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Greetings, we will begin unit 5 today, this is going to be a small unit, just 2 classes today and

tomorrow on in this unit. The reason is it is based on topics that we have done, in a certain

sense it is just a matter of establishing certain connections, with between the non-relativistic

Schrodinger's quantum mechanics and Dirac's quantum mechanics, which we did in unit 3.

So, relativistic effect from the point of view of Schrodinger's quantum mechanics can be

added as perturbations, where us from the point of you Dirac's quantum mechanics. They are

intrinsic to the very statement of the problem, because that is the very foundation of Dirac's

quantum mechanics. So, we will establish some connections between these

(Refer Slide Time: 01:11)

And  essentially  these  details  are  very  important,  because  they  go  to  the  very  hot  of

spectroscopy  and  atomic  structure.  Because,  using  spectroscopy  you  investigate  atomic

structure and once you know the atomic structure, you can do many other problems dynamics

collisions and other things. So, essentially you are familiar with the hydrogen atom spectrum.
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You have a visible part and an empirical study of this visible part of the spectrum, is what

lead to the understanding of the 1 over n square formula, in the Rydberg Balmer empirical

formula, which was later on found in Morse old quantum theory. And also in Schrodinger's

quantum mechanics, which all gave the 1 over n square formula. Now, this structure is a good

starting point, but then there is a long way to go and you keep making these corrections, then

has to understand the atomic structure deeper. You discover that there is so much move to it

than just this one over n square.
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And we already found that, the sodium atom does reveal the dependence of energy on the l

quantum number, but then there is what was earlier regarded as a hidden degeneracy or an

accidental  degeneracy, in the hydrogen atom. Because,  there was no l  dependence of the

energy for  the hydrogen atom Eigen values.  And we learned that,  the degeneracy in  the

hydrogen atom was because of the SO(4) symmitry.
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Now, let us ask this question that, when you take the relativistic energy and we have done this

in unit 3, so you remember the Dirac's solution to the energy. And Dirac solution has energy

which  depends  not  just  on  the  principle  quantum number  n,  but  also  on  the  total  angle

momentum quantum number j. So, E depends on both n and j, and the degeneracy is 2 into 2 j

plus 1 4, whenever n is not equal to the couple quantum number, you remember the couple

quantum number in Dirac's theory.

Whereas, when n equal to couple, the degeneracy is 2 j plus 1 4, this is rather interesting

observation and one would ask the question that does the relativistic hydrogen atom, what is

the symmitry of the relativistic hydrogen atom, does it have SO(4) symmetry. And this is a

problem of much interest and in fact, it is not very many years ago in 2008, just around 3 to 4

years ago, that there are two very interesting papers by Chen, Deng and Hu followed up by

comment by Stahlhofen in which this question was addressed.

And you might want to read of these papers, it is always nice to read some original literature

and these questions on whether or not the relativistic hydrogen atom have SO(4) symmitry is



addressed in these papers. And it turns out that the conclusion of these papers is that, the

relativistic hydrogen atom does in fact, have the SO(4) symmitry. But, this is the matter of

considerable detail and I will not have the time to address this issue very much in this course.

(Refer Slide Time: 05:15)

But then we will move on to some of the other relativistic effects, and we learn from the

Foldy-Wouthuysen  transformations,  which  established  the  connections  with  terms,  which

were introduced earlier using perturbative methods and quantum mechanics. So, the terms

like the correction due to the relativistic kinetic energy or the spin-orbit interaction or the

Darwin correction and so on.

So, these connections they are not manifest in the Dirac equation they are all there, but they

are not visible, but when you carry out series of Foldy-Wouthuysen transformations one, two

and three. Then you are able to re-write the Hamiltonian in a form, in which these terms

become manifest and in fact, they do give what we call is the fine structure of the hydrogen

atom. But, that is not the end of the story, because beyond the fine structure there is the

hyperfine structure, because of the electron nucleus interaction.

So, beginning with the Balmer Rydberg formula, you go through a progression of corrections

and you develop deeper insight into the structure of the hydrogen atom, which is the simplest

atom. But,  that itself  has so much,  there is  the wealth of physics,  there is  the wealth of

knowledge about quantum mechanics, which is contained in the quantum mechanics of the

hydrogen atom itself.
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So, the Schrodinger Eigen values depend only on n, Dirac Eigen values depend on n and j

and then there is a further spin-orbit splitting, which we have seen, we have discussed this in

the context of the Foldy-Wouthuysen transformations. The lamb shift causes the dip of the 2P

1 half level relative to the 2S 1 half level and then there is a further hyperfine structure, which

come from the interaction between the electron spin and the protons spin, the nuclear spin.

So, because the proton also has got a spin half, the proton spin and the electron spin couple to

give you a single state and a triplet state between these two and then these were observed first

by Albert Michelson. In fact, before this hyperfine structure, he observed in 1881, this was

the before famous Michelson-Morley experiment, which was done in 1887. And in fact, this

was one of the major reasons that Michelson got the Nobel prize, now these are the details

that one gets into in the quantum mechanics of the hydrogen atom.
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And  if  you  look  at  these  different  corrections  the  like,  the  relativistic  kinetic  energy

correction,  the  spin  orbit  correction  or  the  Darwin  correction,  the  hyperfine  correction,

hyperfine  structure  correction  and  so  on.  All  of  these  are  in  built  into  the  system,  the

hydrogen atom when it exists, it has got all of these interaction, these are not interactions that

you  can  switch  on  and  off  from  outside.  What  you  can  switch  on  and  off  or  other

perturbations that you can impose from outside, like if you put a hydrogen atom on magnetic

field, you can switch of the magnetic field, you can change its strange, you can change its

direction.

So, all of these external perturbations are under your control, but these internal interaction

like the Darwin correction or  the correction due to  the relativistic  kinetic  energy, that  is

something that you have no control on. That is important even for in the electronic when the

hydrogen atom addressed, it does not required the hydrogen atom to be moving at relativistic

speeds. It comes essentially from the fact, that the speed of light is finite and therefore, all the

consequences of the special theory of relativity have to be automatically accommodated in

this key.

So, these are internal to the electronic proton system, this can be viewed as perturbations, not

as perturbations which are imposed from the outside, which are switched on or off, but is

perturbations over the previous level of approximation. So, you begin with the certain level of



approximation and through that, you add a perturbative correction; and then you can find

what the consequences of this perturbations are using perturbation theory.
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And typically  the perturbations  are on this  non relativistic  hydrogen atom, for which the

unperturbed Hamiltonian is what you have over here, and you can then think of a perturbation

no matter where it this comes from. It could be internal to the system like the fine structure,

or the hyper fine structure or the relativistic kinetic energy term or the Darwin term. Or it can

be some external perturbation, because of the electric field or magnetic field as you do in

stark spectroscopy, your Zeeman spectroscopy or it could be due to feels like the lamb shift,

vacuum frustration and so on. So, perturbation in general can be either internal or external to

the system.
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And when you are using perturbation theory, it is important that you take into account all the

perturbations, regardless of these perturbations been internal or external, because they will

have  a  similar  role  in  the  structure  of  the  Schrodinger's  equation  with  the  perturbation.

Because, these come as addictive terms to the unperturbed Hamiltonian and it whenever you

make these corrections always you have to be sure that, you do not ignore larger corrections.

Like H 2 prime for example, if it is correction of a certain order and there is a H 3 prime,

which is larger than that, and if you choose to do perturbation theory only with the H 2 prime,

but do not include H 3 prime, which is larger very make no sense. So, all perturbations, all

corrections must be introduced progressively, so that the most important perturbations, the

largest perturbations are first concern consider.

And further more all perturbations, all corrections whichever comparable shrine, like if H 2

prime could be an internal perturbation of the same order is H 1 prime, but H b prime is also

a  perturbation  of  the  same order. Then it  should  also  be  included regardless  of  it  being

internal to the system, or something which is imposed of the system from outside. So, all

perturbations of the same order should certainly be considered on an equivalent  floating,

regardless of these perturbations being intrinsic or imposed on the system.
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So,  now we need to  review a little  bit  of  perturbations theory, because we will  ask this

question what is it perturbation does to the Eigen-states of the system. It just exactly what

will a perturbation do, does it change the Eigen value, does it changed the Eigen functions,

does  it  changed  both  Eigen  values  and  Eigen  functions.  And  then  typically  what  a

perturbation do to a bounce state part of assistant is that,  it  can settle change the energy

levels, whatever is the energy level we can change; it can change in one way or in can change

the other way.

So, the bounce state  energy is  can get,  most  strongly bound or less strongly bound both

possibilities are there, you may have degeneracy which can be removed by a perturbation,

and that is a very common thing in spectroscopy. So, perturbation removes the degeneracy, it

may  remove the  degeneracy either  partially  or  wholly, besides  the  perturbation  can  also

introduce transition and also change the occupation numbers of the states. So, perturbation

can have different kind of consequences on a quantum system.
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And what we showed in unit 3 was that, the terms which come from the Foldy-Wouthuysen

transformations,  if  you  remember  the  Foldy-Wouthuysen  Dirac  Hamiltonian,  which  we

arrived that after the three Foldy-Wouthuysen transformations. We recognize that they were

corrections due to the relativistic kinetic energy term, which were applicable for all values of

the l quantum number. Then they was the spin orbit correction which was valid for l not equal

to 0, when l equal to 0 it is the same.

And then there is also the Darwin correction which comes from the electron wave function

amplitude at the nuclear, because of this Dirac delta function, and therefore it is relevant only

for the S orbital, only when the l is equal to 0. So, we only mention these results and in

today’s  class,  we  will  discuss  these  terms  in  some  detail  and  notice  that,  all  of  these

corrections they are of the order of z alpha square. So, look at ((Refer Time: 15:16)) this one,

this one and this one there are all of the order of z alpha square, so there are all comparable

shrine.

And therefore, they must be introduced from a perturbation approach together, over here in

the  Foldy-Wouthuysen  farm  they  come  naturally,  they  come  together  from  the  Dirac

equation. But, if they are to be consider perturbatively as corrections to the not relativistic

Schrodinger's results, then you cannot take one of them, but you mistake all of them, because

they are all of the same order.
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So, notice that each of these corrections depends on l, this is the relativistic kinetic energy

correction there is an l here, that Darwin term also depends on l, because for l not equal to 0,

this correction is 0. In fact, it is applicable only for l equal to 0, only for the S phase which

are the only once which got an all the non-zero amplitude at the centre. And then the spin

orbit correction also depends on the l quantum number. But, when you add up the three, you

some over all l and this is a problem which one was included in the assignment given to you.

That when you add up all of these three, you get only a j dependence, this is the very peculiar

and a very interesting result.
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So,  now notice  that  the  dependence  on  l  quantum number  goes  your  way  and  then  the

question is what exactly does a perturbation do to good quantum numbers, what are the good

quantum numbers, and how do you choose a basis at when you are doing perturbation theory.

So, these are important questions and I will remind you that, the good quantum numbers are

those which comes from Eigen values.

(Refer Slide Time: 17:21)

The operator, which operates which correspondence to a measurement of a certain property

of the physical system, as a result of the, which the system collapses into an Eigen state. And

if it remains in that Eigen state when you perform another measurement, so you stack a set of

compatible measurements, and when you get all of them together, you get a complete set of

compatible observations are equivalently a complete set of commuting operators. And the

Eigen values of these complete set of commuting operators, other once which are giving you

the good quantum numbers. So, this is the essential factor that we need to remember in our

consideration.
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So, now, from the point of view of non relativistic Schrodinger quantum mechanics, spin as

such  does  not  really  exist,  the  non  relativistic  Schrodinger  equation  has  no  scope  to

accommodate  spin.  The  only  wait  to  do  it  is  on  a  completely  ad-hoc  bases,  when  we

discussed angular momentum algebra, we did point out that the definition angular momentum

thus allow certain values of the j quantum number, which could be either 0, half 1, 3 half 2

and so on. So, half integer quantum numbers do have a place in the algebra of angler of

momentum quantum mechanics.

That  does  not  require  any  relativistic  quantum  mechanics,  nevertheless  non-relativistic

quantum mechanics  does  not  a  sign,  half  integer  quantum number  to  the  electron  spin,

because electron spin as no place at  all  in non relativistic quantum mechanics. It  can be

introduced only on an ad-hoc bases, and this is how it was introduced perturbatively over the

non relativistic Schrodinger equation. So, when you do that, your good quantum numbers

come from these operators, come from the Eigen values of H L square L z, these are the three

which give you the n, l and m l quantum numbers.

And then on an ad-hoc bases you plug-in and additional property spin, the way it was done by

Hollenbeck and Gauss Smith if you wish, it comes neatly only out of the Dirac equation, only

out of the relativistic quantum mechanics. But, from the point of you of perturbation of a non-

relativistic quantum mechanics, it can be introduced on an ad-hoc bases. And then these four



operators H L square L z and S z will give you the four quantum numbers n, l, m l and m s

and you can use these to describe the quantum state of the system.

So,  now  your  non  relativistic  unperturbed  Schrodinger  equation  H  0  phi,  H  0  is  the

unpalatable Hamiltonian, this becomes a two components wave function, the wave function

excel become to component wave function. Because, you of introduced spin on an ad-hoc

bases with an upstate and the downstate, so it at got it two valued functions. And this is now

your unperturbed Hamiltonian, and through this you will make perturbation corrections, the

two components come from the upstate and the downstate 1 0 and 0 1, if you wish with

whatever coefficients.
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And the alternative set of quantum number that you can use is not just n, l, m l m s, but also

n, l, j, m j, so now we have to ask the question, which is the appropriate bases and this is at

the heart of perturbation theory. Once you sought out these issues, one can do perturbation

theory systematic,  so let  us consider  the first  order perturbation theory, in the first  order

perturbation theory that the correction to energy is given by the expectation value of the

perturbation Hamiltonian in the unperturbed state.
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This is the well known result which comes from perturbation theory, the question that we are

addressing is what do you use for size 0, do you use n, l, m l, m s or do you use n, l, j, m j and

what is it the determinants this, so these are the questions that we are going to discuss today

and in tomorrow’s class. The perturbations that we are considering are these H plain, this is

the relativistic kinetic correction, then we have the Darwin correction, you have the spin orbit

correction, these are the corrections that we need to take into account.
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And they have a formal place based on first principles in Dirac formalism, when you subject

a to three Foldy-Wouthuysen transformations, you get the terms at you see on this screen,

now over here this is coming from an external magnetic fields. So, forget about it, if you are

talking only about perturbations, which are intrinsic and internal to the quantum system. So,

you do not have to worry about the terms corresponding to the magnetic vector potential or

this phi, for the hydrogen atom you have got central symmitry.

So, the curl of E would vanish for spherical symmitry, so this term also goes E phi is the

Coulomb potential, which is the 1 over r or z e by r potential so that, so 1 that is responsible

for the bound states or even the continuous states of the hydrogen atom. m c square is just a

constant, without this A you have got p square over 2 m, which you go into the unperturbed

Hamiltonian. So, the perturbations at you have really need to talk about are only these which

are p 4, this is the p to the 4 term with the minus sign mind you, this is the relativistic kinetic

energy correction.

Then the other two perturbation that you have to consider or the spin orbit perturbations,

which is sigma dot l term, d V by d r square sigma dot l and then the Darwin term, so these

are the three perturbative corrections that we need to discuss. So, I will  refer to them as

perturbations this is the first perturbation the relativistic kinetic energy term and then the spin

orbit term which is the sigma dot l curl of E 0, and then the Darwin term. So, these are the

three perturbations, which are intrinsic to the quantum system, that we will discuss, and see

what  is  there  consequence  on  the  solutions  to  the  non relativistic  prediction  of  quantum

mechanics, the Schrodinger predictions of quantum mechanics. 
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So, now in this context, the question that we are addressing is that when you make these

corrections, which states do we choose size 0 to be n, l, m l, m s or n, l, j, m j. And in your

earlier course and quantum mechanics you are of learned how to make this choice, because

there is the very simple and fundamental criterion that you must invoke to make this choice.

That is the fundamental criterion, which must be made before you begin to use perturbations

theory. And what is the choice this is, I thought it is best to court (()) from his book modern

quantum mechanics.
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He  says  remember  the  cardinal  rule,  choose  unperturbed  kets  that  diagonalize  the

perturbation, this is the cardinal rule, this is what you must do, so find out which unperturbed

kets  would  diagonalize  the  perturbation  and  then  the  choice  is  that.  So,  this  is  the

fundamental criterion, in fact goes on to say something further, but I will come back to that

residual part of this remark a little later.

(Refer Slide Time: 26:22)

So,  let  us  take  the  first  correction  the  first  correction  that  we  want  to  consider  is,  the

relativistic kinetic energy term which is p to the 4 term, now this one p to the 4 is the square

of p square. So, let see what happens to p square, because p square commutes with the orbital

angle of momentum quantum vector operator, and because it commutes, because l commutes

with the l square. You already know that this is diagonal n, l, m l and m s, so now you know

how you make your choice.

So, your n, l, m l, m s would be an appropriate bases at to go ahead and make use of first

order perturbation theory correction to this, because of this term, so let us go ahead do it. So,

let us take the n, l, m l, m s state plug-in perturbation, let us not forget the minus sign, it is

minus  p  to  the  4,  you  remember  how  the  minus  sign  came  it  came  from  the  Foldy-

Wouthuysen transformations. So, when you do it systematically, so that was the advantage of

doing the Dirac equation and the Foldy-Wouthuysen transformations prior to a discussion on

this topic. So, you have the minus p to the 4 over this constant and you find the expectation

value of this operator in this state n, l, m l and m s, so now this is not a very difficult task.
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So, let us see how to do that, all the constants come out nicely, here you have got p square

over 2 m, which is the kinetic energy operator and square of that. So, you can get that from

this E n minus V square operator and then E n of course is the constant, so twice c n and also

a constant. And all you need to do is to get expectation values of V, the potential energy and

V square, so if we get the expectation value of V and V square you can solve this problem

readily.

Now, that is again not a very difficult task, because V is given by this 1 over r minus Z is

square by r is the coulomb potential, this is the e phi term in the Dirac Hamiltonian. And then

you can find 1 over r, the average value of 1 over r is 1 over n square a, this is the a is the

bore radius and you can find the average value of 1 over r square. So, this is just a matter of

carrying out the integrations with appropriate radial functions, the angle of parse will give

you, they are normalized spherical harmonics. So, they will contribute just a multiplicative

factor of 1, and essentially you have to carry out the radial integrals, to get those expectation

values and the non relativistic radial functions are well known. So, you can for whichever

state, you are carrying out this correction whether it is 1 S or 2 S or whatever, you can carry

out this integration and get the corresponding correction for the relativistic kinetic energy

term.
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So, working out these integrals is just a matter of mathematical detail and you will get for

these correction for 1 over r, you get 1 over n square a, and for the square of V you get 1 over

l plus half n cube a square. So, with these corrections, you get this correction delta E 1 which

is given by, you put all of these three terms together add them up and then you get, an net

result for the relativistic kinetic energy term, which is given by this. So, there was small

minus status,  which have jumped over, and essentially  you can see that,  this  is  how the

relativistic kinetic energy term contributes to a change in the energy that you get from the

Schrodinger equation.
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What is the consequences of this correction, so 2 p and 2 s they are degenerate that is the

consequences of the SO(4) symmitry of the hydrogen atom, there is no l dependence. But,

now there is the correction which depends on l, it explicitly depends on l, so let us see what

this connection does to the energy.
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So, if you put l equal to 0 and I have taken this formula and put l equal to 0 over here, so you

get 3 4th minus 2 divided by half and if you carry out this simple arithmetic, you have the

correction to the 2 s state, for the l equal to 0 state which is given by this factor. So, there is

minus sign here, this is minus E 2 this difference this 3 4th minus of this number, which is 4.

This comes with a negative sign which is the minus 3.25, so this minus sign and this minus

sign will make it plus.

And the correction will have the sign of E 2, but E 2 is intrinsically negative and you are

adding that to the non relativistic energy, what are you adding you are adding a negative term.

So, whatever was already negative will become even more negative, so this is your energy

access, this is the Rydberg series (()), this is the equal E to 0 and therefore, this relativistic

kinetic energy correction causes a dip in this value from here, it is lowered by this amount.

This is the result of the relativistic kinetic energy, this is what it dons to the 2 s state, but it is

difference for 2 l, 2 p, because for 2 p l is equal to 1. So, here the E 2 will be the same, but the

correction will be different, because l is different for the 2 p. So, now, for 2 p you put l equal

to 1, so in the denominator here instead of l plus half, you have 1 plus half and this difference



is  still  negative,  that it  is the rather small  number, this is  minus 7 over 12, the previous

number which had appear over there was like minus 3.25, so this is the small correction.

And therefore, this again these two minus sighs cancel, the correction has the sign of E 2

which is intrinsically negative, so the energy does become more tightly bound a such, but by

arcs smaller amount, by a rather smaller amount, so these are the two corrections. And if you

now consider a both, so 2 p as dip by a small amount, 2 s as dip by a larger amount, because

of the difference in these two numbers, this is 7 over 12, this is 3.25.

So, now may I ask if the 2 s 2 p degeneracy has been removed in the hydrogen atom, would

you will be appropriate to say that the hydrogen atom will not have the degeneracy with

respect to the 2 s and 2 p states; because of the relativistic kinetic energy correction. But, then

what did we say earlier at the beginning of the class, I showed you some pictures, I showed

you the Schrodinger energy levels, then I showed you the Dirac energy levels, there are the

terms.

So, these are not the only two terms, there are other terms and then when you include the

other terms which may corrections of the same order of magnitude, then everything will fall

in place. And this degeneracy is in fact removed, but only by the lamb shift, the relativistic

kinetic energy term does not really remove this degeneracy, because whatever it does to the

energies is compensator for by the corrections in the spin orbit term, the other corrections. So,

when you add up all the corrections, then you have a different story and you need to wait to

plug-in the lamb correction, the lamb shift to remove this degeneracy.

Now, the essential point which is highlighted over here in today’s discussion, there are couple

of points, one how do you choose the unperturbed states, what is the fundamental criterion,

because whenever you use perturbation theory this is the guiding principle for which I quoted

from his book, and those of you who have read what have come across the quote which I

mentioned. And perhaps you remember, the remaining part of his quotation is there anybody

who does, it is the remaining part of the quotation, if anybody has read I can a sure that he

cannot forget, he or she cannot forget that.

So, let you think about it, we are certainly going to come back and discuss the other part of

quote, and for today our important lesson is to take into account all corrections, which are the

same order of magnitude. If you take only one, you would be led to the wrong conclusion that

the relativistic kinetic energy term. In fact, if that is a only correction you made, you would



go head and conclude the 2 s and 2 p are no more degenerate, and you would expect to see in

your observations in the spectrum that you will record, you will expect to see these energy is

to be at different levels that of course, you do not see.

And the reason you do not see is because there are other corrections which are of the same

order  of  magnetic,  which  you  should  also  taken  into  account.  So,  there  are  two  major

learnings to take home today, one is have to choose the bases at and second to make sure that

whenever you are doing perturbation theory, all  corrections which are of the same order,

which are of equal importance in string. Regardless of they being internal to the system or

external to the system, in this case all the three are internal to the system.

But, we are going to have to remember this even when we go beyond this, because later on

we will  put this  atom in a magnetic field,  when we discuss the Zeeman effect.  Or in an

electric field when we discussed the stark effect, the question that will come up is, if you are

going to study Zeeman effect using perturbation theory, which is the perturbation of the non

relativistic Schrodinger equation for the hydrogen atom or some quantum system whatever.

Then if you are introducing corrections of a certain order using perturbative methods, have

you included other corrections of the same order, and this will  obviously, depend on the

sprinkle the magnetic field, if you are doing Zeeman effect. For very weak magnetic fields,

you may have the perturbation which is more important due to internal interactions. But, if

you increase strength of the magnetic field, then the perturbation due to external fields could

become more important. And then how you do perturbation theory, what is the bases at and

unless you make that choice correctly you cannot really use perturbation theory, so these are

the important thing I am going to stop here.
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For today the 2 s, 2 p degeneracy is not actually removed, because of the other corrections,

which I will be discussing in tomorrow’s class.
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And today we considered the correction due to the first perturbative correction, which is the

relativistic  kinetic  energy  correction.  We  also  have  to  s  do  this  spin  orbit  interaction

correction in the Darwin term, and the question which is going to be raised again is, when

you deal with these two perturbations, which will be an appropriate site, will you use n, l, m l,



m s or would you use n, l, j, m j. So, these I will leave you with these questions and stop here

for today, if the any questions I will be happy to take, no questions.

Thank you.


