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Greetings, we will continue our discussion on the Dirac equation, we saw that the Dirac

equation has got 4 components. So, today we will see that we really need 2 components

to  deal  with  the  electron  spin,  and we will  see there  is  a  mechanism to  reduce  a  4

component, formalism to a 2 component formalism and that is the foldy equation that we

are lead to. But then there is a more systematic way of doing it which it was a foldy

wouthuysen transformations, so I will introduce you to that as well.
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Now, when you have a multi component way function that is a signature of a spin, and

now we really need 2 components if there is electron is concern. But, then the Dirac

equation which is  setup based on this  quadratic  scalar  of  the 4 momentum,  since  it

admits negative energy solutions it allows for the antiparticles. And then the procedure to

go over to the 2 component poly equation is what I will discuss today, and I will also

begin a discussion on the foldy wouthuysen transformations as we go along which is a

very rigorous way of doing it.



It  is  a  much  more  rigorous  way  of  doing  it,  which  is  a  correct  way  of  doing  it

nevertheless it is also approximate and it goes as far as it goes as trick tells us in his

book.
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So, this is the 4 component Dirac equation, now and you have got a 4 component wave

functions. So, these 4 components I have written as phi delta and chi delta, phi delta is

has 2 components and chi delta also has 2 components, so together it is a 4 component

wave function. And then alpha and beta are the Dirac matrixes, now you can see the 4 by

4 structure by explicitly writing the Dirac matrixes alpha and beta, and you have to admit

that you are going to have to use the vector algebra, matrix algebra, quantum mechanics,

operator algebra everything will go together.

Because, you know the terms that you see in this expression sigma for example, it is not

just  a vector, it  is a vector operator it  itself  has a matrix structure sigma are 2 by 2

matrixes. So, whatever mathematics you do is very simple there is nothing beyond you

know matrix algebra or vector algebra and a little bit of calculus because you also have

the differential operators. So, the mathematics is very simple, but you have to be very

careful that you have to use all of it together, so the first thing I will do is to demonstrate

the reduction to the 2 component foldy relation.



(Refer Slide Time: 03:16)

Now, this is the 4 component form and you have the sigma dot pi extracted from this

alpha dot pi, and then you have got the 2 by 2 matrixes 0 1 1 0. And that essentially gives

2 equations because the 0 1 1 0 when this operator operates on this, you will get chi goes

to the top and phi comes over here. Because, this is not a diagonal unit matrix, it has got

0 elements along the diagonal, and it has 0 1 1 0 structure which is what gives you the

chi phi over here. And in the second term m c square you get phi minus chi, so that is

what you get.

Now, this is really because of the block diagonal structure you can look at this as really 2

sets of equations, one is an equation for the time derivative of phi delta, and the other is a

time derivative of chi delta. But, on the right hand side you find not just phi delta, but

also chi delta, and in the second equation you find not just chi delta, but also phi delta.

So, these are coupled equations for phi delta and chi delta, and we will examine if these

can be decoupled. So, you have 2 sets of equation there is no approximation as yet, it is

just a Dirac equation that we are looking at in a different form.
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And these are the 2 sets of equations that we get, what we now do is to extract the major

time dependence in phi delta and chi delta, in this harmonic term e to the minus i e 0 t by

h cross, where e 0 is the rest energy of the particle. Now, notice that this is a huge energy

this is like half a million electron volts, and in atomic physics you are dealing with rather

low energy phenomenon. If you look at atomic spectra, atomic transitions, the visible

light for example, or might go beyond the visible get into the violet, the ultraviolet, you

might get into the x rays right.

And even then in atomic spectroscopy deep inertial transitions are also involved, you are

still involved with transitions of the order of few tens of thousands of electron volts

nothing more. So, in atomic processes you are not dealing with very high energies and

therefore, compared to the processes that we are interested in, the rest energy is a huge

amount of energy compared to any energy that we are going to be concerned with. And

therefore, since most of the time dependence is already contained over here, these terms

phi and chi you have only factored out this e to the minus e 0 by h cross t from phi delta.

And the residual factor is phi without the delta, so the residual factor will also have a

little bit of time dependence. But, it will be marginal time dependence, it will depend

weakly on time not very strongly because most of the strongest dependence on time is

already factored out in this big term. So, now the functions phi and chi which appear

without the tilde these are slowly varying functions of time.



So, let us now take the time derivative of phi delta and chi delta, so you will of course,

get the e to the minus this is the simple exponential function, you can take it is differentia

with respect to time. And then you will  have this  e to the minus i e 0 over h cross

extracted,  when  you  take  the  derivative  with  respect  to  time,  this  will  cancel  the

corresponding term on the right hand side. And you get now an equation of this form

right  good.  So,  now  phi  and  chi  both  have  a  time  dependence,  it  is  not  the  time

dependence is totally eliminated. But, these are weakly time dependent and we will now

examine the solution of these 2 equations, so let us do that now.

(Refer Slide Time: 08:21)

So, these are slowly varying functions of time, and you have m c square over here, which

i have written as E 0. You can you have a term in E 0 phi chi over here, which you can

bring to the right hand side, and then on the left hand side you get just i h cross del by del

t of this phi chi, this E 0 together with this E 0 and this minus sign will give you a minus

2 e 0, but this term will cancel this one. So, you get minus 2 E 0 0 chi over here right, so

now, let us analyze this relationship all have done is to move one term to the right hand

side.
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Now, this is again 2 equations look at this lower one, which is the derivative of chi and

this is c sigma dot pi operating on phi plus e phi operating on chi minus twice m c square

operating on chi, there is always a unit operator which is setting over there. Now, if you

look at these terms, these 2 terms have got chi, so if you compare the coefficients e phi

and twice m c square, this is huge energy e phi is also energy right. This is much larger

and therefore, you can ignore e phi compared to twice m c square, so between these 2

terms the only significant term is twice m c square.

So, that is what I have written over I have ignored this term, and now I have begun to

make approximations.  And it  looks like  reasonable approximation  to  do because the

energies we are talking about are m c square or twice m c square which is even more, so

you can throw off e phi compared to this. And now you have got on the left hand side the

time derivative of chi, but chi is only mildly time dependent, which is to say that it is

mostly time independent.

And therefore,  it  is  derivative  can  be  considered  to  be  very nearly  0,  so  here  is  an

approximation no doubt,  but not a bad one. So, the left  hand side becomes nearly 0

because chi is mostly independent of time being only mildly dependent on time, so the

left hand side is very nearly 0 and the right hand side between these terms I have taken

the significant term, which is minus twice m c square chi. And because this is not quite



exact I write this as nearly equal to or rather than exactly equal to, but having understood

this difference we can use the equivalent.

Now, what does this tell us that these 2 terms whose difference goes to 0 must be equal,

the difference of 2 terms goes to 0. And therefore, chi is sigma dot pi operating on phi

divided by twice m c more or less, within the scheme of approximation that we have

made. And it  is  nearly given by this  relationship which includes,  so chi and phi are

linearly related, but the proportionality has got a denominator which is twice m c, which

is a product of two large terms, m is huge it is half a million electron volts, c is huge it is

the highest speed that you can think of.

So, there are two large terms in the denominator and that tells us that chi is much smaller

than phi, which is why this chi is sometimes called as the small component of the wave

function, and this phi is called as the large component, there is a good reason for it. So,

this  is the small  and these are the small  and the large components, and now we can

express this relationship,  in the first  equation which is for phi which is for the large

component.

And in the large component equation which is i h cross del phi by del t c sigma dot pi

operating on chi and this chi can be now replaced by sigma dot pi over twice m c phi,

which is what we have done over here. And now you have got a relationship which does

not have chi at all, so we have sort of decoupled the relations approximately, but quite

fruitful.
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So, you can cancel the c and what you have is this relationship for the large component,

and now there is a little bit of you know very well known mathematics that you can do.

Because, you are well aware of this identity involving the foldy operator sigma right, this

is well known identity that you would have used in the large number of examples, in

your first course in quantum mechanics. So, here you have sigma dot a time sigma dot b,

but our interest is in sigma dot pi and sigma dot pi, so both a and b are the same and this

I what we have got.

So, let us simplify this relationship further pi cross pi is what appears over here, which is

of course, not 0 these are operators these are quantum operators. And you find exactly

what they turn out to be, so you first have a look at this term pi cross pi, which is the

generalized momentum, which includes the magnetic vector potential as well. And if you

throw the quadratic term in A square over c square, again the denominator c is large, the

vector potential is weak in most of the situations that you talk about, so you can throw

the quadratic term in A square over c square. And then what you are left with is only the

linear terms in which you have got p cross A plus A cross p, so this is the term that we

will examine further.
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And we ask what this is, and to find out what it is, it is of course, an operator what we do

is to operate on an arbitrary function f of space, and analyze the result. The momentum

operator of course, the gradient operator it is minus h cross del, and there are 2 terms on

the right side, this is the first term del cross A operating on f. But, this is the curl of a

product of 2 functions, this is a curl of a product of 2 functions A itself is a function of r.

The curl is going to involve the space derivative operators as we know, and you must

take the space derivative operators operate on everything it is going to operate upon. And

the derivative operators in the sitting in the gradient operator, will operate on the product

of these functions, one of which is a vector which is the vector potential. The other is a

scalar, which is an arbitrary function of space it does not matter what function it is.

So, this is the curl of a product of 2 functions and the curl of a product of a vector and a

scalar is the curl of the vector times the scalar minus A cross the gradient of the scalar

function. This is the vector identity I make use of which you would have studied in your

vector calculus course, so this is the curl of product of this, and now having exploited

this I  find that when I  look at  consider the last  term over here,  these two terms are

actually the same, because both involve the cross product of a, with the gradient of f one

with a plus sign and the other with a minus sign. So, they will cancel each other, and now

what you are left with is an identity, which is valid for an arbitrary function of f it does

not matter what function it is, we did not choose any particular form of the function f.



And therefore, we have an operator equivalence in the context in which we are using this

right, which means that in our context we can replace this del cross A plus A cross del

operator by the magnetic field which is a curl of A.

So, we do that we replace the curl of A by the magnetic field and keep track of this minus

i h cross over here and a minus e over c over here, keep track of the sign or everything.

And we get this pi cross pi to be equal to i e h cross over c times the magnetic field, now

this pi cross pi term, we know where it appears.

(Refer Slide Time: 18:32)

We need it over here, and here instead of pi cross pi we can plug in i e h cross over c

times the magnetic field. So, we do that and now we have to look at what is it that we

really need, we have actually sigma dot pi times operating on sigma dot pi divided by 2

m. So, let us not forget this 1 over 2 m factor and you also have this pi dot pi term, so

you have the pi square over 2 m minus e h cross over twice m c this 2 m together with c

sigma dot B. And then you have this electric potential energy which is e phi, and this

equation is known as the Pauli equation for the large component.
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Now, let us examine this a little bit further this is the Pauli equation, we also have to look

at this operator pi square, which is the inner product of these 2 operators. This pi is the

generalized momentum it includes the vector potential, once again you can throw the A

square over c square term, and then you are left with p square over 2 m and this term in

which the momentum is the minus i h cross gradient. So, you get a sum of A dot del plus

del dot A term, and just the way you handle them corresponding terms involving the

cross, you do the same with the dot.

And you let it operate on an arbitrary function of f, and find that this is nothing, but twice

A dot  del  operator,  it  is  exactly  the  same reasoning  right.  So,  this  operator  is  now

replaced by twice  A dot  del,  which  is  what  comes  here,  so  now, you have  got  this

operator, and you can express you can put these 2 terms for this, which is written in

terms of the momentum operator. And now let us think of a uniform magnetic field, for

which the vector potential is minus half r cross B, you can see this very easily that this

generates a uniform magnetic field.

It is divergent and curl both would vanish curl would of course, give you the magnetic

field, but divergence will vanish it is uniform. And this vector potential is then replaced

by minus half r cross B, so this is rather straight forward electrodynamics, now let us put

these 2 terms in place pi square over 2 m in the Pauli equation.
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So,  these are  the 2 terms which will  take  place  of  pi  square  over  2 m in the  Pauli

equation, but when we do that you have got minus sign here and a minus sign here. So,

that gives you a plus sign, and then you have got r cross B which you can write as B

cross r with a minus sign. And then you have a triple product, scalar triple product B

cross r dot p, you can interchange the dot and the cross and look at this as B dot r cross p.

Because, that is what gives you the orbital angular momentum operator, so you get the B

dot r cross p which is the B dot l operator. Now, that is good that places the pi square

over 2 m in a form that I think we are going to like much more because now you get the l

dot B term keep track of this e over twice m c, it is an important factor.
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This is the Pauli equation for the large component, this is the e over twice m c and now I

will like to remind you that the spin angular momentum is h cross over 2 times the Pauli

spin vector sigma right. So, you can write this as minus e over m c s dot B because you

have got h cross by 2 sigma over here, this is h cross sigma by 2, so that is replaced by

the operator s this term is nothing, but e h cross over twice m c twice s over h cross now

h cross cancel the 2 cancels, and then you are left with minus e over m c s dot B.

What do you have, you combine these 2 terms both involved the dot product with the

magnetic field. So, you can see that it is the magnetic field energy interaction energy

with a magnetic dipole type of term, so you see your beginning to see something like a

mu dot B term that you expect to find when you have a magnetic moment placed in a

magnetic field. So, you are beginning to see that term, so you need to recognize it fully

this is the expression that you now get l plus 2 s dot b minus e over 2 m c.
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So, just remind yourself of this picture which comes from old quantum theory, which

you must  take with a pinch of salt.  And much more than a pinch of salt,  but  use it

nevertheless, and if have an electron in a bohr orbit then it has got an angular momentum

r cross p, which is orthogonal to the plane of the orbit. The conventional current is in the

opposite  direction  just  because  the  electron  is  a  negative  charge  that  is  how it  was

defined historically.

So, the conventional current is in the opposite direction and this current loosely speaking

although we are using this old quantum theory, and orbits which we know do not really

exist. So, this is rated which the charge goes that is a current, which is e over the time it

takes to  go through this  orbit  right,  and that  will  be the ratio  of  the velocity  to  the

circumference fare enough. So, that is the 1 over t and you also know that if you have a

current loop, it generates a magnetic field.

And this magnetic field can be represented by a magnetic moment, which is given by the

cross product of i and the area enclosed by the loop the i cross A is the term that you

typically  look at  in  s  i  system of  units  right.  The equivalent  magnetic  moment  of  a

current carrying loop is i cross A i is not quite a vector, but of course, you are looking at

the magnitude of the current multiplied by the direction, in which the current is moving.

So, that is the interpretation of i cross A, now we are using gauzily in c g s, so there is

not just i A, but 1 over c times i A in the system of units that we are using.



So, that is the difference with the s i  and s i it  would be just  i A because this were

orthogonal, so the sin theta is 1, but in our system of units this is 1 over c times i A. So,

this  is  the  magnetic  moment  effective  magnetic  moment  of  the  bohr  orbit,  and  this

effective moment which is 1 over c times i, i is e v over twice pi r the area enclosed is pi

r square r being the radius of the bohr orbit. So, you simplify this and you find that this is

here you find the angular momentum popping up.

Because, you have got the v r times the direction of the angular momentum right, so you

get essentially the angular momentum, but v cross r is not really the angular momentum,

you have got the r cross p. So, there is over 1 over m which should show up right r cross

p is the angular momentum, you have minus of r cross b, so you have A 1 over m coming

up, and this is what you get e over twice m c times angular momentum.

So, e over twice m c times the angular momentum I multiply and divide by h cross, so I

have an h cross in the numerator here, and an h cross in the denominator here, which

preserves the balance. And that allows me to factor out this term e h cross over twice m

c, which is called as the bohr magnetron this is e h cross over twice m c, and the reason

you have a see there is because of the twice of units that we are using.

But, if you used some other choice of units you would not see that, which is ironical that

you do not see the c. Now, let us look at this, this is the magnetic moment for orbital

motion,  you  can  always  define  a  corresponding  magnetic  moment  for  spin  angular

momentum. Essentially what  you find is  that,  for an angular  momentum you have a

corresponding magnetic moment, and you expect a similar situation for the spin angular

momentum that there is a corresponding magnetic moment.

But, then the proportionality something that we really do not know, what it would be like

and we cannot really demand that it must be the same. So, to provide for a variance you

insert a factor g which is equal to unity for the orbital angular momentum case, and you

ask what the corresponding g for the spin should be like. So, this is our expression and it

turns out that g s must be equal to 2, according to this particular formalism it is a fairly

accurate answer it is not strictly speaking accurate.
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But,  that is what you get from here it  is not bad, and in terms of the bohrmagneton

magnetic moment is then l plus 2 s by h cross you can put this back in the Pauli equation,

and you find that you have got a mu dot b term as you expect. So, this is this g is almost

equal to 2 very nearly equal to 2, you can make quarter fill theoretical corrections to that.

And that is a problem of considerable challenge, and I will comment on this a little later

in this course.

But, it is also related to the fine structure constant, and how accurately you know the fine

structure constant, and these are really the problems of interest. And experimentalist are

working extremely hard to get the accurate value of g it is not exactly 2, but that is what

you get from this formalism, you will also get the same value from the Dirac equation as

from the more complete analysis of the Dirac equation, this has also come out of the

Dirac equation from the Pauli reduction. So, this is the gyro magnetic ratio it is called

because it is involved in the proportionality between the angular momentum, between the

mechanical angular momentum and the magnetic moment.
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So, this is the reduction to the 2 component Pauli equation, so you get the p square over

2 m e over twice m c l plus 2 s dot B. And this would work well for an electron because

for the electron you expect the formalism to have two components there is a provision

for that, and you are with it you can go ahead and do a lot of quantum mechanics with

this including the spin.

Now, this is not really very satisfactory because if you have to do quantum mechanics,

you have to not just look at the soldiering equation or the Pauli equation, but you have to

do some physics with these equation like with soldiering equation wave function, you

ought  to  look at  the  probability  densities,  the  charge  densities  expectation  values  of

operators and so on. So, there is a lot of other things that you do and when you begin to

do  that  it  turns  out  that  you  end  up  mixing  the  large  component  with  the  small

component, you cannot avoid it.
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And you therefore, look for a more systematic way of decoupling the large component

from the small component. Because, what is happening in the four component theory,

which you approximately separate it into an equation for the small component, and an

equation  for  the  large  component.  The  large  component  equation  being  the  Pauli

equation it seemed alright, but then what is happening here is that if you look at these

two operators, the beta operator which is a Dirac operator it is not going to mix the large

and the small part.

Because, it has got 0 in the all diagonal positions, but the operator alpha will because it

has got 0 along the diagonal and sigma’s over here. So, the operators of this kind these

are called as odd operator, the other are called even operators, so the odd operators will

scramble the large component and the small component, and you really do not have a

decoupling  of  the  large  component  from the  small  component  in  Dirac  theory. The

coupling  is  intrinsic  to  the  Dirac  equation,  it  is  intrinsic  to  the  nature  of  the  Dirac

matrixes.

Because, the Dirac matrixes the alpha is an odd operator, it is something that you cannot

really get rid of you cannot just wish it away. And there is this coupling that you really

cannot wish away, there are these negative energy solutions that you cannot wish away.
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And then you know the original you know before one developed a very thorough and

rigorous  understanding of  it,  there  were these  proposals  that  all  the  negative  energy

solutions are fully occupied, and you do not therefore, see anything if it is fully occupied

in vacuum there is nothing. So, you do not see anything right, but if you have a hole in

this sea, and if you have a particle in this sea then of course, these particles and anti

particles would be visible, they could inhale it each other and emit energy.

So, these were some of the proposals which came up with and they are very fruitful, their

origin comes from the fact that the Lorient's and variant scalar coming from the full

momentum, gives you the E square term whose solutions allow both for positive energy

as well as negative energy that is the origin of these negative energy since.
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So, you have these particle and anti particle components, but these are mixed and then a

systematic way of decoupling the particle, and the anti particle states is to carry out a

transformation of your equation of motion. In some theatricals form, which will lead to

this decoupling, but this is the question that we raise that is it possible to decouple the

particle and anti particle states, which will lead to some decoupling. It is not happening

to the Dirac equation as we have seen it.

But, perhaps if we subject the Dirac equation to certain transformations, will it lead to a

form to a structure in which this can be decoupled, we did a chain this decoupling in the

Pauli  equation.  But,  then  it  was  in  some  approximate  manner,  and  it  lead  to  some

inconsistencies, so we want to do if we can do better than that, and this was a question

which  was  originally  raised  by  Newton  and  Wigner.  And  then  there  several  other

contributors who wait what happens is that when you consider the interference between

positive and negative energy states.

They actually produce fluctuations in the position of an electron, and this has got a very

nice name it is called as [FL] or if somebody knows better how to pronounce it any

German over here, I have no idea how best to pronounce it that is a nice name that is

what it is called. And what it says as that the electron charge gets some sort of a you

know speared out, you cannot really come to the conclusion of you know localizing it a



point. And this is the consequence of an a mixture of you know the particle and the anti

particle states.
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And these problems were studied by Dirac himself who made the original suggestion,

Pryce contributed to it, Newton and Wigner's contribution is very significant I gave a

reference to that work. But, the one that I am going to discuss which takes us to a foldy

satisfactory understanding of this situation, was done foldy and wouthuysen and these

are known as the foldy wouthuysen transformation of the Dirac equation, to a new form

to economical form. In which you are able to achieve some decoupling between the large

part and the small part, so you get some sort of a decoupling between matter and anti

matter states.
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So, this zitterbewegung is avoided in the foldy wouthuysen transformation because it is

present in the Dirac representation. But, when you subject it to a transformation to new

states, to a new representation which is known as the foldy wouthuysen transformation,

you will find that it is not quite eliminated. But, very nearly, so much better than what it

is in the Pauli approximation.

(Refer Slide Time: 39:00)

Now, this is a classic paper of by foldy and wouthuysen I strongly recommend that you

read it, and I do not know if it is already uploaded at work course website, and if it not I



think we will do it by the evening. It is a classic paper very readable, very enjoyable and

you will  love reading it  you will  also develop the confidence that yes you can read

original papers by contributors, and you can do physics the way they would have done.

(Refer Slide Time: 39:36)

Now, I will also draw your attention to memoir written by foldy on his work, this is a

very  nice  paper  which  I  have  already  uploaded at  work  course  website.  And I  will

strongly encourage you to read it because it tells us how foldy went about this problem,

what were his experiences, how did he work with his colleagues and others, and this is a

nice historical you know kind of story that you should be acquainted with, which is why

it has be uploaded. Because, foldy of course, is a great scientist extremely important

contribution.

But, sure enough he is not somebody like maybe Einstein or Wigner or nesjbo alright

which you will never might want to put him in the same class Pauli was very close, but

maybe not there. And if you would like to raise yourself at least to this class, and of some

of you already belong to the class  of Einstein and nesjbo do not  waste  time in this

classroom. But, if you would like to get at least not to the top class, but at least to the

next bracket, then try to read this paper. And them see how these minds work, how they

do physics the way they did, and you will really learn something from this paper. So, I

strongly encourage you it is a completely historical memoir, but it is wonderful to read.
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So, this has been uploaded at the course webpage please go through it, and we will be

using bjorken and drell’s book to a large part and also a greiner’s relativistic quantum

mechanics a combination of greiner and bjorken and drell. And as bjorken and drell point

out that these transformations, they help us cost the Dirac theory in a form, which other

than the advantages that I already mentioned. They also display the physical interactions

in a form that we are really able to see and recognize.

I mentioned at the very beginning of this unit on relativistic quantum mechanics, that you

often see the spin orbit interaction written as, you know 1 over r d v b by d r s dot l. And

one needs to ask where does this term come from, and we certainly did not see that in the

Dirac equation either. But, it is there it is sitting over there, and it will get manifest when

you subject the Dirac equation to the foldy wouthuysen transformation.

So,  foldy  wouthuysen  transformations  they  achieve  not  only  this  decoupling  of  the

particle and anti particle states, at least in the approximation which is far better than the

Pauli approximation. Not that it is exact that is why says, that these work it goes as far as

it does, but then in addition to that they also display the physical interaction in a form,

which we can easily interpret, which is why the foldy wouthuysen transformations are

really fantastic to learn.



(Refer Slide Time: 43:15)

And you will see that you can think of the non relativistic limit, and what you exploit is

the diagonal structure over here, of the Dirac matrixes. And essentially, you carry out a

unitary transformation which is known as the foldy wouthuysen transformation, and then

it leads to a different representation of the Dirac equation, which is sometimes called as a

different picture because you see things in a different way.

(Refer Slide Time: 43:47)

So,  this  is  actually  a  systematic  way  of  going  from  a  4  component  theory  to  a  2

component theory it does a lot, this is the Dirac equation. And what you want to achieve



in these transformations, is to get to a representation in which the odd operators will not

play a very major role. The role of the odd operator, if you can find some mechanism to

scale by a factor of 1 over m, where m is a large mass right that is the rest mass energy.

So, you reduce the importance of the odd operators by a factor of m, and if that is not

good  enough  it  leads  you  to  a  new  form,  in  which  the  odd  operators  have  got  an

importance, which is weaker by a factor of m you do it again. So, subject it to a foldy

wouthuysen transformation, so that H psi would go over to H prime psi pi,  and this

whole equation transforms from H psi equal to i h cross del psi by del t, which is the

Dirac equation you begin with the Dirac equation.

Subjected  to  foldy  wouthuysen  transformation  to  a  new representation,  which  I  use

primes for i and h cross are scalars. And if this is not good enough subject it to another

foldy wouthuysen transformation, do it one more time why not, and if you do it once

twice and thrice it is good enough for most of the application in relativistic quantum

mechanics at least in atomic physics.

(Refer Slide Time: 45:49)

So, that is what we are going to do, now let us see how we do it, so this is the Dirac

equation  you  are  looking  for  a  transformation  phi  going  to  psi  prime,  through  a

transformation  operator  which  we do not  know what  it  is,  we are  going to  have  to

discover what this operator h should be like. So, we look for a transformation of this

kind, and operators would then go over from omega any operator omega would go to



omega prime as e to the i s omega e to the minus i s, this is the standard prescription for

transformations right.

So, now, you put psi in terms of psi prime over here, so this becomes e to the minus i s

operating on psi prime, and this becomes the partial derivative of psi prime instead of

psi. Now, this is a partial derivative of e to the i minus i s operating on psi prime, but let

us not assume that psi is that s is independent of time, so this will be the time derivative

of the operator e to the minus i s operating on psi prime plus e to the minus i s operating

on the time derivative of psi prime.

So, there are 2 terms let us do it very carefully term by term, we have no reason to

assume that s is independent of time it is an operator whose form we have to explore. So,

now you have this relationship, you operate on this entire set of equations by e to the i s,

so you have got e to the i s operating on the left side, and also on the 2 terms on the right.

You get the unit operator from this e to the i s e to the minus i s, and now if you right use

this relationship because the second term is i h cross del psi prime by del t that would be

the term you are looking for.

So, this term would go to the other side and the relation you get for i h cross del psi

prime  by  del  t  is  this  term  minus  this.  So,  now  your  equation  in  the  transform

representation is this, this is what you get from the Dirac equation by subjecting it to the

transformation, we still do not know what the transformation operator is which if you

combine these two terms you recognize that this is a transformation of this operator h

minus i h cross del by del t.



(Refer Slide Time: 48:40)

This is what we have, and what it tells us that the new Hamiltonian in the transform

representation, which is called as the foldy wouthuysen transformation. In the transform

representation the new Hamiltonian is e to the i s old Hamiltonian minus i h cross del by

del t e to the minus i s and we have to find what that operate is we will do the job that we

want it to do. So, this is your new Hamiltonian and our criteria for choosing s is going to

be this, that it must be such that in the new Hamiltonian which is H prime? Now, H

prime will also have odd operators, but if the odd operators in h prime are weaker than

those in the original Dirac Hamiltonian, then we have made some progress. And if that is

not enough, we can do a second foldy wouthuysen transformation.



(Refer Slide Time: 50:00)

So, what we will do, I will tell you how this operator s is chosen and how this foldy

wouthuysen transformation is affected. So, first I will demonstrate how it is done for a

free electron, so you through the terms in the magnetic vector potential, and in this and

you get a simple term. So, for a free electron there is no electromagnetic potential, and

you will see that this particular chose of the operator S will do the job for us, so this is

something that we will see this is what foldy wouthuysen discovered.

(Refer Slide Time: 50:41)



So, I will stop here for today if there are any questions I will be happy to take, and in the

next class we will continue our discussion on the foldy wouthuysen transformations, will

first do it for the free electron. And then do it for the electron in an electromagnetic field

and then of course, our interest is in the electron in the hydrogen atom. Questions.

Student: ((Refer Time: 51:14))

What I did was to you have a function which is time dependent, it is time dependence

may  have  some very  complex  form,  it  may  be  harmonic,  it  may  be  some arbitrary

function of time f of t. Where f of t is some polynomial function of time it may have

whatever  powers  with whatever  coefficients,  so you have  got  a  fairly  complex time

dependence over there. Out of that for stationary states, as you extract e to the minus i

omega t, you factor out that term.

Where omega is e over h cross, e being the rest energy now e over h cross this e is a very

large energy, the e 0 energy is a huge energy, the rest energy of the electron is like half a

million electron volts 0.51 or something you can get the exact value right. And therefore,

most of the time dependence that you expect in your wave function to have, is contained

in this term which is dominated by the rest energy. That suggest that the residual time

dependence it is like writing any function of time f of t as a product of 2 functions of

time f 1 t multiplied by f 2 t.

If most of the time dependence is contained in f 1 t then f 2 t is nearly a constant that

side, it comes essentially from the fact that you are dealing with an energy term which is

huge, any other question?

Student: ((Refer Time: 53:28))

That is not of interest, those are the terms that correspond to the anti particles in the sea

which is a fill sea and you are not going to see. It now this was a original reasoning

before people knew that anti matter matters as much as matter does, and then of course

now one understand that these are real particles, positron exists not only positrons. But,

the whole family of anti particles, but that does not take away the fact that our interest in

atomic physics is in looking at the electron dynamics, and how it interacts with electronic

fields.



For which you are looking for a 2 component theory number one, and second you cannot

really allow for an a mixture of particle and anti particle states. If you did that you will

not even be able to speak about the position of an electron, the way we have been used

to. Because, this mixture of particles and anti particles states, leads to an expectation

value of the position operator, which is not quite localized. In fact, it gets smeared out

over a certain distance, which is of the order of content wave length that is what is called

as. [FL]

Student: ((Refer Time: 55:16))

No it is not the uncertainty, it has nothing to do with uncertainty it is coming from that

mixture of the particles and anti particle states, the uncertainty leads that is a different

thing altogether. So, this smearing out of the electron is not the quantum uncertainty

absolutely not, in addition to that there is this smearing out effect which is coming from a

mixture of particle and anti particle states. But, the gap between the negative energy

states and the positive energy states is already huge, twice the rest mass energy right.

So, it is already huge, so unless you supply that type of energy, you are not going to see

that  mixture.  So,  in  atomic  process  it  is  not  of  any  consequence,  but  what  is  of

consequence are many of the other features which come out of the foldy wouthuysen

transformation. Because, otherwise you do not even see the physical interaction in a form

that you can really interpret, where is the d v by d r s dot l in the Dirac equation, it is

sitting over there it has to be there. But, you do not see it what the foldy wouthuysen

transformation will do is to display those forms, it will be visible in the transformed

representation which is why it is of importance in atomic processes, any other question?

Student: ((Refer Time: 57:02))

This is for a uniform field, so we used it for a particular bond, but in our case it is not a

bad  approximation,  because  over  the  reason that  you are  talking  are  about  over  the

atomic dimensions, you do not expect it to change very much.



(Refer Slide Time: 57:39)

But, for now if there are any questions I will be happy to take otherwise goodbye for

now.


