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Hartree-Fock self - Consistent Field Formalism

Greeting, so we have come a long way in our discussion on the Hartree-Fock Self Consistent

Field Formalism, and I had mentioned in our previous class that, student in a similar class had

done a project on this, this is a report on that. So, this is from IIT, Madras, M.Sc physics

report of V. Lakshmi who developed photon code to get the Hartree-Fock self consistent field

solutions, and in fact the full report is in this it includes the program that she wrote, some of

you would like to try it out, you are welcome to do that. Essentially what we have learnt so

far is, that we recognized that the Hartree-Fock equation is in fact, a condition which must be

satisfied; it is a necessary and sufficient condition for us to reach our goal.

(Refer Slide Time: 01:23)

And our goal is to get self consistent field solutions to the n electron problem, and we do so

by using the variation technique by seeking an extremum of the expectation value of the

Hamiltonian, in the antisymmetrize wave function. Subject to the constraints of normalization



and orthogonality, and the condition that emerges is what we call is a Hartree-Fock equation,

which is a actually a family of n coupled integral differential definitely equations.

And there are couple of questions that we raise towards the end of the previous class, we

asked if this is an Eigen value problem, it has some resemblance to an Eigen value problem,

so we need to study this on some detail. And then we want to ask how the formalism, how the

Hartree-Fock theory connects to experiments,  because at  some level the main purpose of

doing this, is to see how it connects to experimental observations. And there would be some

short of physical connection between the theory and the experiment. So, that these questions

are the ones that we shall take for our discussion today.

(Refer Slide Time: 02:46)

So, to answer these questions, let us begin with look at the Hartree-Fock equation that we got

in the previous class, this is the Hartree-Fock equation in the diagonal form, as you will

remember. This is in the basis in which the matrix of Lagrange parameters, the variation

parameters is diagonal and we will do a little bit of simple rearrangement of terms, to extract

some very interesting physics out of it. So, you multiply this by the complex conjugate of u i

function, the i th function; and then integrate over r 1, so that is what we have done here.

You multiply this first term by u i star r 1 and then integrate over the volume element for V 1,

and you do the same for the remaining terms as well. So, every term is treated by the same

prescription and you find that, here you get the normalization integral which is equal to unity,



so the right hand side is a very simple one. And the rest of the terms we will handle very

carefully,  so  the  first  term  that  you  get  are  the1electron  integrals  and  then  you  get

the2electron integrals,  because there is  a  double integration over V 1 and V 2,  V 2 was

already there and now we have included an integration over V 1. So, now you have the

coulomb and their exchange integrals coming from these double integral integrations, so let

us look at this form.

(Refer Slide Time: 04:34)

Now, let me remind you that the1electron integrals can be written in a more compact fashion

in the Dirac notation, so we will go over to the Dirac notation, because on it is much nicer

and easier to write the relations. Likewise the2electron integrals, the first is the coulomb

integral which is sometime called as a direct integral, so this is the coulomb integral we have

spent considerable time discussing this. So, we have got the coulomb integral which is a i j g i

j and then we have the exchange which is the2electron exchange integral, which is i j g j i.

So, that is the notation, this will remind us that this is an exchange integral. So, these 3 terms

appear in the equation that we got, so this is the Dirac notation, this is the i f i matrix element,

this is the i j g i j and this is the i j g j i.



(Refer Slide Time: 05:39)

And in terms of these the Hartree-Fock equation which we got, can be written in a rather

simple compact fashion using the Dirac notation, and now the next thing I am going to do is

to sum over the index i. So, this equation there is such an equation which holds for every i, i

goes from 1 through n, so i sum over all the terms from 1 through n, so i going from1through

n is summed over and the right hand side as well.

(Refer Slide Time: 06:15)



So, here we are, this is the summation of those terms the coulomb in the exchange terms are

summed over both i and j, the other terms are summed over only the i index. And this will

remind you of the expectation value of the1electron operator in the2electron operator; these

expressions we had obtained earlier. And the expectation value of the1electron operator is

sum over i going from 1 through n of this matrix element, which is what you find over here.

So, this is obviously, the expectation value of the1electron part of the Hamiltonian, this is

somewhat similar to this, but not quite.

Because, there is a factor of half here, if you sum these2what would you get, you would get

the energy of the system, because you will get the expectation value of the Hamiltonian in the

n electron system. So, you would get the energy by adding these2pieces, which is this over

here and it is not quite equal to what you get from this equation. So, the sum of i going from

1 through n of these epsilon i,  which came as the diagonal element in the matrix of the

Lagrange matrix, that if you add up all of those you do not really get the total energy of the n

electron system.

What  is  the  difference,  you have  got  a  factor  of  half  over  here  whereas,  over  here  this

multiplied as unity, so if you take this expression and add to it another half, then you get the

left  hand side  of  this.  So,  that  is  what  you have,  you take  the  expectation  value  of  the

Hamiltonian add to it the expectation value of H 2 and that is what gives you the right hand

side, which is the sum of this epsilon i which appear in the Hartree-Fock equation.

Now, we are heading toward extracting the physical meaning of the Lagrange multipliers, is

there a Lagrange multiplier in this equation, yes it is the epsilon i, epsilon i is minus lambda i

i. So, since we have done the diagonalization, you do not need the row index and the column

index it is the same value along the diagonal element. So, there is a single index which is the i

th index, and this epsilon i is really coming from the Lagrange multiplier, so this is what you

have got.
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Now, let us take an example of a 3 electron system, just to get some feel for these numbers,

so for the 3 electron system the energy expression which we wrote on the previous slide. This

will add up to these integrals there are these1electron integrals, which is the matrix element

of the 1electron operator, in the state 1, 2 and 3. And then there will be pairs of terms the

coulomb minus  the exchange,  which is  how they come in  pairs,  the  coulomb minus the

exchange  between  electron1and  electron  2,  electron  1and  electron  3  and  electron  2  and

electron 3. So, this is the total energy going just by the complete expression that we had for

an arbitrary value of n.

So, we will just specialize it for a small system like the n electron system, the specialization

we are considering is for the 3 electron system, just to take a very small system, and to see

what it does. Now, suppose from these 3 electrons you remove one, so there is an quantum

state 1, there is1electron in quantum state 2, and there is an another electron, and in third

quantum state there is a third electron, there are 3 electrons. You remove the1in the middle,

pluck it out how would you do that, you will have to supply some energy to the system,

because it will be bound to the system, so you have to overcome the binding energy.

You can do so by having electromagnetic radiation of appropriate energy shine on it, and

once the atom absorbs it, the electron in a particular sub shell can be removed. Like if you

have the lithium atom or berilium atom, berilium has got four electrons, and if you give



energy as much as the binding energy of the 1 s electron, you will remove the 1 s electron

from the berilium. So, you remove the electron in the quantum state that we have labeled as

2, mind you that each quantum label is actually a set of 4 quantum numbers here, whatever

they are.

They could be n l m l m s if you like, so there are 4 quantum numbers each quantum number

each index over here, whether it is 1 or 2 or 3 is a set of four quantum numbers. And you are

creating a vacancy by supplying some external energy to the atom and creating a hole in that

state, in the n 2 equal to, so the occupation number of the quantum state 2 will become 0, so n

2 become 0. So, this is a 2 electron system with n 2 equal to 0, but n 1 is equal to 1, n 3 is also

equal to 1, so you are not touching those quantum numbers.

What  you are  assuming  is  the  frozen  orbital  approximation,  when  you are  creating  this

cavity,1would expect that the other orbital's flex they would relax, those charge density will

also be affected, because removal of an electron is removal of an electron charge. And you

have  got  a  certain  charge  there  are  3  electrons  in  a  certain  region  of  space,  out  of

which1electron has been scooped out. And therefore, the remaining2electrons would have

their probability amplitudes functions, and the probability densities they will need to flex and

readjust, because of the removal of1charge.

And  the  frozen  orbital  approximation  tells  us  that,  we  are  going  to  pretend  in  this

approximation that these other orbital's do not flex, they will remain as they were when you

consider the 3 electron system, that is the essence of the frozen orbital approximation. So,

then the same integrals 1 f 1, 2 f 2 this wave function for the state 2 is not going to change,

and then you are left with these 3 terms, because n 2 is equal to 0. So, there are no pair

interactions between electron1and 2 or between 2 and 3, because electron 2 is the1which has

been removed.

And you are left with only the pair electron terms between 1 and 3, and then the1electron

integrals for the 1 and the state 3, so this is what you get for the2electron system. Now, if you

take the difference just subtract this from what is that the term, so e psi 3 minus e psi 2 what

you get, you take the difference cancel the common terms and the reason you are able to

cancel them is because of the frozen orbital approximation. If the orbital's were not frozen

you could not cancel those terms, now under the frozen orbital approximation you cancel

those terms.



And you find that on the right hand side this these 3 terms are nothing but what epsilon k

represents in the Hartree-Fock equation. Now, epsilon k had entered our analysis why are the

Lagrange multiplier, it is just a name epsilon k is minus lambda k k, and because you do not

need2indices, it is lambda in the diagonal form there is a single index k. So, epsilon k is the

Lagrange multiplier, this is the variation parameter and this gives you on the right hand side it

is epsilon 2, which is the Lagrange multiplier on the left hand side you have got the energy

difference.

This is the energy difference between the 3 electron system and the2electron, and it is exactly

equal to the energy that you have to give, to pull out the electron from the state 2. In common

terms it is ionization potential for the state 2, it is the binding energy of the state 2, it  is

something that you can measure and this is related to the Lagrange multiplier epsilon k within

the applicability of the frozen orbital approximation. So, this is the key result that, if you

generalize it  not  just  for 3  electron system, but  for  an n electron system, you remove 1

electron from the k th state.

So, n k equal to 0, all the other occupation number remain the same, the energy difference

between these2which is actually the ionization potential of the k th state. The binding energy

of the k th electron, this is exactly equal to epsilon k, which is the k th Lagrange multiplier or

minus of that, epsilon k is minus lambda k k. Now, you can develop this general image, I

illustrated it for the 3 electron system.

(Refer Slide Time: 17:34)



And it is easy to write it for an n electron system, and the way to do it is to multiply these

terms by the occupation numbers n i n n j, n i is the occupation number of the i th state n j is

the occupation number of the j th state. And these occupation numbers, because these are

fermion particles, these occupation numbers will be either 0 or 1, they can be only either 0 or

1.  So,  you  have  the  energy  of  the  n  electron  system,  you  can  write  the  corresponding

expression for the n minus 1 system, which is a completely identical expression.

Except for the fact that all terms for which n i is equal to n k for, which i is equal to k that n k

would be 0 and those are the terms which will be removed, and you are summing over all the

other indices, all the other states only the1for i equal to k is 0. And if you then take the

difference, you find that it will give you the k th Lagrange multiplier, what I illustrated for the

3 electron case, is generalized here for the n electron case. And the difference between the n

electron system and the n minus 1 electron system, which is got the hole in the k th state

which is ionization potential of the k th state is then equal to the k th Lagrange multiplier in

the diagonal representation.

(Refer Slide Time: 19:15)

This theorem is known as a Koopmans theorem, Koopmans has been written correctly, there

is no apostrophe s, that s is a part of his name. So, if you want to put an apostrophe, it will

have to be after this s not before, so this is called as a Koopmans theorem. A very interesting

person Koopmans, student of Kramers, and Kramers suggested this problem to him which he



solved and he wrote a paper in physical. And this is presumably the only paper he wrote in

physics and then he nevertheless was a very smart fellow, and he went on to get what is

equivalent of the Nobel prize in economics.

So, he got this is not called as a Nobel prize, but it is called as a Sveriges Riksbank prize in

memory of Alfred Nobel. So, it was not instituted by Nobel, but instituted in his memory and

it is considered to be equivalent to a Nobel prize, so Koopmans got this prize, but not for this

theorem.

(Refer Slide Time: 20:37)

But,  this  theorem is  a very powerful  theorem, and we will  address some other  questions

connected with a Hartree-Fock equation, we also asked if this is an Eigen value problem, it

does have some similarity with an Eigen value problem. Because, on the right hand side you

have got an energy kind of term, we already know that this is energy, it came as the difference

of e n minus e n minus 1, so it is an energy term. So, the right hand side looks like, the right

hand side of a typical shorting equation x psi equal to e psi, the left hand side is an operated,

the1electron operator operating of the same function. So, it really it looks like an Eigen value

equation.

The coulomb term also has similar structure, you can see that, if you just look at this box

everything whose argument is to r 2 is integrated out. So, you are going to have an operator

which is just a function of 1, 2 is a dummy index which gets integrated out and then you



some over r j. And then the coulomb term also suggest that you can put it in form, so that an

Eigen value equation would possibly develop, but then if you look at the exchange term there

are other issues Because, what you have over here is u i which this is for the same quantum

state i which is on the right hand side. But, the argument for the i th quantum state is r 2 a not

r 1, so we have to be careful in handling this term.

(Refer Slide Time: 22:25)

So,  what  we  will  do  is  first  multiply  by  this  spin  function,  this  hole  equation  we  will

multiplied by this, so when you multiply this term by the spin function what you get. You get

the complete spin orbital, this is the orbital part, you are multiplied it by the spin part you get

the orbital the complete spin orbital. And therefore, the argument is written as q 1 instead of r

1, r 1 is just a set of 3 space coordinates, q 1 is a set of 4 coordinates, corresponding to the 3

space coordinates, and 1 spin coordinate. So, by multiplying this by the spin function, you get

u i q 1 here, likewise from this u i r 1, you get u i q 1 here, and the right hand side from this u

i r 1 you get the u i q 1 here, and here you multiplied it by this spin function which I have

written as it is.



(Refer Slide Time: 23:40)

So, this is what I have written as it is, all the other terms wherever I could write this spin

orbital as a product of the orbital part, as well as the spin part has been written already. So, let

us look at this operator in the box, and this operator is sometimes referred to as the direct

coulomb operator, this is got the index j it is specific to j, what is inside in this box is specific

to j and then you can sum over this j and get1which is summed over hole the particles. So,

this is the V j operator, this is the coulomb operator, using this you can write this equation in

a slightly compact fashion.

Because, this involves integration over the space variables and summation over the spin, now

what is the summation over the spin part 1 over r 1 2 is nothing do a spin. So, you carry of the

spin over the spin coordinate 2, both of these are states j, so this is the spin state m s j zeta 2

and this is the complex conjugate of that and you find that this is equal to 1 right; you got the

unit operator sandwiched between these2states, which is normalized. So, this integral reduces

very easily to just the space integral, because the spin part gives you a fact of unity.

So, the spin part gives you a fact of unity and the direct coulomb operator can also be written

in terms of this integration over the space part alone, so this is just a triple integral; whereas,

over here it is the triple integral and also a summation over the spin. So, this is the direct part

and using this direct part this term can now be written in terms of this coulomb operator,

which is the v j direct all  the other terms have been written just as they were. The only



difference i have made over here is to this term, which has now been written in terms of this v

j and then there is a summation over j, that we will maintain.

(Refer Slide Time: 26:28)

Let us being into the top the next slide and now let us define an operator, which is called as

the exchange operator and it is defined by the reservation here. It is defined in a such a way,

that whenever it operates an arbitrary function of q 1 it will generate this quantity on the

right-hand side that is the definition of the exchange operator. There is a certain exchange

which is involved, that what it, what appears in the integral is phi q 2 and then what gets

multiplied or what gets operated upon is u j of q 1. So, the j index is the same everywhere,

wherever you have the 1 electron spin orbital the j index is always the same.

So, this is j, this is j, and this is j ((Refer Time:27:30)) this is on arbitrary function of q 2 this

is the definition of the exchange operator and since this holds for any phi it will also hold for

u j of q 1. So, we will operate by the exchange operator on the i th spin orbital this is the spin

orbital. So, when you operate on the i th spin orbital in place of this phi q 2 you will have u j

q 2 and this u j q 1 will come here as an operant as before, this is your definition of the

exchange operator.

And using this you can see that here again you have an integration over q 2, which is a triple

integral  over  the  space  variables  and  the  summation  over  the  spin,  which  can  be  done

separately because 1 over r 1 2 does not touch the spin part. So, the summation over the spin



part is given by over here and what is this, here the index is j and here the index is i. So, you

will get a delta m s j m s i out of this.

So, in the when we dealt with similar expression for the coulomb or the direct term, we got

unity. In this case we get a chronicle delta which will be equal to 1 in the case of parallel

spins, otherwise it will be 0 right. So, we can carry out the summation over the spin part

separately and write this chronicle delta which is written over here then you have only the

space integration left, because the summation over the spin part has been carried out that

is1which gave us this chronicle delta. The integration over the space part is just this integral

with q 2 is replaced by r 2 and the volume element d q 2 replaced by the 3 dimensional space

volume element d v 2.

So, this is your expression, which you can now put over here, but then there is1worry because

here you had m s i, but here you have m s j, but that is not worry because this term is going to

be non zero only when m s i is going to be m s j right. So, that would not create any as off.

(Refer Slide Time: 30:10)

So, let us do that, so this is what we got from the exchange term and then we can replace this

term this spin function for m s j by the 1 for m s i because it is nonzero only for parallel spins.

And now we have exactly the term which appeared in the second term what is it give us, you

get the direct operator operating on u i q 1 minus this is the minus sign, the rest of it is

nothing but the exchange operator operating on u i q 1. And now you can combine these



terms, because you can both all operating on u i q 1 you can sum over j to give you this

operator v with the superscript d for direct and this operator v with the super script x for

exchange.

And you have got this coulomb minus the exchange operator and you find that this is written

in a form which looks like an Eigen value equation and in this form Bransden and Joachain

the book they write very nicely that it is deceptively simple form it is looks like an Eigen

value equation. If you look that this equation you would not doubt that it is an Eigen value

equation, you got an operator operating on a function giving you a scale or time ascends

function, but it is not an Eigen value function we know it from the very big right. The reason

it is not an Eigen value equation is because of the exchange term which is a global term.

So,  let  us discuss  this  connection with the experiment  further, because within the frozen

orbital approximation we found that this difference in the energy, if you produce of whole in

the K th state,  which is  ionization potential  for the k th  state,  here is  you the Lagrange

multiplier. And you can therefore, actually measure it and I presume that some of you are

doing some projects in material science or conducts meta physics molecular physics or some

other  branch of solicit  physics  and maybe you produce some new materials  you want to

characterize it.

And1of the very powerful tools for material characterization is photoelectron spectroscopy,

which  is  also  called  as  ESCA the  Electron  Spectroscopy  for  Chemical  Analysis,  is  an

anybody over here who are used it  not yet,  but some of you perhaps soon well.  So,  the

electron spectroscopy for chemical analysis is a very powerful technique.
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And this was developed by Kai Siegbahn who got the Nobel prize for it an 1981 is dad got a

Nobel prize I forget the year, but that was for x-ray spectroscopy and Kai Siegbahn also, got a

Nobel prize because he developed this technique. And what you do in this technique is if you

want  to  know like  compare  any2materials  you have  some something  like  ((Refer  Time:

33:46)); and you look at the energy of the1s electron in gallium.

Now is the energy of the1s electron in gallium the same as what it is in gallium arsenide, it

folly  would  be  different  how would  you  know that,  how  would  you  find  out  what  the

differences. The way to do it is to expose the sample of gallium arsenide to electro medic

radiation  and  find  out  the  binding  energy  by  checking  the  ionization  potential  you  do

spectroscopy.

You do spectroscopy do it over a range of electromagnetic frequencies or wave lines right

usually these experiments are done using powerful light sources like synchrotron. And using

synchrotron radiation or you can also use lasers or some other conventional laboratory light

sources well, you can do spectroscopy and find out what is the energy of the 1 s electron in

gallium is it the same as it is gallium arsenide. And if you do not know the compensation of a

compound, but you know that there is a certain atom which is present there. Suppose you

know that oxygen is presented in a certain compound and you want to find out what is it is

environment.



And by environment I mean the physicochemical environment what are the other does it as a

participated in some chemical bonds, what is the physical structure this is the crystallographic

structure. What kind of symmetry is it in, is it in octahedral symmetry, is it in tetrahedral

symmetry,  what  is  the  symmetry,  that  is  the  physical  environment;  and  the  chemical

environment is what are the other items to which it is bundle.

So,  the  physicochemical  environment  will  be  responsible  to  shift  the  energy  state  of  a

particular  electron  the  1  s  electron  of  oxygen  will  have  different  energies  in  different

compounds in sulphur dioxide it might could be something else and carbon dioxide it will be

something else because the environment is different. And by measuring this difference you

would know what you are looking at.

So, when you are looking at an unknown compound, when you produce new materials for

technology  you  want  to  know  what  is  the  composition,  a  powerful  tool  for  material

characterization is Photoelectron Spectroscopy, it is P E S sometimes it is done using x-ray

then it is called as x-ray photoelectron spectroscopy or with ultraviolet radiation then it is

called as ultraviolet photoelectron spectroscopy. Sometimes it is called as ARPES which is

Angle Resolved Photoelectron Spectroscopy, because then you find an what angle as the

electron come out.

So, there are very many sophisticated off shores of this  technique,  which is  wide such a

powerful technique and Koopmans theorem connected, so nicely to the self consistent field

theory, within the demine of the frozen orbital approximation. But, then of course, there are

techniques to improve upon the frozen orbital approximation, I will mention some of it. So,

now that this is something which relates in majorly to experimental observations, and to very

important  and  very  useful  techniques,  mind  you  this  is  not  of  important  just  on  atomic

physics.

But, in all branches of contents meta physics, which you take a small piece of cooper if you

like, a small piece of gallium arsenide or small piece of semi-conductor, you want to know it

is man structure. How are you going to do that, how many electrons do you have in a small

unit volume, you got like Avogadro number huge number, and they are all interacting with

each other.

And if you want to think of something like the chronic piney model, I assume on that you are

familiar with that are you, that the chronic piney model is a single electron equation, which is



so much removed from the physical reality of any many electron system. The solid that you

are talking about, you want to get the man structure of something like gallium arsenide or

some silicon or some semi-conductor are some dielectric or whatever it  is;  it  could be a

medal, it could be a semi medal.

Now, you  have  a  huge  number  of  electrons  and  there  is  no  way  you  can  separate  the

dynamics  of1electron  from  that  of  the  other,  because  each  electron  interact  with  other

electron through the 1 over r 1 2 term, that is what we plugged in the Hartree-Fock theory. We

had the 1 over r 1 2, we had the anti-symmetric wave function, so the starting point for band

structure calculations of solids or molecular orbital calculations in quantum chemistry. For

everything the starting point for getting the electron structure is the Hartree-Fock formalism

which is why it is, so important, and the Koopmans theorem is very important. But, then

when I has to go beyond the Hartree-Fock and there are many directions for that.

(Refer slide Time: 39:30)

Now, first thing is1should be given with Dirac equation, rather than the Schrodinger, what we

did in the Hartree-Fock is to begin with the Schrodinger equation. So, when you do that you

get what is called is the Dirac Hartree-Fock, and Hartree-Fock formalism was developed in

around 1928, 29, 1930 around the time. The relativistic self consistent fields,  some other

earliest work I believe the first paper was by Voltaire Johnson in 1960 and then Dechko and



Grant, they also developed the relativistic self consistent field formalism around the same

time.

But, then what is Johnson went on to do, so many other things Grant focused on the many

electron relativistic solutions, and right from 1960, until now, for 50 years he is working on

the n electron problem, atomic and molecular  problem, getting relativistic  self  consistent

fields. And huge technology and I was mentioning yet to someone over here, that over these

50 years he want worked with 50 young people, intelligent minds like you, who have all

contributed to the technology.

And  the  number  of  PIG  students  and  number  of  course  dogs,  so  in  50  years  a  whole

missionary has been developed by Grant and his collaborators. Then you need to include the

many electron correlations and this I mentioned that the very outside, that in the Hartree-Fock

theory  certain  correlations  are  included,  and  some  correlations  are  not  included.  If  you

remember, I had mentioned that the exchange correlations are included, and because of the

frozen orbital approximation, you have pretended the other electrons will not respond to any

changes in the occupation of1electron orbital.

So, you need to go beyond the Hartree-Fock, because this is obviously, on approximation and

the correlation energy is what you miss out when you do the Hartree-Fock, because in the

Hartree-Fock, because of the frozen orbital  approximation,  you have left  out the electron

correlations the coulomb correlations. And these are left out in the self consistent field from

nevertheless you are able to write your wave function, as a product of single particle wave

functions that  is  exactly  what  you have done,  we have worked with an n electron wave

function, which is the product of1electron wave functions.

What I have added to that antisymmetric, our n electron wave function was made up of a

product of1electron wave functions the only thing we added to that was the anti-symmetry.

So,  we  did  include  the  exchange  correlations,  but  we  did  not  include  the  coulomb

correlations, and therefore one has to go beyond the independent particle approximations.

The single particle model it works beautifully, it does give excellent results, but then it has

certain  limitations  and1has  to  go  really  beyond  it.  So,  you  need  to  include  many  body

correlations.
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And1does it  by different  mechanisms,  the exchange correlations  are also called as Fermi

Dirac correlations or statistical correlations, and the terminology is obvious. To include the

coulomb  correlations  you  can  do  what  is  called  as  MCHF,  which  stands  for  Multi-

Configurational Hartree-Fock or MCDF, which stands for Multi-Configurational Dirac form,

Dirac Hartree-Fock is the relativistic version of the Schrodinger self consistent field Hartree-

Fock.

Then there are other techniques, which comes from anybody perturbation theory MBPT, you

can use methods of second quantization, quantum field theory and this is a fairly large subject

by itself. And this goes beyond this course, I am planning to expect address some of these

techniques in another course, which I will be given in the next semester, in which I will

discuss some of these techniques, the many body techniques. But, at this point I would like to

mentioned  that  you  need  more  powerful  techniques  like  second  quantization,  fields

theoretical methods to addressed those issues, which go beyond the Hartree-Fock which go

beyond the frozen orbital approximations.

So, that you can include the coulomb correlations, they are the ones we should a responsible

further fact, that the actual ground state is not the same as the Hartree-Fock or the Dirac

Hartree-Fock ground state. You miss out on something, and what you miss out is typically

called as the correlation energy. So, the subject is very worst subject and I will like to draw



your attention to2excellent books1by Walter Johnson and the other by A.M. Grant. And these

books I am got good summary of relativistic many body methods, which are used and atomic

and molecular physics. And Grant as I mentioned he has developed the huge technology over

the last 50 years, and now there is a package which is what people use at the front end of

atomic  physics,  which  is  commonly  called  as  grist  which  is  general-purpose  relativistic

atomic structure program.
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The various versions of grist this is the matter of detail, for those of you want to get into

computational atomic physics. So, you will be using some of these tools, there is a among

another techniques, I mentioned there is this the many body perturbation theory methods,

which were developed by U. Kelly and there are so many others contributors. So, that there is

a random phase approximation and it  is  relativistic version,  the relativistic random phase

approximation and many many developments, which go beyond the Hartree-Fock and also

beyond the Dirac Hartree-Fock.
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Essentially what we have is the relativistic version, which is the Dirac Hartree-Fock, very

often people call it as Dirac Fock, and I must apologize that I also may have use that term

Dirac Fock. Sometimes, but as my friend and colleague and collaborator other, which always

reminds me, that it is injustice to Hartree not to mention his name. So, it should be called as

Dirac Hartree-Fock and not just as Dirac Fock. So, here the spin orbital that we used in our

analysis are the2component functions, now your expression relativistic quantum mechanics,

which we did in unit 3.

So, instead of the2component formalism, you can use the four component wave functions and

you have got the radial part the G and F function you remember them. We had them from the

solutions of the Dirac equation and then you had these spherical harmonic spinors. So, using

these you can go through the exactly the same procedure, the same logic and you would have

effectively learn the relativistic Hartree-Fock as well, everything is exactly the same. The

hole approach to the relativistic problem is essentially the same.

So, in1go we have essentially developed some familiarity with both the non relativistic, as

well as the relativistic models, the only thing is that you have to make use of these four

components functions, you will remember that we use these spherical harmonic spinners. And

these are the ones which will go into the four component functions, so using these you can



develop the relativistic forms. Now, here you remember that it was this exchange term, which

prevented as from identifying this as an Eigen value equation.

Because, here the argument of the i th orbital is 1, here the argument of i th orbital is 2, where

is the argument1it is over here, and it is coming with the index j and then the j index also has

this r 2 which is integrated over the whole space. So, it is a global term and it means although

other  solutions,  so  this  exchange  term makes  an  impossible  to  write  this  operator  as  a

function of just1coordinate.
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The coulomb term the direct term could be written as a function of just1coordinate which is q

1, would you cannot do it over here. We wrote it in a form Bransden and Joachain called as a

deceptively simple form, and the reason it is deceptive, is because here you have got a global

integration, which involves the other solutions u j. So, this is the term which really makes it

extremely difficult to solve the Hartree-Fock problem numerical.

What you can possibly do is to develop a local density approximation, that is LDA that the

exchange term in fact, it is global term as you can see, because this is integration over the

hole  space.  And  you  can  develop  some  approximation  to  this  exchange  term and  these

approximations are called as local density approximations. And using this you can develop

approximate Hartree-Fock formalism which also  gives  really  good results,  which is  very

useful in atomic physics and molecular physics and solicit physics.



So,  this  is  the local  density  approximation  in  which you make on approximation  to  this

operator to the exchange term, and this was introduced by John Slater, the first form was

introduced by John Slater. But, later on there are many developments following this, so slater

approximation is called as a free electronic approximation, but that is a matter of detail, there

are other variations like the x alpha method and so on. So, these are some terms which I am

passing over here,  for those of you would read beyond the Hartree-Fock and beyond the

Dirac Hartree-Fock.

And the local density approximations are then the starting point for many more powerful, but

approximate  techniques  like  the  density  functional  theory  is  and  so  on,  in  many  body

problem. So, we are need to conclude this  unit  4 at  this  point,  and I  thought  that  I  will

mention some of this signs for you to go beyond, there are large number of contributors.
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And the most exciting problems an atomic and molecular physics are those which involve

relativistic  effects,  electron  correlation  effect,  and  now  you  have  some  idea  about  what

electron correlation effects are. Lot of work has been done by Alex Delgaarno, Ugo Fano,

Mike Seaton and in quantum chemistry, people like Jan Linderberg have contributed a lot,

Walter Johnson to atomic physics. So, huge amount of development which goes beyond the

Hartree-Fock, and beyond the relativistic Dirac Fock has taken place. And then the exciting



problems are in atomic spectroscopy and collision phenomena, because what you have done

here is to get the electron structure.

So, this is what is called as the structure studies, now these described electron wave functions

for the atomic system, or the molecular system or the solicit system. Now, you have got this

system how this system is going to react to electrometric radiation, or how is it going to react

if you bombard it by neutrons, how is it going to react if you fire some other projectiles.

Because, by carrying out these experiments you get a lot of information about the target, and

that is for physics is about that you got a certain system, that is your target how do you

investigate it.

So, you need to either shined light with it, or bombard particles it and other than light and

particles, what else do you have nothing, so you do either spectroscopy or collisions, and at

some level light and particles are also inter-convertible, but that is a matter of detail. But,

either you need to do spectroscopy or you need to do collisions that is the only way you can

really prove targets. So, these are very powerful techniques the Hartree-Fock and the Dirac

Hartree-Fock tell you, how to describe the electronic structure of the quantum system, of a

microscopy quantum system; let it be an atom, a molecular, a solid whatever. And then I will

conclude this  unit  over here,  the next unit  will  be on spectroscopy and we will  begin to

acquaint ourselves with spectroscopy tools, questions.

Student: Why we cannot call that particular equation as an Eigen value equation.

Because, you really cannot solve it as an Eigen value problem, and Eigen value equation is

not just how many equation looks, but also in how that mathematical equation is dealt with, it

cannot be dealt with as an Eigen value problem. That is specialized the reason Bransden and

Joachain call it as a deceptively simple form it looks like, but it is not; that is the disruption.

You can make it look like an Eigen value problem, but the operator that you really have, an

Eigen value equation is an operator operating on an operant giving you the same operant

scaled by some complex number, by scale up.

This operator requires solutions to all the other n minus one problems, and unless you solve

them, you cannot set up this Eigen value equation, you cannot solve it as an Eigen value

equation. So, it can be solved only self consistently together with all the remaining n minus 1

problems, it is n coupled integral differential equations. And if you make on approximation to



the exchange, you can solve it as an Eigen value problem, but then you do not get the exact

solutions, you do get useful solutions.

So, slater approximation which is sometimes called as a Hartree-Fock slater method, or H f s,

and this  3 names associated with it,1tends to think that  this  is  something better  than the

Hartree-Fock which it is not. It is slaters approximation to the Hartree-Fock, so there are

various ways of the local density methods are quite useful and what typically happens is that,

the  larger  the quantum system is  you need to  have more approximations.  The smaller  a

quantum system is you can try to go for more exact solutions, so it is not very easy to do

relativistic self consistent field for energy bands in solids, but yes you can do it, and people

do it.

So, do not get me wrong, you do relativistic self consistent field band structure calculations,

you also do the relativist self consistent field molecular orbital calculations. But, it is locked

more  comment  to  see  non-relativistic  approximation  or  local  density  approximations  in

molecular physics or condensed meta physics. Because, the more there is the order it gets,

any other question, yes.

Student: ((Refer Time: 58:18))

You  can  get  improvements  using  various  alterations,  there  are  so  many  different

approximation that can be made, but remember what I mentioned at the very beginning of the

discussion on the n electron problem. That 3 body problem in classical mechanics as no exact

analytical  solution,  when  you  put  in  relativity, you  put  in  quantum mechanics,  quantum

fields, even vacuum fluctuations you do not have exact analytical solutions, you have to make

a approximation.

Vacuum fluctuations lamb shift for example, if you start to calculating the lamb shift and then

you make corrections like for the hydrogen atom, we talked about the spin orbital correction,

then the kinetic energy correction that the Darwin correction. You start making corrections to

the  vacuum fluctuations,  you make correction  1,  correction  2,  correction  3,  correction  4

people are made something like 12, 13 correction I think. And they still do not have an exact

solution, and what is very nicely stated by brown who I quoted earlier, that if you are looking

at exact solutions having nobody at all is already to many, even for vacuum you cannot do it.



So, there are large number of many body methods, which are developed and that is way the

challenges, the challenge for a many body theories is not to get the exact solution that is

beyond his scope. Because, there are existence theorem which tell you, then the solution does

not exist what are you going to do, so your challenge is to find the best approximation that

you can. And there is a lot of competition in different approximation techniques, but then

they also have the limited scope and range of applicability.

So, I do not think anybody is ever going to climb that this approximation is going to give

better  results  in  general,  I  do not  believe any many body theorist  will  make that  climb.

Because, you could get better results in some domains, but not in every domain, if you did

you would have something like a very general solution that is it work, is not that easy I do not

think we are any right to close to at least on atomic physics. And therefore, further half in

molecular in condensed meta physics.

Student: ((Refer Time: 01:01:02))

LDA is an approximation mind you whatever it is, it is an approximation, it is pretending that

the exchange interaction need not  be treated exactly, but that  the exchange interaction is

there. The exchange interaction cannot be wished away, it is coming from the simple fact that

electrons, your many body systems consist of electrons, which are fermion. And under an

interchange of any two, the wave function must change it sign, you cannot wish it away, and

if this interaction which is the exchange interaction is treated only approximately, it means

that you are treating the statistics approximately. So, making a certain compromise and by

making compromise you are sometimes able to move ahead which is useful, but not strictly

correct, but it can be very useful. So, nothing wrong in using local density approximations

any other question.

So thank you for now, and then in the next class we will begin that unit 51 spectroscopy.


