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Greetings,  so  we  will  discuss  the  Foldy  Wouthuysen  transformations  today, and  the

whole reason to do, so is to recognize that.

(Refer Slide Time: 00.22)

Now, this is the dirac equation, the operators of 4 by 4 matrix vector operators, quantum

operators the wave function is a 4 by 1 wave function it has got 4 components. And the

unit operator or the beta operator has got 0 elements in the off diagonal blocks, but the

alpha operator has got the poly matrices on the off diagonal block. So, the alphas are odd

operators, the betas and the unit operators they are called as even operator.

So, the odd operators are the one which makes the, so called large component and the

small component, they are the one which makes the particle states and an antiparticle

states. You can really decoupled, because of the presence of these odd operators, so what

one hopes to do is to transform the dirac equation, at this h psi equal to i h cross h psi by

del t is the dirac equation that I am now looking at this is a dirac equation.



You subjected  to  a  transformation  to  the  primed  representation,  which  is  the  Foldy

Wouthuysen transform representation, and in this representation. It is our hope that the

operators in the transform representation will also have the odd operators, but hopefully

they will be less important than, what they were in the original unprimed representation.

For example, this could happened, if they get scaled by a factor 1 over m, so that is a

kind of strategy that we are going to apply following the technique that was introduced

by Foldy Wouthuysen.

So, this would involved transformation of the wave function psi to psi prime through a

transformation operator e to the i s. And if we did that the corresponding Hamiltonian

would transform to the sum of these two terms, which is e to i S h e to the minus s. And

there would be this additional term, because it cannot be assumed that the operators S is

independent of time, it may be in some cases, but it does not have to be. So, this is the

general  form  of  the  transformed  Hamiltonian  under  the  Foldy  Wouthuysen

transformation, this we discussed in our previous class.

(Refer Slide Time: 03:31)

So, let us begin with this c alpha dot pi plus e phi, and to illustrate the method we first

take a very simple case which is the case of a free electron, so the vector potential and

the scalar potential phi do not appear in our equation of motion. So, the Hamiltonian is

just  c alpha dot pi  plus beta  m c square,  instead of pi  you get p pi is  a generalized

momentum, which includes the magnetic vector potential. So, you get only the alpha p



term instead of alpha dot pi, because there is no vector potential, likewise this term e phi

is also missing, and we have a much simpler relation to work with.

And you can already see that even for this equation even for the free electron, you have

got the odd operator alpha and the even operator beta. And if you wanted to get freed of

the odd operator, you could give a Lorentz boost to the electron frame, if you go over to

the electron frame, then the mechanical momentum p of the electron in that frame would

be 0, and you would get rid of the alpha dot p term.

So,  there  is  some  hope  that  he  has  this  can  actually  be  achieved,  and  the  residual

equation that you will have will then have a relationship which will not involve the odd

operators. So, that can be done, but the general transformation operator, which is e to the

i S followed by that reasoning Foldy Wouthuysen consider this particular operator, which

is minus over i twice m c beta alpha dot p scaled by some unknown function omega of p

over m.

This is a hitherto unknown function, but it is some arbitrary function of p over m and at

in an appropriate juncture, we could choose yet to be whatever we will find it to be the

most  convenient  one  for  us,  for  our  purposes.  We have  not  the  objective  very  well

defined, we want get rid of the odd operators our motives are you know very clear. So,

this is this does not involve any times independence, so h prime is e to the i S h e to the

minus i S, and that is what I have written here h prime is this.

This is the free electron Hamiltonian c alpha dot p plus beta m c square, this is the free

electron Hamiltonian, and if you moved this beta outside the bracket move it to the left.

And take it outside the bracket, then you would need to pre-multiply this by beta inverse

right the first term. So, that is what to do over here, beta and beta inverse of beta m c

square gives you the appropriate second term, and to make the first term appropriate you

must include the beta inverse, but beta inverse is same as the beta.

So, you get e to the i S beta and then you get c beta alpha dot p plus m c square e to the

minus i S, so that is the term that you get. And then since the transformation operator S is

already made up of beta alpha dot p, which is what you have over here which is beta

alpha dot p, this is just plus m c square multiplied by the unit operator. So, that is going

to commute with e to the minus i S without any difficulty, but even this one mode and

this e to the minus i S can be written before this bracket.



So, what you have is h prime operator is e to the i S beta e to the minus i S, and then you

have c beta alpha do p plus m c square. Now, let us look at this term over here, beta e to

the minus i S, I am looking at this part alone, which is beta e to the minus i S. I write S

explicitly there is a minus i here, and a minus i here, so I get minus 1 over twice m c the

rest of the operator.

(Refer Slide Time: 08:36)

Now, let us analyze this expression further, because essentially beta e to the minus i S is

this operator here, and you can use a power series expansion as you have for e to the x.

So, that is a well known series, it is an infinite series, expect that x for us is an operator,

and you must take it  appropriate  power of that operator. So, we plug in this  infinite

series, and it has got minus 1 over 2 m c to the power n, and then you have got beta alpha

dot p times. This omega function which is yet to be determined to the power n, so this is

to the power n and then you have a omega to the power n.



(Refer Slide Time: 09:40)

So, let us have a look at this expression, so you have minus when to the n here, this is

your transformation operator S, now this is the identity that one can use. You can easily

establish this by simply using the explicit form of the beta and alpha matrices, so very

simple  block  diagonal  structure.  So,  you  can  you  know  carry  out  the  matrix

multiplication law, and you will find that this operator to the power n is a same as the

minus 1 to the n, beta alpha dot p to the n, and then there is a beta with 6 out.

So, you can substitute  this  operator by this term, you get minus 1 to the n which is

already here another minus went to the n over here. So, that will give you minus 1 to the

two n which  is  always be  plus  one  no  matter  what  n  is  odd or  even,  and then  the

remaining terms take a rather simple form. So, this is your expression for beta e to the

minus i S, and using the same kind of analysis, you can show that e to the plus i S has

this form, and you need both of them.

So, you have e to the i S which has this form you using exactly the same reasoning, and

if you look at these two forms you find that if you multiply this expression on the right

by beta, then you find that beta e to the minus i S is equal to e to the plus i S beta. This is

not a commutation relation remind you, there is a minus sign here, and a plus sign here,

and you have this operator identity.
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So, this is the one we can make use of over here, and this beta e to the minus i S, then

becomes e to the i S beta, and together with this you get e to the i 2 S beta, and that you

have got the c beta alpha delta p plus m c square. So, now you have got e to the i 2 s, but

you know how to expand e to the i S, so e to the i 2 S will just have this coefficient

multiplied by 2. So, instead of 1 over 2 m c you will get the 1 over m c, in the rest of the

term rest of the expansion would be essentially the same. So, you have got 1 over m c

instead of 1 over 2 m c, and then the rest of the expansion, and then followed by c alpha

dot p plus beta m c square, now this is your transformed Hamiltonian.

(Refer Slide Time: 12:43)



Now, let us look at this expansion in some further details, you recognize that this beta

alpha dot p this 4 bracket is rest to the power n, so each factor 1 over m c is be is rest to

the power n. The beta alpha dot p operator is rest to the power n, and omega function is

rest to the power n, so you have this power series expansion now of these operators. So,

for n equal to 0, you get the unit operator, then this is the term corresponding to n equal

to 1, which is beta alpha dot p over this m c. And then you have got this omega to the

power 1, then you get the second term which will have a 1 over factorial 2, which is

sitting over here. Then you have the beta alpha dot p over this m c to m power 2 and then

omega to the power 2, so you write each term explicitly.

(Refer Slide Time: 13:54)

That is what we have, we bring this term to the top of this slide, and now to analyze this

it is useful to introduce beta alpha dot p to be equal to gamma, and then look at the form

of this gamma. So, beta alpha we can find out exactly what it is, beta is this matrix, alpha

is this matrix, so beta alpha is this matrix operator, all that we have done is to use the

matrix multiplication property.

And gamma is beta alpha dot p, so this is beta alpha, this you should take the scalar

product with this p, for some reason this dot appear nicely as a dot or not as a box, as I

did earlier, so it has decided to be kind to wash now. And you have this sigma dot p, and

minus sigma dot p in these two locations, 0 in the diagonal locations, and now take the

square of this, to get the gamma square.



So, let us take the square of this, and you can go head and work this out and find that this

is nothing but minus p square times the 4 by 4 unit matrix. You know how to handle

sigma dot p times sigma dot p, so it will give you the p dot p, and then you will get a

cross product of p with itself which we will throw, so you get essentially minus p square.

(Refer Slide Time: 15:43)

So, now you have gamma square and this really allows us to write this expression in a

form which is very familiar to all of us, because now you write these terms explicitly.

And you had the n to the power 0 term, then n to the power 1, n to the power 2, n to the

power 3, and so on. Those are the terms which are written out explicitly, but whenever I

have beta alpha dot p square, I have replaced that by minus p square, so I have a minus p

square over here.

Here, I will  have square of minus p square, this  is the 4th power, so in all  the even

powers I will get raising exponent of p square by 2. So, that is an advantage that you get,

and here you have got all the even powers in a first row, and all the odd powers in the

second row, but notice that in the all the odd powers. Since, you get powers of you know

p and then p square and p to the 4 and so on, so if you take one of those powers factored

out this beta alpha dot p by p. If you factored out, then you will get odd powers over

here, now I will show you how it is done, because you can take this beta alpha dot p as a

common factor in each of these terms.
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So, let us do that this beta alpha dot p, I have factored out then you get this term to the

power 1, you have got a term in cube, but this one comes with a minus sign then next one

is come with a plus sign. And you recognize that power series or you recognize the both

the  power  series,  so  these  are  the  cosine  and  the  sine  power  series.  So,  we  have

succeeded in writing this power series in a very familiar form, so this is a cosine term,

this is a sine term, but the sine term must be operated upon by beta alpha dot p by p

which we factored out.

So, that we can get these odd powers, and the remaining powers came in p square p to

the 4 p to the 6 and so on, so that is what we have got. And now you have got a rather

simple form, these you instead of those infinite power series and so on, you have got

cosine and sine functions, which are of course, power series and infinite terms in that.

But, then these are familiar well known easy functions to work with, we know we used

them all time in geometry trigonometry, so we can do some very simple mathematics for

that.
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So, this is our there are two terms over here which operate further, which pre-multiply

these two terms, so you have a total of 4 terms. This times this, then this times this, and

then this times this, and then the second term times, the second term over here, so these

are the 4 terms. Now, here you get alpha dot p and alpha dot p again, and this one is a dot

this one is also a dot, but we know what it is.

So, we have this beta p square by p coming from this using the same kind of analysis as

we did earlier, and now if you look at this 4th term, it has got the operator beta alpha dot

p, and then there is another beta on this side. So, the essential operator structure, which is

sitting in the last term involves beta alpha dot p beta in that order, which is what you

have in the bottom here, beta alpha dot p beta.

That is what we are looking for, and to get that we first get beta alpha, then get beta alpha

dot p, and then get beta alpha dot p beta and all you have to do is used the dirac matrices.

And carry out the multiplication systematically, it is a very simple thing to do, and you

find that this beta alpha dot p or alpha dot p, when it is bracketed by beta on either side is

nothing but minus of alpha dot p.
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So, you can simplify this operator over here in the last term, so that is what we have done

here, you have got the beta alpha dot p beta equal to minus alpha dot p, and that is what

comes over here in the 4th term. Have good enough, now let us combine these two terms

and these two terms, so this has got beta, this term has a beta, this term also has a beta, so

these two terms are combined.

So, beta and the remaining part of this term is m c square cosine of this function, and the

remaining part of this term after having extracted beta is p c here is a p square by p and

here is a c here. And then you have got a sine function, so these two terms come as a first

two terms, and the first and the 4th term come as the next two terms.
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Now, we can really make a choice that we will find to be extremely convenient for us, let

us take this cosine function multiplied by p c outside, because then you will get m c over

p over here times the tangent of this function. So, let us get this cosine function now, and

now if you choose your omega, because that is a choice, which we have left free for us,

and  we exercise  that.  Now, it  is  almost  like  you know manthra  exercising  her  ride

whenever she wanted, so we have our freedom now, but this is going to be for a good

cause.

So, what is the choice, you choose omega to be m c over p tan inverse p over m c,

because what it does to this term is throw it off, with this choice of omega, this 1 minus

m c over p tangent term goes to 0. What you are left with, h prime equal to first two

terms, where is the odd operator is gone, so the choice allows us and this is sometime

called as a Foldy Wouthuysen triangle, because you will see that this is almost like root

of m square c square plus p square. So, you are left with only the even operator, where

you find the Hamiltonian and the odd operator is eliminated, now this is exactly what we

wanted to achieve.
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And using this identity for tan inverse function, you can write this as beta c times root of

m square c square plus p square, there is beta of course, but beta has got 0es in the off

diagonal locations. So, by choosing this particular angle, we have succeeded in throwing

of the odd operators, that was the motive of carrying out this transformation.

(Refer Slide Time: 25:36)

So, we know that is possible to do that, we had restricted ourselves to a free electron

which is not the general case, so we have to now figure out, how to do it, when you have

an electron in an electromagnetic field. And now, you cannot expect S to be independent



of time, you will have to take this term into account, because you have got a vector

potential which easily could be time dependent. So, now the operator S which will be

involve in the Foldy Wouthuysen transformation will be will need to have the provision

to be a times dependent operator, so how do we choose it.

(Refer Slide Time: 26:24)

So, first of all we have to see how these operators are determined, because we definitely

have times look at these operators, where h is whatever be the form of the Hamiltonian,

and now it will include the vector potential and the scalar potential as well. So, here are

well known techniques and this is another reason, why I think it is nice to learn the Foldy

Wouthuysen transformations, because you learn some techniques, which you can find

useful in many other applications in physics. And these are very powerful techniques

simple techniques, but powerful techniques.

So, omega prime is this, and it is good to look this expression as the limiting value of e to

the i psi S omega e to the minus i psi S in the limit psi going to 1, and then you are taking

the limit of a function of psi. You are taking the limit of a function of psi this function is

this operator, we know what it is and you can expand this function of psi in a power

series.

This is a well known power series expansion of a arbitrary function of psi, here notice

that the derivatives are to be taken as psi equal to 0, and after you take the derivatives,

you complete the process of taking the derivative and then take the going to 1. So, there



is no contradiction in the derivative begin taken as psi equal to 0, and then taking the

limiting value of this function psi going to 1. It is absolutely no contradiction, you do it

step by step one step at the time, so it is mathematically absolutely correct.

So, let us do this, so let us have this power series expansion now, take the derivatives as

psi equal to 0, and then after taking the derivatives take the limit psi going to 1. So, let us

do it term by term, these are the derivatives as psi equal to 0, and then you take the limit

psi going to 1. So, all these psi square over factorial 1, becomes 1 over 2, psi cube over

factorial 3 becomes 1 over 6, psi to the 4 over factorial 4 becomes 1 over 24, and so on,

so that is a kind of you know set of terms that we get. So, this is your expression for

omega, and in general you will need the nth partial derivative of f with respect to psi, at

psi equal to 0.

(Refer Slide Time: 29:10)

So, that is what you need in general, so this is the nth derivative that you are going to

look for, and now let us take a look at this f of psi, this is your f of psi. Now, S may or

may not commute with omega, we will not make any assumption on that, and you take

the first derivative with respect to psi, then take the second and find a general expression

for the nth derivative, because that is what you need.

So, the first derivative is e to the i S e to the i psi S, because e to the i psi S and S

commute with each other, S may not commute with omega, but it does commute with e

to the i S, because it is just a power series n S. And over here from the second term you



get minus i S, because this is e to the minus i psi S, now these two terms commute. So,

you  interchange  their  positions,  and  now  you  can  combine  these  two  terms  by

sandwiching this commutator S omega minus omega S in between these two exponential

operators.

(Refer Slide Time: 30:55)

So, this is your first derivative with respect to psi, which involves this commutator, so

this is your first derivative. Now, if you do the same thing and get the second derivative,

you will get more commutators, and this is a very nice series that you get, it is a beautiful

series. So, you get the commutator of S comma omega with S, then you get another

commutator, when you go to the third partial  derivative,  you are extending the same

technique, you can develop an expression for the nth partial derivative.

So, this is the expression for the nth partial derivative, you will have to raise this i to the

power n, and then you will have so many you know commutators to work with. Now,

this is a very good result, and then you take the value as psi equal to 0, so e to the i psi S

becomes 1, e to the minus i psi S also becomes 1, and you can forget about it, because

you have take the derivative at psi equal to 0. So, this is the term for n equal to 0, then

for n equal to 1, you get i times S comma omega, then you get i square and then this

commutator. And that is how you get subsequence terms you will have an infinite series

actually.
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Now, we have figure out how to handle the first term and this is the infinite series that we

had, but we also have to work with this time derivative term. So, you have got an infinite

set of series coming from, how we handle this term and then we still have to figure out

what to do with this. And over here we are not going to assume that the time derivative

operator commutes with S, it may or it may not in general it will not.

So, when you take that into the account very carefully, you get commutators of S with S

dot whereas, dot is the time derivative of S, so I will not show you the intermediate steps,

but you know how to work it out. And you will get commutators of S with S dot, and

then each commutator with S, and subsequently you can have another infinite series. So,

now, you have got two infinite series, which are summed over, they are added to each

other in your transformed Hamiltonian.

Your original  Hamiltonian has got this odd operator, and your whole intention is the

expect the right hand side to have some form, in which the odd operator would become if

not  eliminated  at  least  less  important.  And  our  first  goal  is  to  look  for  such

transformation, which will reduce the odd operators at least by a factor of m, by 1 over m

m is a huge mass, it is half a million electron volts. So, that is that is the motivation, that

is how we look for this transformation operator.

Notice, that over here I am strike the full Hamiltonian inclusive of these terms, the first

term, the second term and the third term, but in the 4th term, if I approximate h only by



beta m c square, and choose S 2 have to be an operator of order 1 over m. Then I have 4

of these operators in this term, so I get 1 over m to the power 4, scaling coming from

that. And then if I left the Hamiltonian to be written only by beta m c square, the whole

importance of this term will be reduce by 1 over m cube.

And I can develop an approximation scheme in which we propose that retain only those

terms which are of the order 1 over m cube, if it is 1 over m to the 4 or smaller throw it,

that  does  not  look  like  a  bad  approximate  at  all.  And  to  retain  to  develop  an

approximation,  which will  have the leading term,  which and then all  the subsequent

terms will become diminishingly small,  because they have higher power a S, because

there are more number of S operators, which appearing in these commutators. So, if S is

of order 1 over m, the more number of S'es you have the weaker the commutators.

So, you can make this approximation beta m c square, for h in this term, but you cannot

do it over here, because this will be 1 over m cube, this is of order m, and then you will

have only 1 over m square approximation. So, that is not what we doing, we are doing 1

over m cube, we want to retain terms at least up to 1 over m cube. So, you can make an

approximation  to  the  Hamiltonian  in  this  commutator,  which  have  got  4  of  these  S

operators as you see.

(Refer Slide Time: 37:12)

And correspondingly you make this term here also you have 3 of these S operators, in the

times  derivative  terms  which  is  again  of  order  1  over  m  cube.  So,  you  make  an



approximation which is consistent, and put a period over here you are truncating the

infinite  series,  that  is  an  approximate,  which  is  why  in  trigs  book  on  the  quantum

mechanics he very categorically states. This the Foldy Wouthuysen transformations go as

far as they do it is not that is exact, and this is the reason it is not exact, but it is good.

So, you truncate the series, which is various approximations involve put a full stop over

here,  forget  about  throughout  the  rest  of  the  terms.  Now, this  is  your  transformed

Hamiltonian  h  prime,  now  let  us  analyze  this,  bunch  of  commutators  you  are  not

choosing S'es yet.

(Refer Slide Time : 38:14)

And you choose your Foldy Wouthuysen transformation operator to be given by minus i

beta theta, theta is this coupling, it includes the generalized momentum, it includes the

dirac  operator  alpha.  So,  let  us  write  it  explicitly  this  is  your  Foldy  Wouthuysen

transformation operator, it has got the similar form as you found was used for the free

particle transformation operators.

So, there is some clue available from free particle transformation, and you can actually

carry  out  the  Foldy  Wouthuysen  transformation  further  more  by  carrying  out  these

transformations further, you can reduce the importance of the odd operators further. So,

this is the first Foldy Wouthuysen transformation as a matter of fact, it turns out that is

most  promising  is  subjecting  the  whole  system  of  equations  to  3  transformations.



Namely the first, second, and the third Foldy Wouthuysen transformations, so we will see

how they look.

(Refer Slide Time:39:36)

So,  this  is  the  first  Foldy Wouthuysen  transformation,  through an  operator  which  is

minus i beta theta over twice m c square, and now you can plug in this explicit form of

the  dirac  operators  beta  and  theta.  And  you  know  the  commute,  how  to  find  the

commutation  of  beta  theta  with  h,  and using  that  you would know how to  find the

commutator of S comma h with S, so it is simply, but laborious. And that is where your

youth will coming handy, because you can do such things without getting tired, you have

boundless energy, although it is said that youth is vested in the young people, so this is

the operator i S comma h.

So, this is the Foldy Wouthuysen transformation operator S, then you have got the dirac

Hamiltonian and find the commutator of the Foldy Wouthuysen transformation operator

with a first term, with the second term, and with the third term. Do it term by term

simplify, use the  properties  of  dirac  operators,  the dirac  matrices,  you see  how it  is

developing. Find out how these dirac operators multiply each other, theta beta is minus

of beta theta.

Beta epsilon is same as epsilon beta, but these this is different, so you used a correct

signs over here, you also know that beta square is equal to 1. And when you combine all

of those terms this is what you get for i S comma h, but that is only the this box over



here. And these things some time to do, especially after removing the careless mistakes it

takes a little while.
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And then you do it, you know what this i S comma h is, this is what turns out to be, then

using, this you find the second term, and then using this you get the next term, by now

you have missed your dinner. Lost a little bit of sleep, and then when you handle all of

these terms very carefully, you get this S comma S comma h. Then you can get the next

one, similarly and I am not going to show you all the terms, but now you know how to

do it.

This is very simple, same thing with the times dependent, also that is the other infinite

series, which you have truncated happily to 1 over m cube, but at least those terms those

commutators,  you  have  to  determine  there  is  no  escape  from that.  So,  you  get  the

commutator of S with S dot, and what you get is the transformed Hamiltonian h prime,

which can be written as beta m c square plus 2 new operators epsilon prime and theta

prime, whose leading term is of the order of 1 over m.

So,  all  the  odd  operators  are  now  reduced  by  factor  of  m,  that  is  a  significant

achievement in getting this transformed Hamiltonian, which is to reduce the importance

of the odd operator. So, that you avoid the mixing of the particle, and the antiparticle

states, so that is the leading term that you get in the odd operator.
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And that is where I will stop for today, I will  be happy to take some questions, but

essentially you have seen, how the first Foldy Wouthuysen transformation works. And

then we will have a second Foldy Wouthuysen transformation, and then we will have a

third Foldy Wouthuysen transformation. And when you do that, you will see very happily

where the spin orbit interaction term really comes from, you really need to subject the

dirac Hamiltonian to 3 conjugative Foldy Wouthuysen transformations. For that term to

become manifest in the 2 component form, but for now if there are any questions, I will

be happy to take otherwise goodbye for now.


