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Greetings, so we begun to get some feel about the Foldy Wouthuysen transformations,

and essentially  the Foldy Wouthuysen transformations  achieve  quite  a large,  but one

thing that I want to draw your attention to is this remark from Berok and Drels book.

(Refer Slide Time: 00:38)

That they help us to see different interactions of an electron with the electronic field in a

form that we can really recognize, we can interpret easily that is a kind of form that we

see in various books, if you read Banson and Jhosan books physics atoms and molecules,

you will see various terms. You know which are referred to relativistic terms, spin orbit

interaction  and  so  on,  but  those  the  terms  are  not  directly  manifested  in  the  Dirac

equation.  They involve  the  Foldy Wouthuysen  transformations  help  us  achieve  is  to

display them, in a form that can be very easily interpreted.



(Refer Slide Time: 01:21)

So, our basic problem is right here, that you have the Hamiltonian, which contains the

odd  operators,  and  you  want  to  transfer  it  to  different  representation  using  this

transformation relation that we have discussed. And the our objective is to make the

transform  Hamiltonian,  relatively  free  from  the  odd  operator,  we  cannot  make  it

completely free from the odd operators, but as much as we can. So, we discussed the first

Foldy Wouthuysen transformation, and then you have the leading odd term, which is of

the order 1 over m.

(Refer Slide Time: 02:15)



And then what we are going to do is to have another Foldy Wouthuysen transformation,

and now you subject the first transform hamiltonian to the second Foldy Wouthuysen

transformation which is s 2, which is through this operator. And now, you get a transform

Hamiltonian which is h double prime, and now you do it one more time following the

same procedure.

So, we have seen how to work out this algebra, it is little laborious it is fun to do, and

when you do it third time you get a transform Hamiltonian, which if free from the odd

operators to a very satisfactory extend. And this is the form you get, for the Hamiltonian

in the Dirac Hamiltonian, in the representation after subjecting the original Hamiltonian

to  three  successive  Foldy  Wouthuysen  transformations.  Now, you  know  what  these

operators r theta and x epsilon, these are the short forms for the various terms that we

introduced earlier.

(Refer Slide Time: 03:39)

And if you look at it you still need to evaluate all this commutator, and their number of

terms to work with, and we will suggest you how these terms are analyzed, or at least

you know the general trend in that analysis of this, so that you can work out the details.

So, look at this term this is theta square by twice m c square, which is appearing here, so

let us see its explosive form theta is the c alpha dot p minus c over c by a. So, now, I am

using the Gaussian units, which is what I need to use, and some of the earlier relations, I



think very natural units, where I have put c equal to 1, and you know it cross was also z

equal to 1.

So,  here  we  have  placed  them,  and  now  you  have  this  alpha  dot,  this  generalized

momentum, and then you have the square of it, so now, if you plug in the expression for

alpha which is this matrix operators 0 sigma sigma 0. Then you get sigma dot pi and

sigma dot pi from these terms, and you can write this a sigma dot pi sigma dot pi times

the unit 4 by 4 matrix. And for sigma dot pi sigma dot pi, you can use the poly identity

which we have used a number of times as a matter of fact, we are going to use it quite

often it is something, which gets very extensively used.

(Refer Slide Time: 05:36)

So, this is our explicit expression for this term, and we have to analyze this further, so

this is what we get for one of the terms in the transform Hamiltonian. Now, you need the

pi cross pi over here, which will involve this thrall of a operator and a dot del operator,

but then we have studied this. That this is operator and this will operate on an operand

and we have done this analysis earlier, we should always be very careful whenever we

have the gradient operator.

So, this is not just the magnetic field B, but it is the del cross a operator, which should

operate on an operands, so you will end up taking the curl of a product of A and f. So,

when you do that then these two terms cancel, and you get the magnetic field coming

from this, so that is what will go here.
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And now, you have the magnetic field and that tells you that this theta square twice m c

square operator is this pi square over 2 m, and then with this i sigma dot pi cross pi term,

for which we use this relation, we get e h crossover c times sigma dot B. So, this is a

term,  which  will  contribute  to  the  beta  theta  square  over  twice  m  c  square,  in  the

transform Hamiltonian.

(Refer Slide Time: 07:09)

But, there are the other terms there is this beta theta square over twice m c square, there

are plenty of other terms you work with. So, let us have a look at this one, this is theta



comma e plus i theta dot, and we have some indications of all these terms to be used, so

substitute the terms explicitly. So, theta is c times alpha dot the generalized momentum

which is phi minus e A, then this epsilon is e phi, so all I have done is to substitute these

terms, and I have a time derivative of this scalar product of these 2 operators.

So, I get d alpha by d t dot p plus alpha dot d pi by d t, but the rate of change of any

operator d omega by d t you get it from the Heisenberg equation of motion, so you can

used that and inserted.  So, first  of all  this  term would go away, this  is  not going to

contribute anything, this commutator would go to 0, then we have this a dot alpha dot

gradient  term.  And  again  we  have  to  reminded  ourselves  that  whenever  we see  the

gradient term, you have to be careful with that operator because this is a commutator of

alpha dot del with phi.

So, this commutator is alpha dot del phi minus phi alpha dot del, operating on f and if

you follow the same reigning as we did in earlier. You see that these two terms cancel,

and you are left  with only alpha dot del phi,  so that is what you have got from this

commutator.  So,  from  this  commutator  that  two  terms,  which  reduced  to  a  single

equivalent operator, which is alpha dot del phi, and we will use this over here, and then

simplify this relation for combination of these two terms.

(Refer Slide Time: 09:18)

So, this is the term which we are looking at this alpha dot del comma phi commutator,

we have simplified and this del phi you know is related to the electric intensity, but there



will in the expression for the electric intensity. There will also be the rate of change of

the vector potential, so there is a minus 1 over c del a by del t, and now you can put in

this term in place of this commutator. Now, these are known things, these things you

know from the electrodynamics, you know them from elementary vector calculates, you

know them from quantum mechanics and what you do here is put it all together.

So, that what makes it really interesting, so put it all together, and now you have these

terms systematically written as e plus 1 over say del a by del t.  You see where it is

coming from, and then you have the d alpha by d t and t phi by d t for the these two

terms,  and here you can used the Heisenberg equation  of  motion,  and used these to

represent these derivatives. So, do not forget that this is an operator, so which is why you

have to use the equation of motion for the operator.

(Refer Slide Time: 10:50)

And now, you have got from the equation motion these terms, you have collected all of

them, and since we have them written on this screen. It says me that time to write all

these terms on the board, but this entire file is uploaded at the course page, so you can go

through it carefully. And make sure that you follow the derivation term by term, but here

I want to show, you in the class, and this way we can go much faster than we would, if I

would to write this on the black board, but if you have any difficulty you should stop me.

So,  this  entire  file  has  been  uploaded,  and  you  have  these  terms  coming  from  the

equation of motion, so what we have got, all the terms have been spelled out explicitly.



Now, these commutators again if you make use of the matrix structure, and look at the

commutation properties, you will be able to see that they cancel each other. So, that you

have to work out the matrix operation, and there is also a vector algebra, which is evolve

you  have  to  respect  the  vector  algebra,  the  matrix  algebra,  the  operator  algebra

everything come together.

And by using that these terms will make no contribution, these two terms cancel each

other, they are the same with opposite sign, this one with the plus sign, and this one with

the minus sign. So, these two terms cancel each other, and you are left you are left to lot

of  simplifications,  and this  is  what  gives  you one part  of  this  commutator  and;  that

means, that you have to get commutation of theta with alpha dot e. So, here you had, so

many terms now all of them are replace by just one commutator is now, what you have to

determine. So, your task is much easier now, and when you do that again do a term by

term it simplifies a lot, because you get.

(Refer Slide Time: 13:27)

Rather familiar expressions over here, this alpha dot p alpha dot e this will suggest to you

what kind of relation you can use, because whenever you see term of this kind you know

that you will be able to use the poly identity. So, it is not to have remember, what I am

going to do next those suggestions are built into the structure of the equations, and if you

just used them you will be automatically led to do the right thing that is the idea. So, here

you see the poly identity emerging out of this matrix structure and you get the sigma dot



p sigma dot e, from this matrix multiplication of these two operators, these are matrix

operators.

So, you have the term over here in the first row, and first column will be this sigma dot p

sigma dot e from these two. So, that is a how you get sigma dot p sigma dot e over here,

and also in the 2 2 positions, but each sigma is 2 by 2 matrix of course, so you are really

working with 4 by 4 matrices, which is what you always do in the Dirac formalism. So,

you got the sigma dot p sigma dot e, and now you can used the poly identity, which is

which will give you p dot E plus i sigma dot p cross E, and you have a similar expression

over here, but this time you have got the e cross p.

(Refer Slide Time: 15:15)

So, these are the two terms, now let us have a look at this p dot E term p again has a

gradient operator, so you have careful with it. And what you find from a careful handling

of this gradient operator, which now which we have done a number of times, you see that

this p dot E will give you this scalar p dot E plus E dot p. So, this is not the same as this,

this is an operator this is the result of all the operation carried out.

So, now you can put all of these terms back in the expression for 1 over 8 m square c to

the 4, and you write all of these terms coming from here. And you find that this E dot p

term cancels this E dot p, this E dot p is a descendent of this term here, this is a point E

dot p. So, that is a one which is coming here, and these two cancel each other, now you

have these three terms, 1 2 and 3.
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And three of which p cross E again with a careful handling of the gradient sitting in the

p, will give you these two terms p cross E minus E cross p, we have done this, so there is

a gradient sitting over here, so using this these two terms. So, instead of p cross E term,

now you have the this p cross E is coming from here, and then here you have a term in

minus of E cross p, but then together with this minus sign is become a plus, so you get a

term in this plus E cross p.

And then you can combine this term and this term, which is coming from these two, and

now you notice that the last two terms these two terms are exactly the same. This is e h

cross over 8 m square c square sigma dot E cross p, so these are the same terms. So,

instead of the 1 over 8 factor here you will have the 1 over 4, because you can combine

those two terms, so that is what you have got you get the 1 over 4 here coming from

these two terms, and then from here you get this sigma dot curl of p. And now, you have

perhaps to beginning to see some formality with some of the terms, you may have seen

in perturbation theory, but they will become even more explicitly manifest after just a

few more steps.
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So, this is what we have got these are the three terms, so you get the diversion of p you

get the sigma dot curl of p and sigma dot E cross p, so let us write insert them in the

transform Hamiltonian. Now, when you take care of all the terms and put them back into

the transform Hamiltonian, which is the transform Hamiltonian arrive at after three Foldy

Wouthuysen transformations.

The transform Hamiltonian, then has got, so many terms 1 2 3, and then you have got

another 1 over here, and all of these terms are now amenable to easy interpretation rather

easy  interpretation.  This  was  not  a  form  which  we  could  see  them  in  the  Dirac

Hamiltonian, they were there it is not anything that we have added Ad-hoc this is comes

straight out of Dirac Hamiltonian by subjecting it to a property transformations.

You immediately see that this electric intensity is nothing but the gradient of the potential

and this e r is this position vector divided by r, so you see the form minus 1 over r del v

by del r. And now, you have got this r, which will come here, so you will get sigma dot r

cross p, which is the sigma dot l, which is the spin orbit term that you have seen in

perturbation theory it comes. So, nicely out of the Foldy Wouthuysen transformation, it

was there in the Dirac equation, but it was not visible.

When you subject the Foldy Wouthuysen transformation to one to three transformations,

then in the third result which is the h triple prime you see this form appearing. So, this is

the e h cross over 4 m square c square 1 over r del v by del r sigma dot r cross p, then



you have got  a  term in p to  the  4 this  happens  to  be the relativistic  kinetic  energy

directional, discuss this in just a few minutes.

(Refer Slide Time: 21:05)

Now, this  is  the  relativistic  kinetic  energy  which  is  g  minus  m  c  square,  and  you

remember we defined the energy mass equivalence very carefully, at the very beginning

without which we would not have this connections. So, there was a strong reason to

spend some time discussing that, and you will see that it is important. So, the relativistic

kinetic energy is this difference, which is the energy minus the rest mass energy, what

you take away after removing the rest energy is a kinetic part, so this is a relativistic

kinetic energy.

And now, all you do is to expand this term to the power half, and when you do that you

get a power series, and you have got c in the denominator whose powers keep increasing.

So, you can truncate it at some level of the approximation wherever you want, and if you

keep the leading term the most important contribution comes from the p to the 4 term.

So, this is the relativistic kinetic energy, term this is precisely the term that we saw in the

Foldy Wouthuysen transform Hamiltonian.

So, there was a term in p to the 4, and we see its origin in the fact the relativistic kinetic

energy is different from the Galilean kinetic energy they two are different, so it is origin

can be trash the origin of  the p to  the 4 term,  which is  here this  can be trashed to

relativistic kinetic energy part.
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This is what we just saw, this sigma dot b is a magnetic diaper momentum as is easily

recognizable, then you have got a term in the diversion of p, and this was introduced in

the pre Foldy Wouthuysen days as a perturbation. And it was referred to as a Darwin

connection,  so  in  some  books  on  perturbation  theory,  they  will  begin  with  a  non

relativistic Hamiltonian, and at perturbations.

That this is the perturbation due to the relativistic kinetic energy, because your original

Hamiltonian is not really relativistic let us take into the account some of the relativistic

features. And let us do it perturbatively because after all the non relativistic theory is not

accept, it gives the good starting point it certainly does, and the reason of course, is that

the speed of light is extremely high, even if it finite it is a extremely high.

So, the non relativistic Schrodinger equation non relativistic quantum mechanics is not

accept that not quite accurate, and we are now looking at those effects, which are really

important, because an atomic spectroscopy and in the atomic processes. It does become

important to take into account relativistic effects, and not just for heavy atoms, but even

for very small atoms even for the hydrogen atom. It is absolutely important to take these

effects into the account, and these could be introduced perturbatively in non relativistic

mechanics.

So, you can add the kinetic energy correction as a perturbation, you can add this is a

correction  you  can  add  the  spin  orbit  correction,  actually  these  two  terms  together



contribute to the spin orbit term, rather than just the last one. The last one is more famous

because  curl  of  p  for  the  hydrogen  atom  vanishes,  that  is  the  spherical  symmetric

potential, so you know the curl of p vanishes. So, this one is not a important, but if you

are dealing with a potential, which is not strictly you know central field then you are

going to have to take this into the account and you cannot throw it away.

So, relativistic quantum mechanics will give you not just the sigma dot l term, not just

the l  dot  l  term,  but  an additional  term which must  be taken into the account  as an

integral part of the spin orbit interaction. That is the relativistic effect, for a central field

it is just a sigma dot l square and of course, there is this d v by d r and so on.

(Refer Slide Time: 25:44)

So, there are these terms and one can make corrections perturbatively, it is a good idea to

see the correspondence, so look at the perturbative corrections due to the kinetic energy

part. This is the relative relativistic kinetic energy correction, we are coming from the p

to the 4 term, now you see that this is the square of p square, and this is e n minus v

whole square. And you really need the expectation values of the potential energy had

also  the  square of  the  potential  energy, so you need the  average  values  of  1  over  r

because a potential energy goes as 1 over r, and you also need the average energy of 1

over r square.

Now, these problems you would have been done in non relativistic hydrogen atom, how

to get the average expectation value of any operator. So, if you take the n th way function



for the hydrogen atom, and determine the average values of 1 over r and 1 over r square.

You will see that 1 over r goes as 1 over n square 1 over r square goes as 1 over n cube, A

is the bore constant, and then there are other constants other quantum numbers, which

coming.

So, you can use these relations, put them into the expression for the average energy for

the potential energy, and the square of the potential energy. And that will give you an

estimate of the perturbative correction due to the relativistic kinetic energy, and it turns

out to go as alpha square, where alpha is a fine structure constant. This is the reason it is

called as a fine structure constant, because it changes this non relativistic structure, even

if, so in only a fine small detail, and it contributes some details to the atomic structure.

So, this is  the fine structure constant,  but this is  not the only term which is coming

because of relativity, and this is the most important lesson from the Foldy Wouthuysen

transformations. Because, if you perturbative corrections to non relativistic Hamiltonian,

then which are the corrections you want to make these. You could make the Darwin

correction, you could make this correction, you could make this correction, so there are

three corrections that you can talk about.

And perturbatively you might say that this is the most important one, I will do that, I

could do that second term or I could do the third term or I could do the second and third,

but not the first. But, whenever you are making corrections, it is extremely important that

if you include one term of a given order, then you considered all terms of the same order.

And you are certainly making an approximations, so it is not an exact formalism that you

are developing anyway. Whether, it is the Foldy Wouthuysen scheme of the doing things

or the perturbative way of doing things, you are not doing an exact analysis, you are

making the approximations.

So,  make  sure  that  your  approximation  is  sensible,  because  when  you  make  an

approximation and say that argue that these terms are not going to take into the account,

because they are weak they are ignorable. Nothing wrong in making that argument, but

you cannot ignore those terms, which are of the same order as some of these other terms

you have chosen to include. So, you have to take into account all of them, and when you

do not do that you will; obviously, get wrong results.
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So, now this is the correction due to the relativistic kinetic energy, and now let see the

correction due to the spin orbit term, which is the sigma dot l term over here. And here

again you can go ahead and determine the expectation value of this operator, this is the

first order perturbation theory result, which is quite familiar to you. So, you need the

radial integral for 1 over r cube, because del v by del r will give, you the derivative of 1

over r which goes as 1 over r square.

So, you need the expectation value of 1 over r cube because of that reason, and then you

get you need the expectation value of this  operator in angular momentum states. So,

when you evaluate this, h del l you know how to get it from j square, because j is l plus s,

so j dot j will be l square plus twice l dot s minus s square, and you can you know do the

substitutions and get this result. So, you have a twice s dot l terms, so you will get h

cross square by 2 j into j plus one minus l into l plus 1 minus s into s plus 1. And then the

average value a 1 over r cube, will give this term and 1 over n cube, and some of the

other quantum numbers including the orbital angular quantum number.
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So,  this  is  the  correction  to  the  energy, because  of  the  spin  orbit  term,  and it  is  as

important  as  the  relativistic  kinetic  energy  term,  which  is  sometimes  referred  to  a

relativistic vast term. But, more appropriately it should be called as relativistic kinetic

energy term, because we do not make a distinguish distinction between mass and energy,

that is something that we have already taken care of.

So, you can simplify this expression for the average value of the spin orbit interaction,

these are the constants that you make use of the bore radius and fine structure constants.

And you find that this is the same as what is some books called as it is relativistic mass

correction, but it is a relativistic kinetic energy correction, as I prefer to call.
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So, this is what you get the spin orbit correction again goes as z alpha square.

(Refer Slide Time: 32:26)

Now, this is the correction for from relativistic kinetic energy, which goes as z alpha

square and now you are left with one more term.
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Because, here is a simplification of this further, the spin orbit interaction of course, is

important only for l not equal to 0 states, for l equal to 0, the l plus s and l minus s will

give you the same thing. So, this is when l is not equal to 0, you can explicitly put in the

values, and find these simplified expressions for the spin orbit spreading.

(Refer Slide Time: 33:11)

What are the diversion terms, this is the Darwin correction, now the Darwin correction

requires you take the diversions e which is the diversions of 1 over r square, which gives

the del function. The diversions of 1 over r square gives you the Dirac delta, and you



will,  therefore  need  the  average  value  or  the  expectation  value  involving  this  delta

function.

So, when you revolve, when you determine the expectation value of the operators, you

must use the delta function integration expectation value is an integral; obviously, so this

is let say you take the expectation value for some n s state. This is the important for l

equal to 0, so this is let us say for some non relativistic wave functions psi n with l equal

to 0 and m equal to 0. And you determine this integral, and this will give you minus e n z

alpha square over n, so again you find that the Darwin correction is also of the same

order of magnitude as the other two.

So,  it  is  important  to  take  into  account,  all  the  3  if  you  want  to  make  relativistic

corrections at all or none at all, if you do only one or the other then it is not enough. And

that  is  the  difficulty  with  perturbative  approach  to  quantum  mechanics,  because

whenever you try to make improvisation. And add terms, which you even if they are in

the right direction, they can still give completely wrong answer, because you may have

two contributors of same order magnitude.

They could come with opposite signs and they could just kill each other, or they could

come with the same sign they can they could add to each other, so these are various

factors that you have to consider when you do the perturbation theory. So, this of course,

it is important only if n equal to 0, because it requires a finite amplitude of wave function

at  the  nucleus  at  r  equal  to  0.  And you know if  that  all  the  radial  functions  of  the

hydrogen atom, they goes as r to the power l, as r goes to 0.

So, as r goes to 0 the wave function goes at the r to the power l, and for l equal to 0 this

will be finite at the origin at r equal to 0, but for l equal to 1 2 3 and everything else this

would go to 0. And it would go to 0 faster for higher values of l which is a centrifugal

barrier effect, which I had discussed in unit 1 I believe, but this is of importance for the n

s states, so this is for the l equal to 0 state that this is important.
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And then you have these three corrections the relativistic kinetic energy, the spin orbit

correction the Darwin correction, they are all of the same order z alpha square.

(Refer Slide Time: 36:28)

And you therefore,  put them all  together, and add the net effect of these three terms

though  the  correction,  and  these  three  terms  when  you  add  together  you  get  a  net

relativistic correction for all orbital angular momentum quantum numbers. And this is the

result that you get from relativistic quantum mechanics, but if you did not use all the

three, but only one or this, this is not what you going to get. So, please make a very



major note of this point, that all perturbation of the same importance must be included

together.

(Refer Slide Time: 37:15)

So, now our primary intention in doing this exercise was to solve the Dirac equation for

the hydrogen atom, now we have seen what some other terms mean. And these are some

references that I like very much for this topic Bjorken and Drell and Griner and Drig

quantum mechanics Masaya. So, these are some of the books that I have used and for the

coulomb problem for the hydrogen atom, you can solve the Dirac equation exactly. In all

the forms that we used until now, we had the potential  v of r, but we never actually

specified it to be the coulomb potential.
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So, for the coulomb potential Dirac equation has got an exact analytical solution, so now

let see how we are going to handle this, and it is not at all trivial, the reason to discuss it

is  because it  is  not a trivial  extension of non relativistic  methods.  In non relativistic

quantum mechanics, you very in a very simple manner, you separate the radial part from

the angular part right because of the 1 over r potential.

Now, that  is  not,  so obvious for the Dirac case,  because of the presence  of  the odd

operators and if you look at the Dirac equation now. In fact, if you look at the Dirac

equation even for a free particle, let alone a particle in an electromagnetic field, so even

if you throw the terms in A and phi you find that the orbital angular momentum operator,

and the spin angular momentum operators do not commute for the Dirac Hamiltonian

even  for  a  free  particle.  And  then  of  course,  they  will  not  commute  for  the  Dirac

Hamiltonian for the coulomb problem, because these terms are also there.

So, it is not going to commute, which means that these will not give you good quantum

numbers, because our whole idea of good quantum numbers is to get them, from those

operators which commute to the Hamiltonian. So, that they correspond to simultaneous

compatible observations, so what constitute compatible observations to give you good

quantum numbers is a question, and we have to get the good quantum numbers for the

Dirac Hamiltonian, and it is not going to be n l m, l cannot be a good quantum number,

because l does not commute with the Hamiltonian.



So,  you  are  quantum  numbers  are  going  to  be  different,  because  of  the  spin  orbit

interaction, the spin orbit coupling. And then parity also have to be defined in a very

careful manner, for l Dirac a case, because of the beta operator, which is what is it one 0

0 minus 1. So, you have to be careful with parity as well.

(Refer Slide Time: 40:46)

So, this is our statistical symmetry Dirac Hamiltonian, and now we want to explode this

spherical, so somehow we want to separate the equation into a radial part and angular

part. And we have to extract angular features and radial features, we have to identify

them separately, and the main question is how you are going to handle this term, this

alpha dot p, so let us discuss this.
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So, these are our operators I defined 2 new operators, so this operator which got one, in

off diagonal position is what I called as rho 1, I will use it, alpha we have already used

which is the Dirac operators 0 sigma sigma 0. And this is sometimes called as a Dirac

spin, this is made up of the poly spin, this is sigma sigma along the diagonal, along the

off  diagonal  is  a  Dirac  alpha,  along the  diagonal  it  is  a  sigma into  the  unit  matrix

operator.

And  this  is  sometime  written  with  a  as  sigma  with  the  superscript  d  for  Dirac  or

sometime with this  uppercase sigma, so these are the various notations  that  you see.

Sometimes, it is written only as this sigma which is a same as a poly sigma, but from the

context you know whether it is a poly sigma or the Dirac sigma, if it is the Dirac sigma it

is a 4 by 4 vector operator.

Likewise, the spin angular momentum which is h cross over 2 sigma is now you extend

this idea to the 4 by 4 operators, and this is h cross over 2, this uppercase sigma, so this is

a notation I will be using. So, this is h cross over 2 sigma, and you have got a unit

operator you can also write this as h cross over 2 sigma, or you can just not write this one

operator in which case you will read it as just a usual poly h cross over 2 sigma, but from

the context you should know, what you are talking about.

So, notice this rho and sigma is the same as the alpha, rho and alpha is the same as a

sigma, and if you look at sigma dot p, you can extract the sigma dot p and you have a



unit operator. So, sometime you will find books, in which this sigma dot p is written only

as this sigma dot p, but they has a same things, they are the same or they are different,

one has got a 4 by 4 structures and the other has got a 2 by 2 structure. So, which is y 1 is

poly  sigma the  other  is  the  Dirac  sigma,  but  you have  to  be  careful  while  reading

literature,  because many books do not alert you to this, although I am sure that they

would have said that somewhere, but you have read it very carefully.

So, this is sigma dot p, now I have got sigma dot p here as well so; obviously, the rest of

it  over  here  is  a  unit  operator,  which  you  can  easily  recognize,  because  this  is  a

projection of sigma in some direction, because this r over r is a unit operator. I do it

twice, and sigma square along any direction is equal to 1, so this is just a unit operator.

Everybody comfortable, this is just a prediction of sigma on some direction, sigma dot u

and what is a square of sigma do u. It is like sigma z square is equal to 1, now everybody

will agree he is right indeed it is, so it is just like sigma z square which is equal to 1.
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So, that is what you have got, and now here you make use of the poly identity, so this is r

dot p plus i sigma dot r cross p, here you would expect a 4 by 4 unit matrix sitting

implicitly. So, this is sigma dot r, this is r over r square, so this is e r over r, this is a unit

vector in the direction of the position vector, and this r dot p gives you if you represent

the gradient operator in the spherical polar coordinate system. You will need to work

with the only one component, which is this and you know that the radial momentum



operator is not just a minus i h cross del by del r, it is minus i h cross del by del r minus i

h cross over r.

So, be careful about it, because you have to put that in the expression for r dot p, which

is minus i h cross r del by del r phi r plus i h cross, so you have the x y term. So, now you

write this expression for sigma dot p, which is sigma dot E r, and then you had r dot p

which is here, which you know is r p r plus i h cross, so you can put that over here, you

have got a sigma dot l coming from here.

So, you put all the terms together and you have a essentially sigma dot E r, but then our

interest is in alpha dot p. And what is alpha it is rho 1 sigma, and rho 1 is this operator is

this matrix which has got 0 1 1 0 with the elements 1 in the off diagonal position. So,

when pre-multiply sigma by rho 1 you get the alpha, so the rest of the expression is the

same.
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And you have alpha dot p which is alpha r phi r i over r, and then you have got h cross

plus sigma dot l. Now, p r i have written explicitly in terms of this minus i h cross del

over del r minus i h cross over r, and now this term and this term will cancel. Now, this

term now you see on the right side, you have got expression involving radial character.

And this  is  what  we set  out  to do,  because our  Dirac Hamiltonian  for the spherical

potential is the c alpha dot p plus beta m c square plus v.



And  now,  we  have  succeed  in  writing  alpha  dot  p  with  radial  features,  it  is  not

completely separated into the radial and angular part. And you will see that in the next

class, but you are beginning to see that you are now able to see the radial features, which

is what you need to separate the radial part from the angular part. And to be able to do

the analysis completely, you are going to introduce a new operator, which is defined as a

k which is this h cross plus sigma dot l.

Why is a, so important its coming here h cross plus sigma dot l, this is the one which we

think could create some trouble for us, this is the operator which needs to be carefully

handle. So, we, in fact defined a new operator, which is beta k which is equal to h cross

plus sigma dot l, so that makes k itself go as beta h cross plus sigma dot l, beta square is

equal to 1 you know that. So, this is a new operator that we introduce, and in terms of

this new operator your alpha dot p operator becomes alpha r phi r plus i over r beta k,

where k is this new operator that we have defined.
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We can rewrite the Dirac Hamiltonian in this form, in terms of this new operator, and if

you collect all these terms together, you have got the Dirac Hamiltonian for the spherical

potential in terms of the k operator. And this is where I will stop today and take this up

from here in the next class, so we need one more class to see how you actually workout

the separation between the radial and the angular part. And then see how you get the



solutions  to  the  Dirac  equation,  the  coulomb  functions  and  then  use  them  in  your

relativistic applications. 

So thank you very much.


