionization.

(Refer Slide Time: 36:26)

So, this is what is called as normalization as per outgoing wave boundary condition, this

scattering phase shift gives you a coefficient, which describes the collision phenomenon. And

the question that we are going to ask now is, what boundary condition will describe the photo

ionization, we know that C l equal to the i delta l will describe the collision how should c be

chosen. So, that we describe the photo ionization that is the next question we want to ask, we

know that there is a certain similarity, we know that both of these operations have got the

same final state, but different initial states even the initial ingredients are different.
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So, now let us begin to look at the photo ionization event in which as I discussed earlier, you

have got a photoelectron in the final state. So, you have got a certain central region an atomic

system of quantum atomic system, which has absorbed electromagnetic radiation, an electron

has been knocked out through the photoelectric effect it goes into the continuum. And you

sense it in a certain detector, and this direction in which the photoelectron has escaped is

unique.

So, the exit channel has got a unique direction in the collision it was just the opposite, in the

collision you had a scattering centre, you had the electron gun at one place and this electron

gun fired the electrons toward the target. So, this entrance channel was unique, so in photo

ionization it is the exit channel which has got the unique direction, and if you see that if you

were to take a picture of this process.

And imagine this being recorded on a film this process would be somewhat similar to a film,

which is being run backward in time. So, I suggest it to you that it has something to do with

time  reversal  symmetry,  and  we  now  need  to  discuss  what  is  meant  by  time  reversal

symmetry in quantum mechanics, and how does it connect the solutions of photo ionization

to collisions.
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So, there are symmetry plays an extremely important role in all physical phenomena, and of

course, in atomic processes as well. We first dealt with the rotational symmetry, the generator

for rotations are the angle for momentum operators, they gave us the SO 3 algebra right.

Then, we also discussed the anatomical symmetry of the hydrogen atom coming from the SO

4 symmetry right. Then there is parity, and parity is also important in atomic processes you

have seen the dipole selection rules as an application of wignereckart theorem, you know that

dipole transitions take place only when parity changes. So, there are these parity selection

rules which are of importance, but then there are many other symmetries.

(Refer Slide Time: 39:45)



And typically a symmetry is an operator which you can write as 1 minus i over h cross

epsilon G, and when G is a hermetian generator of the symmetry gamma that is a typical

symmetry of an operation. Because, it gives you a gamma an operator which commutes to the

Hamiltonian, so the Hamiltonian remains a variant under that operation that is the idea of a

symmetry.

(Refer Slide Time: 40:16)

So,  now  the  dynamical  symmetry  we  have  discussed  at  length  in  unit  1,  so  far  as  the

geometrical symmetries are concerned, you have the translational symmetries generated by

the linear momentum, which is conserved in a translational homogenous phase. You also have

the angle momentum, which is the generator of rotations and these are as you can see from

both of these operators, we generate the corresponding you know translations or rotations

these are unitary transformations.

They are also continuous transformation, in homogenous phase you can move infinitesimally,

this is generator 2 delta x is the generator of infinitesimal translation u delta 5 is a generator

of  infinitesimal  rotations.  So,  these  are  continuous  variables,  but  then  there  are  discreet

symmetries, like parity and time reversal these are discreet symmetries. Parity you go from

one space into the other which is the mirror space right, and you do, so one shot.

Time reversal is again a discreet symmetry, because from a certain time t you go to minus t

there is nothing in between. It is not like a number 0.5 on a real number axis which you

reduce to 0.4 then to 0.3 then to 0.2, 0.1, 0 and then minus 0.1 and so on, you do not do, so



continuously, you do this with angles, you do these with translation, but you do not do this

with  time  reversal  nor  with  parity.  So,  these  are  discreet  symmetries  just  like  charge

conjugation, you go from the electron to positron there is nothing in between.
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So, this is the discreet symmetry and you know that the parity is violated in the electroweak

interaction, the weak interaction beta d k is violated right, and since electroweak force is the

same force.  Atomic processes being governed mostly by electromagnetic phenomena, but

then electromagnetic interaction is not different form the weak interaction, you would expect

the parity to be violated in the atomic processes as well. Because, it is the same interaction

right and yes there is a quest for parity violating phenomena, many have been observed in

atomic physics.

And we will not have time to discuss those aspects in this part of the course our focus here is

on collision and photo ionization. Then there is this charge conjugation as well as the time

reversal, our interest is related to these two phenomena and how the time reversal symmetry

connects solutions of collisions to the solutions of photo ionization that is our focus in the

present discussion.
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But,  then remember the CP violation has been observed, and if  CP is  violated then time

reversal symmetry is also ought to be violated, then you can look for that in atomic physics

also. And if it is violated in atomic physics, where will you find it, you will that you will have

these electrons to have a certain dipole moment, so you can look for certain dipole moment.

And if you find it would be the evidence of the breakdown of the t symmetry, and that would

be wonderful this is experiment will be much cheaper than what it is at the large hadron

collider. You can do it in the lab and people are looking for this, you they do not only for the

atomic systems, but actually for molecules because there is a certain enhancing factor which

enables which gives you some comfort because the probability of detection goes up very

much because of that.

CP violation is of importance some of you keep wondering where is all the antimatter, part of

the reason you do not find as much of the antimatter as you find matter is because of CP

violation, but that is again involved question which that does not fall into the scope of our

discussion.
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We will nevertheless need to understand what exactly is meant by time reversal symmetry.

And it is not the same as classical mechanics, so let us first understand what time reversal

symmetry means in classical mechanics. So, classical equations of motion are symmetric with

respect to t going to minus t, and what this means is that if you have particle one, which is at

position vector r 1 and momentum vector p 1 at t equal to 0.

And if there is an identical particle, this is particle two whose position at t equal to 0 is the

same as the position of particle 1 equal to 0. But, this momentum is opposite it is linear

momentum is opposite, then if these relations hold that at a later time the particle two will

have the same position as particle one had at a previous as much time. So, this is t going to

minus t, so at a previous as much time if the second particle has the same position, as the first

particle had at as much previous time. And the momentum is the negative of what the first

particle had, at that much previous time, which is minus of p 1 minus 2. Then you say that

motion has time reversal symmetry, this is the meaning of time reversal symmetry in classical

mechanics.
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And in classical mechanics it is very easy to deal with because this is the picture which shows

you,  how the definition which I  just  provided this  is  the position of these two particles,

particle one and particle two at equal to 0, and this momentum of these two particles at equal

to 0, except that the momentum of the second particle is opposite to that of the momentum of

the first particle. And this is the criterion for time reversal symmetry, this diagram is from a

very nice article by Domingo's I will strongly recommend this article, in which he discusses

time reversal in classical mechanics and in quantum mechanics.
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So, classical equations of motion are symmetric with respect to t going to minus t because

both are of t and r of minus t are solutions to Newton's laws to Newton's equation of motions

and also to the Lagrange's, both are second order differential equations right. So, d 2 by d t 2

as t goes to minus t remains the same, same thing happens with the Lagrange's equations,

Hamilton's equations are first order equations. But, then there is a minus sign here, so that

takes the care of it,  so all  classical  equations  whether Newton, Lagrange or Hamilton of

course, they are equivalent to each other.

So, no wonder, but it is obvious that they are symmetric under time reversal t going to minus

t, the question is what does time reversal symmetry mean in quantum mechanics where the

evolution of the system is described not by Newton's equation or Lagrange's or Hamilton's

equations. But, by the Schrodinger's equation, and this is the rate equation del psi by del t

tells you how he system evolves with time. So, what is time reversal symmetry in quantum

mechanics, and this is what we will discuss in our next class, and then connect the collisions

and photo ionization.
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So, that will be our point of discussion for the next class we do expect the solutions for photo

ionization to be related to the solutions of the collisions experiment. Because, they have the

same final state, you can see that from these two diagrams that we have discussed earlier. And

this  relationship is  actually what connects the collision boundary conditions to the photo



ionization  boundary conditions,  then  the  connections  will  emerge  from the  time reversal

symmetry in quantum mechanics.

So, with this I will conclude today’s class essentially the question boils down to how do you

choose the normalization C l equal to the e i delta l is what gave us the correct boundary

condition to describe the collision process. So, the question is how are we going to choose C l

to describe photo ionization, so that is the question we are going to answer there are a few

references most of this discussion is from Fano and Rau it is a very nice book. And there are

some other sources which I have suggested over here, if there are any questions I will be

happy to take, otherwise we proceed from this point to the next class.


