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Greeting, we will begin unit 4 today, this will be on many electron systems, we did the

hydrogen atom, the non relativistic hydrogen atom first and then the relativistic hydrogen

atom, we did the Dirac formalism of the hydrogen atom as well. And we will be very

fortunate  dealing  with  this,  because  the  one  electron  coulomb  problem  has  exact

solutions  and  we  got  the  exact  solutions  for  the  hydrogen  atom,  both  for  the  non

relativistic case as well as the relativistic case.

So, atoms in general other than the hydrogen atom, they have more than one electrons

and 2 3 4 and so on and you got the whole periodic table. So, we need to develop the

quantum mechanics  of  many electrons  systems and this  is  really  important,  because

atoms in a certain sense, are the basic building blocks of condensed matter. So, when

atoms come together, you have molecules, clusters and condense matter. So, in some

general  sense,  you  can  even  say  that,  the  atom is  like  what  elementary  particle  is,

somewhat  similar  in a  certain sense that,  it  is  the elementary ingredient  of condense

matter. So, all properties of condensed matter are derived from the properties of atoms

and from their collective behavior.



(Refer Slide Time: 01:55)

And we need to understand that, when you have more than one electron present then

these electrons  are going to interact  with each other and we will  talk  about  electron

interactions with each other and also electron correlations. And I will make distinction

between interactions and correlation, this difference will become clear, as the discussion

progresses, that correlation has got a specific connotation, which will become very clear.

And in particular, I will talk about two different kinds of correlations, one which are

known as exchange correlations and another kind of correlations, which are known as

coulomb correlations, so we will talk about both of these in this unit. So, these are our

primary  learning  goals  and  we  will  approach  this  from first  principles  as  much  as

possible.
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And  we  will  be  extending  quantum  mechanics,  which  was  developed  by  Einstein,

Schrodinger, Isenberg and apply to atom atomic system by Niels Bohr. And then when it

comes to the many electrons  formalism,  we will  talk  about  the work of Hartree and

Vladimir  Fock,  so  this  is  our  goal  for  this  unit.  I  will  be  using  Bethe  and Jackiw's

intermediate  quantum mechanics,  rather  extensively for this  unit.  It  is a book, which

many of you would have used for the basic quantum mechanics.

(Refer Slide Time: 03:40)



I will also use Bransden and Joachain books physics of atoms and molecules, and there is

a  small  review  on  the  Hartree-Fock  method,  which  I  have  written  with  two  of  my

colleagues, which is uploaded at the course web page, which also you can access, where

some of the key features would be summarized.  Now, this is the relationship that we

have to address, so we will first work with the non relativistic many electron problem.

And Schrodinger equation will read H psi equal to E psi for the N particle system, N

being the number of electrons that we have in the system.

(Refer Slide Time: 04:28)

So  far  so  good,  but  immediately  we  meet  new difficulties  and  what  are  these  new

difficulties, what these new difficulties do, is to create a situation, which can perhaps we

called as a CATCH-22 situation.



(Refer Slide Time: 04:53)

And do you understand what CATCH-22 means, CATCH-22 actually this phrase comes

from a novel by Joseph Heller and it meets so much impact on the English language, that

it actually becomes accepted in the English language as a regular phrase. What it means

is that, you have a situation, which has got some internal inconsistency, you can describe

this situation. You can seek to solve that situation to address that situation and find some

sort  of solution,  but  the solution becomes impossible  to  be implemented,  because of

some internal constraints, which is intrinsic to the system.

It is a very fascinating novel and actually the situation in this novel is about an air force

pilot, who does not want to go into the hazardous duties and he wants to escape from it.

And  he  discovers  that,  he  can  escape  from  it  on  one  ground  that,  if  he  is  not

physiologically  fit,  mentally  fit  to  execute  then  he will  relieve,  so there  was such a

provision.

So, he applies, he asks to be relieved under that situation and then they say that, if he is

sain enough to say that, he wants relive because of this reason then obviously, he is not

mentally sick. So, it is a provision which is inbuilt to the situation and this is a CATCH-

22, so there is a catch. And the many electron problem poses itself as a catch and I will

tell you what the catch is.
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So, let us look at the N electron Schrodinger equation, now you set up the Hamiltonian

for N electron problem, which is a sum of the kinetic energy part. I have not written the

mass which is natural units, put m equal to 1, H cross equal to 1, so this is the kinetic

energy term. And then this is the potential energy of each electron on the field of the

nucleus,  there  are  Z protons  on the  nucleus.  So,  each  electron  would experience  an

attractive potential, which is Z over r and you would sum over i going from 1 to N and

then each electron would repeal the other electrons.

So, between the i  th and the j  th  electron,  there would be the 1 over r  i  j  coulomb

repulsion and you must sum over all  the i  and j,  i  naught  equal to j.  So,  this  is the

coulomb  repulsion  of  between  every  pair  of  electrons,  so  this  is  your  N  electron

Hamiltonian. Now, look at the system, if you have electrons in the atoms, so you have

got the Z protons in the nucleus and then you have got this 1 over r i j term, which is

between the i th and j th electron, between every pair.

Now, this is the distance between the i th and the j th electron, now the problem is that,

electrons are not classical particles. So, they are not like point chargers and you cannot

say that, this is where the i th electron is located, this is where the j th electron is located

and this is the distance between them. So, that is how you would described the classical

coulomb interaction between two classical charges. Now, the electrons are not like that,

electrons are described by the waves in quantum mechanics.



So,  they  have  a  certain  wave  function  associated  with  each  electron,  which  is  a

probability amplitude function, as we know. Corresponding to this probability amplitude,

there is a probability density and this multiplied by charged density is what would give

you the charge in a certain volume. See, if you got a certain volume element over here,

delta v and in this delta v, you find out what is the probability density integrated over the

volume, that will give you the charge over here.

And then this charge would interact with the corresponding charge here, which is also be

describe in terms of the probability density over here. And then these two charges would

interact with each other, giving you the 1 over r i j term. So, that is precisely the catch,

because to describe the charge density over here, do not you need the wave function for

the electron you do. And how would you hoping to get this wave function, by solving the

Schrodinger equation.

So, you set up the Hamiltonian, solve the Schrodinger equation and hope that. I will now

get the wave function and use this wave function to describe the probability amplitude,

the probability density and the charged density. But, you need the solution, even to pose

the problem, that is a CATCH-22. So, you are caught up in a situation that, you need the

Hamiltonian to get the wave function, but to constitute the Hamiltonian to formulate the

Hamiltonian, you need the wave function.

And this is a vases circle and if you do not know how to deal with it, easiest thing to do

is, is to quit physics and walkout or else, come up with some very nice innovative ideas

and this is where self consistency comes in. What you can do is, I do not know the wave

function and therefore, I cannot construct the Hamiltonian. So, let me make assumption

on the wave function, I will make a guess, does not matter if it is wrong, let me make a

guess.

And  using  this  guessed  wave  function,  I  kick  start  the  process,  using  this  guess  I

construct the Hamiltonian and now using this Hamiltonian, which is based on a guessed

wave function, I now solve the Schrodinger equation and get the solution. And now, I

ask, is this solution the same as what I had guessed, if it was, I got lucky, if not, no

problem I will change my guess. And then reconstruct the Hamiltonian with the new

guessed wave function then solve the Schrodinger equation.



And then ask, is the new solution the same as my improved guess, it could be actually be

worse, but it could be better. And you iterate on this process again and again and again

and again, till  you hit self consistency. Now, that is a trick and once you get the self

consistency, you can then say that, now you know what the Hamiltonian is and now you

know  what  the  wave  function  is,  you  get  the  two  together  when  you  reach  self

consistency.

And then use that wave function to describe other properties of the atom and then do

spectroscopy with these atoms or electrons structure analysis, collisions and so on. So,

these solutions can be obtained numerically by carrying out this iterative process and this

was a technique,  which was developed by D. R. Hartree at Cambridge.  And initially

Hartree did not take to account the electrons spin but then there is the spin, which we

know has to be taken into the account. And then the formalism of self consistency, which

was  developed  inclusive  of  the  electron  spin,  is  what  we  called  as  a  Hartree-Fock

formalism, that is something to which Gardam Fock contributed significantly. So, that is

the overall technique of Hartree-Fock.

(Refer Slide Time: 13:35)

And essentially, the difficulty summarized on this slide, that setting up the Hamiltonian

itself  requires  the  very  same  solutions,  which  you  hope  to  obtain  by  solving  the

Schrodinger equation. So, that is the difficulty that you are now going to address.
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So,  this  is  our  many  electron  Hamiltonian,  this  is  got  a  formal  structure  and  the

summation over the coulomb repulsion terms can be written either as this or half of this

double summation with i and j going from 1 to N, but i naught equal to j. So, these two

ways of writing this coulomb repulsion is completely equivalent, as you probably know.

And this is got a part, which consist of only one electron coordinates and in this term,

you  have  got  two  electron  coordinates.  So,  this  is  usually  call  is  a  one  electron

Hamiltonian and this term as a two electron Hamiltonian. And sometime it is referred to

as H 1, H 2 and sometime as F and G, that just a matter of notation, depending on which

book you will be reading, so this the N electron Hamiltonian.
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And now, we are going to seek a solution and of course, we will be happy if we can get

an exact solution and this problem was posed Tuponkare by the king of Sweden. If the

three body classical system, the sun, earth and moon, does it have exact solutions and

even in the classical mechanics, it does not have any exact solution, that is what leads to

KIOS and other things.

Now, when it gets down to quantum mechanics and relativistic quantum mechanics, let

alone three body problem, not even the two body problem, not even a one body problem,

also that matter even the problem of vacuum state does not really have exact solution. It

just does not, the solution does not exist and this is very nicely stated in Brown's book,

where he says that, if you are looking for exact solution then having nobody at all is

already too many, there is no any chance of getting an exact solution.

So now, what I am going to do, try to come up with the best approximation that you can

and if you can make, come up with the good approximation then it  is going to be a

breakthrough and that is how science progresses. So, the Hartree-Fock method is not

going to give you an exact solution to the N body problem, to the N electron problem,

but it will give you an extremely good approximation.

Extremely good, again this is a really relative term, it really depends on what application

you  have  in  mind,  what  is  extremely  good at  one  level  turns  out  to  be  completely

unsatisfactory at another level and then you have to go beyond the Hartree-Fock. So,



current studies in atomic physics do require you to go beyond the Hartree-Fock and I will

tell you, what are the limitations of the Hartree-Fock and what is it that you need to go

beyond the Hartree-Fock. But, before we get to talked about it, let us just make, let us at

least make ourselves comfortable with the Hartree-Fock itself.

So, now there is a nice remark that I came across in Herman’s and Sherman's book on

approximate Hartree-Fock solutions, in which they write that, let alone the fact that, you

cannot get the exact solution, but suppose you did. Even if you could, how much space

would it need to write down such a solution, how much ink would you need, how much

storage space would you need.

(Refer Slide Time: 17:49)

And just consider this problem that, if you have N electrons and each of described just by

3 parameters, 3 degrees of freedom then you have 3N variables, which you must specify.

And you want to specify, what is the electron wave function amplitude over here and

then here and then here and here, at least 10 points you need, if not infinite. So, a ten

point grid would be a very coarse grid, nobody is going to satisfy with that. But, you will

need 10 to the 3 N numbers and what is 10 to the 3 N for N equal to 1.

For N equal to 10, molecularly atom 80 electrons, can you punch this and find out from

your calculators, what this number is, 10 into 300 for N equal to 80. And where are you

going to write all these information, who is going to generate the ink for it and where is a

storage space for it. So, you have to have some way of dealing with this problem in some



practical manner and the Hartree-Fock method really let us you do that. So, in addition to

do that of course, you have got the electron spin, which we know.

(Refer Slide Time: 19:09)

And the history of the development of the Hartree method is really very fascinating, I

think it is worth reading. This was a differential analyzer, which was designed by Hartree

in 1935 and Hartree played a big role in the development of computers. Initially, he was

interested in anti aircraft gunnery, that was his initial interest but then there was, he also

used children’s Meccano, I do not know how many of you have played with it. And with

these Meccano which are toys, are you could actually do some calculations.

And  Hartree,  he  was  invent  it  when  after  be  able  to  use  it  and  do  some  actually

calculations  at  atomic  physics.  But  then  there  was  lecture  posed  by  Niels  Bohr  at

Cambridge and that what Hartree interested in atomic physics and then he started using

his brains to come up with this formalism. And then he was helped by his father, who

was a engineering professor, but he thought it was fun to do arithmetic and he helped his

son, do all these numerical work to get, what we now called as Hartree self consistent

field method. So, large number of computations have to be done and this was obviously,

in the pre computer days and in fact, the first computer as you know is the ENIAC.
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And when this was developed, Hartree was invited to advise, because unless there is

somebody to use a good machine, you cannot really develop a good machine. So, all

major computer companies IBM and so on, they do hire atomic physicist even today so

that, they can develop their computers. So, Hartree was one of the first ones of this kind

and Hartree said in 1946, that it may well be that the high speed digital computer will

have as great an influence on civilization,  as the advent of nuclear power and we do

know, how through it is.

(Refer Slide Time: 21:31)



So,  Hartree  certainly  made  very  important  contribution  to  the  development  of  the

computers as well. And now, we discuss this problem further, this is the self consistency

that we are seeking as I mentioned earlier. You got an electron Hamiltonia,  which is

made up of two parts, the one electron part H 1 and the two electron part H 2. So, these

are the two parts of the Hamiltonian and the coulomb term 1 over r i j is the two electron

part.

Now, what is going to be our strategy and this comes from our experience in physics, the

variational methods are very powerful. You build the machinery of classical mechanics

on the variational principle, Newton’s causality principle is one pillar, on which you can

build classical  mechanics.  But,  you can also do so based on Hamiltonian  variational

principle and build the entire scheme of mechanics. You also know, you use a variational

principle to explain, how light travels from mass principle and so on.

So, using the variational principle, you can set up a requirement that the variation in the

expectation value of the Hamiltonian would be an extrema. What wave function would

be the expectation value of the Hamiltonian an extrema. If you make this question, if you

raise this question and find such a function then one could hope that, this would be the

appropriate  self  consistent  field  solution  to  the  problem.  So,  this  is  the  variational

approach and this is our strategy now, which is to seek that, the expectation value of the

Hamiltonian is an extremum.

We certainly know how this works, because it does not necessarily mean that, it will be a

minimum,  because  when  you  study  only  the  first  derivatives,  you  could  have  a

minimum, you could also have a maximum, you could also have a shallow point. So,

there are all kinds of possibilities that one has to be worry about and yes, these things are

properly kept track off and we can get into these details, as the discussion progresses.

But, this is a basic strategy, that the variation in the average value, the expectation value

of the Hamiltonian, you seek that this would be an extremum.

But, when you vary these wave functions, you have got some wave function, it has got

some profile  and you change it.  So,  instead of certain  profile,  it  becomes somewhat

different, that is variation you have changed it. Now, when you change it, you have to

make sure that, the new shape that the wave function would require under the variation

that you are trying, still generates a normalized wave function, because if you integrate



the probability density from 0 to infinity over the entire space, you should still get one

charge per electron.

You would also expect this to be orthogonal to the remaining atomic orbital, so these are

the constraints.  So,  you are seeking variation,  but  not  arbitrary variation,  a  variation

which will preserve the normalization of each one electron wave function and also it is

orthogonality to the other single electron wave functions. So, these are the constraints

and your problem is  now posed as a problem in variational  calculus.  So,  to  get this

variation in the expectation value of the Hamiltonian, this is the expectation value of a

certain operator, which is N electron Hamiltonian.

But, the N electron Hamiltonian is made up of a two pieces, the one electron part and the

two electron part, F and G or H 1 and H 2, however you call them. And you need to

determine the expectation value of these two operators, the one electron operator and the

two electron operator and then seek the variations. So, we first have to learn, how you

are going to develop a formal structure of this term, which is the expectation value of this

one electron operator and the two electron operator. So, this is going to be the first step in

making progress on this problem.

(Refer Slide Time: 26:41)

So, Hartree and the son Hartree and the dad Hartree, they developed the self consistent

field for electrons, but they did not take into the account the electrons spin from the first

principles. And then Fock included the spin as well and I will like to remind all of you



once again that, spin is something which Uhlenbeck and Goudsmit hit upon accidently

when they were interpreting certain experimental results in Paschen's laboratory.

(Refer Slide Time: 27:12)

And because they saw some transitions, which seem to be forbidden and then to explain

those spectra, they made a guess and they said that, there has to be additional source of

angular momentum and additional source of magnetic moment. And it just worked, but

that is, it worked for no good reason, as was known at that time.

(Refer Slide Time: 27:45)



But then we know that the reason is the formal existence of electron spin, as it comes out

of the Dirac's  relativistic  quantum mechanics.  So,  spin is  an integral  property of the

electron and then Pauli  developed the spin statistics  theorem, that particles  with half

integer spins observe the Fermi Dirac statistics and particles with integer spins, observe

the bosons spin statistics. So, spin is an integral property of a electron, that it has to be

taken into the account, as we know from relativistic quantum mechanics.

(Refer Slide Time: 28:26)

And these are the two classical papers in 1928 by the Dirac, when which he developed

the relativistic quantum mechanics, which gave a formal basis to the idea of a electron

spin.
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And it is interesting to ask this question, how does statistics, because now you are going

to talk about many electron systems and electrons are Fermions. So, we will apply the

Fermi Dirac statistics, so how does this statistics enter classical quantum mechanics at

all, how does it enter classical mechanics and how does it enter quantum mechanics. So,

in  classical  mechanics,  basic  laws  of  motion  are  deterministic,  you know the  initial

condition, you can actually determined what the solution.

And you can do it for 1 particle, you can do it for 10, you can do it for 100, you can do it

for 1000, that you may not need that much information it is a different matter. Because,

when you want to talk about the average energy of some system then you know that each

degree of freedom will contribute half K T to the average energy. But, this is a average

kinetic energy, which we should described in terms of temperature.  And it is coming

from the kinetic energy, the half m v square kind of term, which gets added into what

finally gives you the temperature of the system.

But, it is not the, you cannot determine that kinetic energy of each individual molecule,

you can, in principle you can, you need to, because it is too much information, in which

you are not interested and that is how, statistic entered classical mechanics. Because, you

are  dealing  with  the  large  number  of  particles  and  you  really  do  not  need  all  that

information, it is not because you cannot get that information, you can, you do not need,

these are two different situation altogether.



In quantum mechanics, statistics enters even for a single particle and even for a vacuum,

because large of nature are increasingly quantum mechanical. And they are statistical,

because quantum mechanics is a statistical theory, so it is not because there is a large

number of  particles  that  you are working with.  Even for  a single particle,  you need

statistics and then statistics enter also through the spin of the particle, because depending

on the what spin is, you have to use a different form of statistics.

If the spin is half integer you would use Fermi Dirac, if the spin is integer you would use

the bosons sign, so statistics and spin are very closely related and I will discuss this

further.  So,  let  me  first  deal  with  a  two  electrons  system,  you interchange  this  one

electron,  so there is one electron coordinate as q 1 and the other as q 2 and I is the

interchange operator. It swaps them, the interchange operator swaps them, so you begin

with the two electron system, apply the interchange operator.

(Refer Slide Time: 32:21)

And now, you apply the interchange operator on this again, swap it one more time, you

get this, you get what you started out with. So, two interchanges, I operating on psi q 1

and q 2 Aand then another interchange operator operating on the result would regenerate

the  original  system  that  you  begun  with.  Now, these  two  electrons  are  completely

identical  to  each  other,  you  cannot  distinguish  between  them  and  that  is  the  main

difference between classical particles and quantum particles.



When you deal with the classical particles,  you can sort of put a color on them or a

number or some name and you can say that, this is particle a, this is particle b. But, that

is not how particles in nature really are, elementary particles are indistinguishable from

each other. You cannot really put a label on that and this is why, this two electron wave

function is sometimes called as a geminal, do you know what geminal was.

(Refer Slide Time: 33:34)

Do you know what gemini is, have you seen the gemini constellation in the sky, so the

beautiful  part  of  the  sky  and  there  are  two  lovely  stars  Castor  and  Pollux  in  this

consolation and they look so alike, so similar to each other. So, they look like a identical

twins, which is why, this is called as gemini, so gemini refers to twins. And these two

electrons  that  we are  talking  about  psi  q  1  q  2,  these  two electrons  are  completely

identical to each other, they are completely indistinguishable from each other.

Castor and Pollux are actually you cannot distinguish between them, one is Castor and

other is Pollux, you cannot do so with electrons. But, they are indistinguishable just like

twins, which is why, a two electron wave function is sometime called as a geminal, not a

very common usage, but not uncommon either.
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So, you have a two electron system, you interchange twice, you recover the original

configuration. What this means is that, a single interchange can only change the phase

and it can give you a result when you interchange q 1 with q 2 by a single interchange

operator. The result can be either plus or minus, because when you interchange it one

more time, it will be the same as the previous one. So, this is what we have got, that two

interchanges e to the i 2 alpha would give you 1, so e to the i alpha would be plus 1 or

minus 1 and accordingly, this angle will be either 0 or pi.

So, there are two types of particles in nature, one are the Fermions which have got half

integer  spins,  whose wave function would change sign under the interchange of two

identical Fermions. But, if you interchange two identical bosons, the wave function will

remain invariant, the sign will not change.
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Now, there is this intimate relationship between spin, statistics and the sign of the wave

function on interchange. These three things are intimately connected to each other, they

all go together. The spin being half integer or integer goes with the statistics that particle

would observe and this goes with, what would happened to the sign of the wave function

and the interchange of two particles belonging into the system, these three things go hand

in hand together.

(Refer Slide Time: 36:50)



Now, I code term Tomonaga's book, in which he points out the relation between spin and

statistics is apparent, but hard to understand. And even more comprehensive code, which

some of you might have come across is due to, perhaps one of the finest  of physics

teachers Richard Feynman. And he says in his volume 3, that it appears to be one of the

few places in the physics, whether is a rule, which can be stated very simply, but for

which, no one has found a simple and easy explanation.

The  explanation  is  down deep  in  relativistic  quantum mechanics,  you  can  say  very

simply that, the particles are half integer spins, they observe Fermi Dirac statistics, if

they are integer spins they observer bosons statistics. But, to get to the bottom of this

issue,  why this,  one really  needs  to  get  it  relativistic  quantum mechanics  in  a  fairly

comprehensive  way and that  is  a  challenging topic  by itself.  But,  I  will  recommend

Tomonaga's book for this, the theory of spin, it is a very nice book, some of you might

have come across or if you have not, you will enjoy reading it.

(Refer Slide Time: 38:11)

So, anyhow, we accept that this is what it is and under one interchange, electron being

Fermions the sign would change. And now, we talk about a two electron system, the two

electron system is smallest many electron system and if we can develop the formalism

for two electrons, we will know how to extend it to many electrons. So, we begin with

the consideration of smallest many electron system, namely the two electron system. And



we write the two electron geminal  wave function psi q 1 q 2, which we know must

change it is sign, when you interchange the two particles.

And obvious we have doing it, would be to write it as a product of these one particle

wave functions, u 1 q 1 u 2 q 2 minus u 1 q 2 u 2 q 1, because if you interchange q 1 and

q 2, this changes sign. So, it meets our essential requirement of an antisymmetric wave

function,  that  is  what  an  antisymmetric  wave  function  means.  Fermi  Dirac  wave

functions are antisymmetric, because when you interchange particles, this sign changes.

So, this is an antisymmetric two electron wave function and it is written in terms of one

electron wave function and I have written this one electron wave function more fully,

because a wave function is the coordinate representation of state of vector. So, this is the

coordinate  representation  of  the  state  vector  in  the  Dirac  notation,  which  the  wave

function  is.  The  state  vector  is  described  by a  complete  set  of  measurable  physical

properties, the four good quantum numbers, which are n, l, m l and m s for the electron.

And it  is  coordinate  representation  gives you the one electron wave function,  this  is

inclusive of spin and there are therefore, 4 quantum numbers. Then, if you look at the de

broglie Schrodinger notation, the u i q j, notice that the subscript here i represents the set

of four quantum numbers and the argument of the wave function, which is q j represents

the set of four degrees of freedom, the three space variables and one spin variable. So,

the arguments q j are set of these four coordinates and the subscripts are the four good

quantum numbers, that is the notation.

Now,  it  is  important  to  recognize  that,  we  are  treating  the  two  electron  as

indistinguishable, so you cannot separate one from the other, but the particles are still

elementary particles. So, this is a very nice combinations of ideas, the elementary nature

of the electron is not challenge here in this concern. But, you cannot distinguish one from

the other, because normally when you talked about the elementary particle, you talked

about  the  particle,  as  though  it  has  got  a  complete  separate  identity,  which  is  the

fundamental identity of a fundamental particle.

But,  that  identity  is lost  when you are dealing with a pair  of electrons,  because you

cannot say that, this is electron a, and the other is electron b, so whereas the identity. So,

this is a combination of these two ideas, in distinguishability and the electrons being

elementary particles and you have to use these two ideas without any contradiction in



your mind. So, the electrons will  be treated as elementary particles,  but they will  be

considered indistinguishable from all the other electrons in the system.

(Refer Slide Time: 42:57)

And this is our representation of the electron coordinates and quantum numbers, you can

write this easily as a determinant u 1 q 1 u 2 q 2 minus u 1 q 2 u 2 q 1. And if each of

these one electron wave functions is normalize then you can see very easily that, you

have a normalization 1 over root 2. So, you can easily write this as a determinant and in

this determinant, the rows and columns, columns are labeled by q 1 the first column, the

second column by q 2 and these are the coordinates.

The rows are labeled by the subscript, this is subscript 1 and this is subscript 2, so the

rows correspond to the set of four quantum numbers, which are the occupied states of the

electrons. So, this is called as the Slater determinant named after John Slater and you will

see,  that  the  Pauli’s  exclusion  principle  is  automatically  built  into  it,  because  a

determinant vanishes if two rows or two columns are the same. So, no two particles will

have  the  same  set  of  quantum  numbers,  which  is  Pauli’s  exclusion  principle.  The

antisymmetry of the wave function is also inbuilt into this representation, because if you

interchange two rows, the sign of the determinant will change. So, it automatically takes

into the account, the usual features of a many electron wave function.



(Refer Slide Time: 44:42)

And you can easily extend this not just the two electrons, but to N electrons and then you

have got N rows and N columns and a normalization of 1 over root factorial N. So, this is

a straight forward extension from a two electron system to an N electron system, you can

try to develop a determinant for a three electron wave function, do it by hand term by

term. You will find that, there are factorial three ways of doing it, six ways of polling

three electrons in three different systems.

So, the rows are designated by the one electron state, so the electron configuration is

spelled out and this also spells out the occupancy of single particle states, that if you

have got an energy spectrum, in which there are hundreds or even infinite set of single

particle orbital which are solutions to the problem, not all of them are occupied. Say, if

you have got a two electron system like the helium atom, you can have two electrons in

the 1 s state, one with 1 s up and 1 s down.

But, you can also have one electron in the 1 s and other two in some excited states like 2

s,  3 s,  4 s  and so on,  so that  will  give  you the different  configuration.  So, the first

configuration had 2 electrons in 1 s, so occupation number of 1 s up was 1, 1 s down was

also 1 and the occupation number of everything else was 0. Whereas, if you have one

electron in 1 s and the other in 2 s then the occupation number of 2 s now becomes 1 and

the rest become 0.



So, the occupation numbers and this is the language of second quantization, which also

one uses in many electron theory. In second quantization, you deal with the occupation

number states  and you can see,  how the Slater determinant  expression can easily  be

adapted to the occupation number formalism. So, essentially what the Slater determinant

does, is to spell out the occupancy of the single particle states and it incorporates the

usual features of a many electron system, the Pauli exclusion principle, the antisymmetry

of wave function.

(Refer Slide Time: 47:12)

These are our designations and you can write the spin orbital,  this is called as a spin

orbital, this is a orbital part and this is a spin part and which is why, it is called as spin

orbital. Because, you can factor this spin orbital u i q j into an orbital part and the spin

part, so this is the spin part and this is the orbital part. So, the u i q j are typically called

as spin orbitals.



(Refer Slide Time: 47:55)

And the matrix elements of this letter determinant are essentially the spin orbitals, in

which the columns are those which give, which correspond to the coordinates. And the

rows correspond to the single particle states which are occupied and each spin orbital

then is a measure of the probability amplitude, that in electron at space spin coordinate q

j is in the quantum state n, l, m l, m s, corresponding to the i th row. So, that is the

notation, that is the designation of the states.

(Refer Slide Time: 48:35)



And this is how Slater determinant is written, you are of course aware, that there are

factorial N ways of permuting the N indistinguishable electrons in N quantum states. So,

you can also write this as, you can write all the elements along the diagonal u 1 q 1 u 2 q

2 u N q N and then begin permutations. And carry out all the permutations, but every

time you permute, every time there is one interchange, you will have a change of sign.

So, depending on a number of interchanges, which going to a permutation, you will have

a minus 1 to the power p phase factor.

And you must sum over all the permutations, that there are factorial N of them, so you

have to sum over all the permutations for p going from 1 to factorial N. So, you can write

the  Slater  determinant  equivalently  also  in  this  notation,  it  is  a  same  as  this  Slater

determinant. And this operator in this box is sometimes called as an antisymmetriser,

because  what  it  does,  is  to  take  this  direct  product  of  the  diagonal  elements  and

antisymmetrisers it.

So,  this  is  sometimes  called  as  an  antisymmetrizer,  so  this  is  the  antisymmetrizer

operator, I will stop here for this class and we will begin from this point in the next class,

questions.

Student: ((Refer Time: 50:07))

This  spin  orbit  coupling  does  give  you  a  net  angular  momentum,  but  these  are

distinguishable properties like, how do you define angular momentum. When I said that,

angular momentum must be defined in a such a way that, when it is subjected to the

rotations, it follows the certain law. And it is not going to follow that law, if you do not

subject the orbital angular momentum and the spin angular momentum together, this is

what we did in unit 2.

So,  these  are  two  separate  sources  of  angular  momentum,  they  are  completely

independent of each other. And they have though their Eigen functions, one is an Eigen

function of l square l z, the other is an Eigen function of s square and s z. And together

they  give  you  l  plus  s  equal  to  j  and  both  Eigen  function  of  l  and  s  must  be

simultaneously subjected to a rotation. So, the separation comes from the fact that, these

are two independent sources of the angular momentum.

Student: We have an non zero l dot s term then...



That is the matter, that you have a non zero l or s term, I understand your question, like s

orbitals, s orbitals have got l equal to 0 and j will go from 0 minus half modulus to 0 plus

half modulus, so there is only one state which is available. Now, that is only the Eigen

value of l square, that does not prevent the electron from having the property of orbital

angular momentum. It has a property of orbital angular momentum and it is in one of

these states, corresponding to l equal to 0.

But, it is an independent property, which is completely independent of this spin, so these

are two independent sources of angular momentum j 1 and j 2, which coupled to give

you j 3 or the net j, which is l plus s equal to j. And their respective Eigen functions are

the spin part and the orbital part, the net wave function is a product of these two, any

other question. So, let me stop here and we will resume from this point tomorrow.


