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So,  we saw the  quantization relation last  time,  we have to  quantize this  momentum

operator, momentum in classical mechanism is a dynamical variable, and then quantum

mechanics it is an operator.

(Refer Slide Time: 00:28)

So, we begin with the momentum scalar, which is this p mu p mu which we found equal

to m square and c square, and now we know what mass we are talking about. And you

will recognize them important of defining mass carefully, because you cannot define a

relatively mass separately. Since, mass an energy equivalent the interpretation of mass it

is uses in the relatively equation is of important, it is very hard of relativistic quantum

mechanics. A within this in our previous class, and that is a mass which goes and over

here, and we see this tailor p mu p mu is an invariant quantity, because it is equal to the

square of m and the square of c.

And this m is as much in variant it is as much as a scalar as c is it has to be the same and

every frame of reference,  if it  was the other mass it would not be. So, we have this

relationship, this p mu p mu this is the i psi summation convention as it is sometimes call



that few have an index which is repeated than you sum over it. So, this is a sum of four

terms, and one term gives you this e square over c square and the remaining 3 terms give

you the conventional three dimensional scale of product p dot p.

So, those are the 4 terms which are included in this summation, now we follow the same

quantization  prescription,  because  we  have  done  this  in  done  relativistic  quantum

mechanics, that this operator is replaced by the gradient operator. Likewise, this operator

p 0 will also be replaced by the corresponding gradient like term, which is a derivative

essentially gradient is a derivative with respect to space, but then we are not making any

distinction between space and time.

And here we take, therefore, the derivative with respect to the fourth co-ordinate which

is time, and therefore, the e or c which is p o when quantized becomes the derivative

operator with respect to time. So, this is about quantization condition, and when you plug

in this in this invariant relationship, and now that you have an operator for completeness

the operator to get physics out of it. You would have the operator operate on an operant,

which the wave function is, and then from this operation you would then develop the

algebra further at dirac callus, and then extract physical properties about it.

(Refer Slide Time: 03:45)

So, this is the equation that you get by having the operator operate on the wave function

psi, which is the Klein-Gordon equation. Sometimes, you found it written in a different

notation, because this whole this operator, which is the set of these operators gradient



like or Laplacian like operator. This is the second derivative with respect to time, and

second derivative with respect to space both.

So, this is sometimes called as D’alembertian operator written as a box, it is also called

as a box operator sometimes, and this is your Klein-Gordon equation the difficulty with

that equation is  that  it  leads to  an indefinite  probability  density. And there are other

issues fairly complex issues, some of which can be handled some of which cannot be

handles. So, the Klein-Gordon equation has a own range of compatibility, it also has it is

limitation, and it is not the appropriate equation for electrons our focus of interest is the

atomic structure and we want to describe the electron dynamics in a native.

So, we are going look for a relativistic quantum equation for an electron,  which the

Klein-Gordon equation is not, and therefore, we will not discuss this any further. The

only thing I have like to point out over here is that you should note that, this is a second

derivative with respect  to time whereas,  the Schrodinger  equation you have the first

derivative. So, you would like to look for any equation, which was one of the motivation

to look for an alternative equation that was the not only equation, but again I am not

going to be able to trace the historical development of the dirac equation. That will take

me off the target, and that is not my intention, with those of you who are you interested

will find it very interesting to read some of the developments in relativistic quantum

mechanics.
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So, you going to look for an equation, which involves the first derivative with respect to

time, and this has been achieved in dirac equation into excellent papers and proceedings

of the royal society of London in 1928. And there are excellent sources for dirac work

including his book, and this is the fundamental relation which is at the very foundation of

atomic structure, and atomic processes in which we are really interested.

So, we know that p mu p mu, this scalar is Laurence invariant, this is a fundamental

requirement  of  any  relativistic  theory,  because  we  are  branching  out  from Galilean

relativity. So,  we have to  look for  a  relationship,  which has  the dynamical  variables

which can be quantize, so it has to have the momentum operator. So, this is; obviously,

the correct relationship to begin with it has got the attractive features, that it has got the

momentum built into it has got Laurence it various built into it.

And we are interested in quantizing, we are also interested in looking for an operator,

which in was the first derivative with respect to time. Whereas, p mu p mu as we saw and

the Klein-Gordon equation; obviously, has the second derivative with respect to time. So,

can we play with this relationship a little bit, so that we can look for, how to extract the

first derivative term rather than the second derivative which is manifesto over there. So,

these are the quantization conditions, which we will continue to use, but we are going to

look for a relationship, which will have the first derivative in time rather than the second

derivative, which is manifest.
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So, what you can see is if you look at this relation the p mu p mu, at this scalar expanded

is p 0 square minus p dot p minus m square c square, so this is the what fundamental

relation. And if you now taka a special case in which this term is 0, if the 3 momentum

that tradition 3 momentum, that 3 dimensional momentum, that we normally use even in

non-relativistic mechanics. If this momentum is 0, then you get only p 0 square minus m

square c square equal to 0, and this is like a square minus b square equal to 0. So, you

can factorize, it as a plus b and a minus b, so p 0 plus m c into p 0 minus m c equal to 0.

You can factorize it, and this relation is valid either when p 0 plus m c is equal to 0 or

when p 0 minus m c equal to 0 or both, and now you have p 0 if you peel out one of

these factors. And set p 0 plus m c equal to 0 or p 0 minus m c equal to 0, then you get p

0 alone and not the quadratic momentum, the 0 it component of momentum is now no

longer contradict and you get the first derivative with respect to time.

So, your requirement of finding a first order time derivative equation is satisfied, you are

consistency with low range in variant is also satisfied, because it has come out of that

basically. And you can take either of this two relationship, and continue to develop the

algebra further, you can take either p 0 plus m c equal to 0 or p 0 minus m c equal to 0,

you can take either of these and it turns out that.

(Refer Slide Time: 10:03)

It really does not matter, which one you take because you are let the same physics no

matter which you take, but that is a matter of detail and essentially what we find is that



this factorization is possible. And we then ask that is factorization possible when p is not

equal to 0, because we know that we cannot be dealing with special cases. We if you do

the algebra only with special cases, then you can apply at only to special cases, and that

will limit about range.

So, we are looking for a relationship, in which you have a similar kind of factor, but now

it cannot be based on assuming that this 3 vector scale a product p dot p is equal to 0.

Now, that is a tough one, and that is where you need somebody with the intuition and

intellect of dirac, so what dirac dealt is to explore of factorization of this kind. Explore,

try it out, set this quantity on the left hand side, equal to a product of two factors, and

you know that it cannot be easily factorized.

So, you insert some unknowns, and you insert a beta over here, and gamma over here

and then you ask is such a factorization possible, because if it turns out to be possible.

Then you can peel out one of this factors and set it equal to 0, and you will get that del

by del theta. So, there is some motivation for it there is some hope, but then there is the

query  as  to  what  will  make  such  factorization  possible,  will  some  very  peculiar

properties of beta and gamma which are the unknown over here, will they make such

factorization  possible.  May be,  may be not  and inspired  by  the  hope that  it  will  be

possible,  you  then  demand  what  properties  of  beta  and  gamma,  will  unable  such  a

factorization and then you include that in your condition.
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So, this is what you going to look for which is to explore the possibility of factorization

of this term, and ask the question what properties of beta and gamma will unable this

notice that is the beta kappa p kappa is actually is summation over kappa. So, there four

term over  there,  kappa goes  from 0 1 2 3 that  is  a  Einstein summation  convention,

likewise you have four terms over here, this is gamma lambda p lambda. So, lambda

takes four value 0 1 2 and 3, and between these 4 term, there are 8 unknown which are to

be determined, that is a part of your exploration process.

So, you ask is such a factorization is possible, and then you just expand this product, so

beta kappa p kappa times gamma lambda p lambda gives you the first term. And the two

terms in the first bracket, another two terms in the second bracket, so you get a set up 4

terms, and you make sure that you write them in a consistent order, because you have to

be  careful  about  commutation  properties  if  any are  involved.  And if  they  happen to

commute you would not have to worry about it, but that is a question that is a matter of

detail, so you get these 4 terms.

(Refer Slide Time: 14:21)

So, these are the 4 terms, 1 2 3 and 4, and you find that this m square c square minus m

square c square is common to both left side and the right side. So, you can cancel it, that

is make life easy, and you are left with fewer terms, and since lambda is some doer it is

an dummy index, and instead of lambda you could kappa as well it is dummy index. So,



instead of gamma lambda p lambda, I use gamma kappa p kappa, because now I find that

I can actually combine these terms, in which I have a summation over kappa.

And then I get the left hand side equal to this quadratic term in momentum, and them

minus  m  t  m  c  times  the  linear  terms  in  momentum.  Now,  this  is  an  interesting

relationship, because you find that the left hand side is quadratic in momentum, you find

that the first term is quadratic in momentum, but this one is not. And that suggests that to

get freedom the linear term you can choose beta to equal to the gamma, if each beta

kappa is equal to the corresponding gamma kappa, beta 0 is equal to gamma 0 beta 1 is

equal to gamma 1. Then you can get rid of linear term.

And then on both sides of the equation you have quadratic term and you can really

balance the equation. So, that is a good strategy that you can use, so our query was what

properties of beta and gamma would allow such a factorization, we get partial answer to

it that whatever beta and gamma you discover or you hope to discover will need to be

equal to each other. So, that is something, we make some progress, so beta must be equal

to gamma, now that we know that beta must be equal to gamma, we can put that beta

equal to gamma over here.

So, let us do that, so the left hand side which is p mu p mu scalar, which e equal to beta

kappa,  which is  the  same as  gamma kappa,  because that  is  something that  we have

already learned. And now you have got a summation over kappa, and also a summation

over lambda each taking 4 values, so you get 16 terms of the right, which should give

you the four term on the left.

And that will put some additional requirement on the right hand side, which will lead us

to what gamma must be like, we have already learned that beta must be equal to gamma.

And now we are going to find what this unknown gamma will turn out to be, so this is

the condition that must be satisfied, so let us look at these 16 terms of the right and the 4

terms of the left carefully this is the relationship that has to be satisfied.
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So, let us write this explicitly, so I have summed over kappa for kappa equal to 0, I get

gamma 0 and this kappa is also equal to 0, so this is p 0, and then there is this gamma

lambda p lambda. So, this is the double summation, so there are actually 4 terms sitting

in this single term. Likewise, there are 4 terms sitting in the second, another 4 over here,

and another 4 over here, these are the 16 terms that we have referred to. So, now, you

sum over lambda by explicitly, so these four terms you sum over lambda, so lambda

equal to 0 is the first term, so this is gamma 0 and this lambda is 0.

So, this is gamma 0, and this p 0, and then you take next value of lambda and whatever

done or this would be p 0 p 1. This would be p 0 p 1, now it is alright this is actually

typographical error, but in our situation it really does not matter, which is y did not heat

me, because the components of momentum we know that they actually do commute with

each other. X does not commute with p x, but p x commute with p y, p y commute with p

z, so it really does not matter.
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And to look at these terms I have the same 16 terms on this slide, but I have inserted

some gaps, so that I can show you what is going on with the terms. What you will big

use of is this commutation, which I mentioned that p i p j is equal to p j p i, which

essentially means that these two terms p 1 p 0 and p 0 p 1, these are actually equal to

each other. And you can combine this two term, so this two terms can be combined then

you do the same with the remaining one, so you have got p 2 p 0 over here, and p 0 p 2

over here.

So, essentially what you are going to find is terms, I have written these 16 terms in such

a  manner,  then  those  terms  which  are  equal  distant  from the  diagonal  can  actually,

become combined that is actually, how I have written them. So, terms which are equal

distant from diagonal can be combined, so you have this term which is p 3 p 0 which e

equal to p 0 p 3.

So, these two terms can be combined, then these two terms can be compiled which is p 2

p 1 and p 1 p 2, then these two term p 3 p 1 with this p 1 p 3 and finally, these two terms

p 3 p 2 and p 2 p 3. So, all of these terms which are equal distant from the diagonal can

actually be combined, and that leads to sum simplification that we are looking for.



(Refer Slide Time: 21:16)

So, this  is  how we have combined them, these four are  the diagonal terms with the

indices 0 1 2 and 3, so these are the terms in the i through and i with column, i going

from 0 1 2 3. And then the off diagonal terms which we decided can be combined had

these coefficients gamma 0, gamma 1 and gamma 1 gamma 0, so no approximation made

is yet no postulate made is yet.

We have written them exactly, and we know that this must correspond to the left hand

side,  which has got only these terms only 4 terms, so now, ,  what is  it  that  we can

demand on gamma. So, that the 16 terms on the right hand will give you 4 terms on the

left, can you make some demand on gamma, you see that if the gamma 0 square is equal

to 1. You get the first term happily, you see that if gamma one square is equal to minus

one you get the second term.

So, you start making these demands, and then you have to get rid of this term. So, our

question is if we could achieve that, then the factorization the dirac equation not in the

raw equation that we began with from the invariant momentum scalar, but by inserting

unknown beta's and gamma's and by making demand on beta's and gamma's.
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We find that such a factorization is possible and these are what the gammas must be,

because they have the right properties, that we are looking for. Notice, that these are 4 by

4 matrices, these are not just numbers, this are matrices, they have a block diagonal form

as you can see. They have got a structure which is immediately manifest, they have got

block diagonal structure, and you can see that this is 2 by 2 unit metrics.

This is a 2 by 2 negative unit metrics, and what you find in the remaining positions are

the poly matrices, the poly 2 by 2 matrices, which we have used earlier. So, you have a

sigma 1 over here and a minus sigma 1, and then you have to sigma 2 and sigma 3, so

these matrices which have made up of the poly matrices, but the poly matrices are 2 by 2

matrices.
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These are 4 by 4 matrices, they appear in a block diagonal form, and these are the poly 2

by 2 matrices, which we are going to be using. And with the use of the matrices we can

actually factorize the dirac, which we can factorize the invariant momentum scalar p mu

p mu which is what leads to the dirac equation. So, together with the poly matrices the 4

by 4 matrices are  called as dirac matrices,  and this  is  the 0 at  component,  which is

written here 2 by 2 metrics, but each element is 2 by 2 metrics. So, these are the 4 by 4

matrices, so this is the structure of these 4 by 4 matrices, these are called as the dirac

matrices and there are three poly matrices gamma i, i equal 1 2 3. And these are made up

of the 3 sigma’s, which are the poly matrices, I going from 1 2 3.
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So,  we  have,  in  fact  found  that  factorization  of  the  4  momentum scalar  product  is

possible, and it is possible by demanding that the gammas are 4 by 4 matrices. This is

wonderful, because now you can peel out one of these factor, and again it does not matter

which factor you peel out. You can take either this or that, the two of these factor and

either one of them must be 0 or both of them could be 0, but you can take any one and

this is the one that one normally take.

And it does not matter, which one you take, this is the one that you take gamma kappa, p

kappa minus m c, this is the factor equal to 0, and this is the summation over kappa

going from 0 1 2 3. So, there are 4 terms in the summation, the momentum is quantized

the  4  momentum  operators,  the  0  is  component  gives  you  the  time  derivative  the

remaining 3 components give you the space derivative. And you quantize this and keep

track of the indices, which is a super scribe, which is subscribe, which is contra variant,

which is covariant, you can lower the indices make sure that the operator written in the

consistent fashion.

And then you have got an operator relation, because this momentum is now replace by

the operator, which is the derivative operator and this derivative operator this is just a

matter of notation the kappa is derivative with respect to x super scribe comma. So, use

the covariant and contra variant indices carefully, and this operator as we know from the

non-relativistic quantum mechanics, as well could operate on an operant which is what



over  wave  function  would  be.  And  the  result  in  equation  would  be  the  quantum

relativistic equation of motion, the operator here; however, is now a 4 by 4 operator, it

has got an operator structure.

And that also has a metrics structure and that demands then the wave function over here

must have 4 components. Now, this equation can be solved for a few problems exactly,

for other problems you have to make a certain approximation, our interest will be in the

hydro genitive for the column field for, which exact solution is possible. And we will

discuss that this  is sometime refers to as a fundament notation,  this  gamma kappa p

kappa is  written  as  a  p  slash this  is  sometime called  as  a  slash  notation  fundament

notation. And this is just a matter of notation, basically this is what it is wherever you see

a p slash, you should recognize that it is gamma kappa p kappa and it is a set of four

terms, which are sum to 1.

(Refer Slide Time: 29:15)

So, this your dirac equation, now you can recognize these gammas to be the 4 by 4

matrices, so this is gamma 0 p 0, this is gamma 1 p 1 look at the metric structure. So, you

can simplify some of these things by just doing metrics algebra.
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And that will find that this p 0 will come here, here, here and here, so you can write this

relationship in a metric form as well, so this is just matter of you know, writing it in

different forms and you might find it in different books.

(Refer Slide Time: 29:58)

But, essentially what we have got is, a relativistic quantum equation in which we have

got  first  order  time derivative  operator, which  is  nice,  because it  has  got  something

similar to the Schrodinger equation. But, then you also have the first derivative operator



with respect to space, but that is let us see what it is just, but we should certainly make a

note of it.

(Refer Slide Time: 30:35)

So, this is what we have got you can now, you are dealing with very simple matrices, you

can use the poly matrices, their properties well known you have done some algebra and

you know manipulation with these matrices. So, you can easily figure out that alpha is

beta inverse gamma, and you know you can write this in a representation, which is called

as a poly representation. And in which you use two operator beta and alpha, alpha is

defined as beta inverse gamma, where gamma is made up of these poly matrices, and this

is your alpha metrics.

So, alpha is equal to 0 sigma, sigma 0 this is the 4 by 4 metrics, each element is made up

of a poly matrices, which are 2 by 2. So, in the poly representation instead of the gamma,

you use 1 beta and 3 alphas, but this is just a matter of renaming them this known you

physics. This known you mathematics it is just a new normal clincher, and that is one

which is commonly seen in a lot of literature, but 2 by 2 matrices the poly operators

operate in the poly space. The 4 by 4 dirac operator and what is sometime refer to as the

dirac space, and you can see the poly space is a subspace of the dirac space.
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You can do a lot of very interesting mathematics with the dirac matrices, and this is a

good exercise, although I will not spend much time discussing the mathematics of the

dirac matrices, but these property can be very easily verified. And I will not spend any

time  other,  because  we will  not  be  using  some of  these  relationship  directly  in  our

development of the subject. But, I will certainly like to mention that you can actually

build additional matrices, like from the gammas you built the gamma square, you can

built the sigma like define as i gamma mu gamma mu.

You  can  build  these  additional  matrices  not  all  of  the  linearly  independent,  but  16

linearly independent matrices can be built, and you can classify them in different, you

know structures. So, you have got only one element of this kind you got 4 matrices of

this kind with mu going from 0 1 2 3, you get 6 matrices of this kind, you get one metric

of this kind and another four of this kind. So, you can you know place them in different

sets,  and place  them in  5 sets  which  are the conventional  sets,  and which these  are

structured.

And the reason to do it, because if you consider the transformation properties and the

Lorentz transformation, then they have similar properties this one in the first set, you

know it transforms as a scalar, these transform as a vector, these transform as a tensor,

this one has a pseudo scalar, and this one has a initial bracket. So, there are these are the

reasons that they are put in different sets, and I will not spend too much time on this.
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I  will  proceed  with  the  dirac  equation,  but  now  we  are  going  to  invoke  the

electromagnetic potential, that is a big important was because we know our interest is in

hydrogen atom. And the electron is in the presence of electromagnetic potential, it mix

the column potential with the nucleus that is the electronic potential. We have to look not

just for a relativistic quantum equation, but for a relativistic quantum equation which

also has the electromagnetic potential.

So, this is the electromagnetic potential, now this is it has got the 4 components, this is

the electrics scalar potential,  this  is  what you very often called as a magnetic vector

potential. And we make an insert for the Lagrangian for the system or the electron in the

electromagnetic potential, they make this insert that the Lagrangian will be given by this.

And this is a point, which I am sure has been emphasized a number of times in your

interaction mechanics class, that whenever you set up the hamiltonian. You never write it

as t plus v or anything like that, the first thing to do is to set up the Lagrangian for the

system, then obtain the Lagrangian is always in terms of position and will last set.

And then from the Lagrangian you find the momentum the generalize momentum, and

once you have it then you proceed to build the hamiltonian, and then you quantize it. So,

we begin with the Lagrangian, for the system we make an insert, that this would be the

Lagrangian, we need to verify it is a right Lagrangian, it is not something we are going to

take  for  granted.  So,  we  propose  this  Lagrangian,  and  we  ask  if  it  satisfies  the



Lagrangian equation, if it does what kind of relationship will come out of it, because the

Lagrangian equation must give you the equation of the motion for the electron in the

electromagnetic field, and we already know that do not.

Equation of motion for an electron and the electromagnetic field must exact acceleration

is equal to the force, and we know that that force is that the Lorentz force, which is f is

equal to charge time what is it v which is or pi which is the scalar potential. Plus the v

cross beta the electric intensity e plus v cross v times a charged will give you the Lorentz

force. So, does this Lagrangian give us the equation of motion is a question that we ask,

so we look at it set it up for each component, so q or the three degrees of freedom for this

Lagrangian.

(Refer Slide Time: 37:40)

And we set up the v square is a sum of these three components square, I am using a

simple Cartesian coordinate system, it is very easy to use and it is all about the propose

in this case. So, your m v square the kinetic energy is part in the Lagrangian is given by

this, your Lagrangian, which is t minus v gives you this minus q times pi and then you

have got this velocity term, and the vector potential and the equation of motion that you

expect is this.

So, the what you do is to find out what the momentum is and the momentum, of course,

is the derivative of the Lagrangian with respect to the velocity momentum is not must

time it is velocity. It is much more than that the primary definition of momentum is the



partial  derivative  of  the  Lagrangian  with  respect  to  the  velocity.  So,  you  take  the

derivative of the Lagrangian with this respect to the velocity, and you find from this term

you get m into v x, but them this term also has got the velocity, so the derivative of this

term with respect to the velocity, will give you this q by c a x.

So, your momentum now, which is  the generalize momentum not just  the traditional

mechanical momentum, so this traditional mechanical momentum we can quantize using

the variant operator, but momentum itself will include this vector potential as well. So,

the next  you do in  the Lagrangian equation is  to  take time derivative,  of  the partial

derivative of Lagrangian with respect to the velocity. So, that is what it is you take the

time derivative of the right hand side, so muss is a consent you get the derivative of

velocity which is v dot which would be the classical acceleration.

So, there is a dot on this v, it is a tiny dot, but do not ignore it that is the time derivative

of the velocity, and you can get the time derivative of the vector potential, which could

be 0 if the vector potential is not independent of time, but it would not be 0 in general.

So, now, you take the partial derivative of this vector potential with respect to time, but

the dependence of the vector potential on time is through an explicit dependence of the

component on time.

And in implicit dependence through the dependence of this a on the coordinate, which in

turn  depend  on  time,  this  is  the  convective  derivative  like  idea  that  we  have  used

employed dynamics or in electromagnetic theory earlier. So, the same kind of you know

the reasoning is involved all you have to do to recognize that the dependence on time is

not just,  because of how a x depends explicitly on time, but also on how it depends

implicitly on time, why are it is dependence on the position are which in turn depends on

time.

So, you have a derivative with respect to x which in turn depends on time, so this is the x

y d t. Likewise you have got terms and y and z, and then you have got the final term

which comes from the explicit dependence of a x on time. So, you handle this derivative

carefully, and that is give you to the derivative of the momentum, which is a keen to

mass exact acceleration, but not just the traditional plutonian must exact acceleration, but

it has got this term coming from the vector potential.



Then, this must be equal to del l by del x and del l by del x is something that you can

obtain  from  here,  because  you  find  out  which  are  the  terms  in  this  relationship  is

depended on x, so here is one the pi the scalar potential depends on x. So, that you get

the derivative of pi with respect to x, and you have got the vector potential e x, which

also depends on x because it depends on r, likewise a y also depends on r. So, there is an

x dependence of a x there is also an x dependence of a y, so you get a term and del a x y

del x times d x by d t, and a term in del a x by del y times d y by d t and there is a term in

z.

(Refer Slide Time: 43:00)

So, you write all of these terms carefully make sure you bring them to the next slide

carefully, and then you can insert them in the Lagrangian equation, because now you

have got both the left hand side of the Lagrangian equation and the right hand side. And

the left hand side is given by this, and the right hand side, which is del l by del x is given

by this, here just put the two to be equal to each other done. You find simplify this little

bit notice, that you got the velocity terms over here, likewise you have got d y by d t here

and v y over here d z by d t here and v z over here.

So, you can combine corresponding terms, and you are left with a relationship for mass

time acceleration, which is the traditional neutronion mass time acceleration which is

what would go into the lorentz force law. And on the right hand side I have moved these

terms to the right with appropriate signs, combine them and I find combine the terms and



the velocity, because I can combine the term d y by the d t here, which is on the left with

this v y which on the right, and this will move to the right on the minus sign. So, I will

have both of them with the minus sign, now one of them with a minus sign this is a with

minus sign and this is with plus sign, so I get these terms in which the v y and v z terms

are combined.
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Now, let us bring it up and we will make use of something else, which we also know that

the magnetic field is given by the curl of the vector potential, and if you just write look

for the x component of the velocity crossed the b term. You find that you have identical

terms, which we have seen on the previous slide see exactly the same slide, so you can

insert the x component of v cross v over, there and this very easy to see.
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So, I will not work out this determine for you, and you can see that with the recognition

of b being the curl of a, you find that the x component of v cross the v is what gives you

these  terms,  which  you  have  found,  in  the  equation  of  motion  coming  from  the

Lagrangian equation. You insert the corresponding terms, so this term in the Lagrangian

equation is replaced by q over c time v cross v, you have seen, it for the x component you

have got corresponding terms for the y and z component.

And you get exactly what you are looking for what you are hoping to find, because now

you find the x component of the traditional mass time acceleration, which is the neutron

ion force is equal to q into e plus v cross v. And, we are using the Gaussian system of

units, so which is why I have got the one over c is taking a long vector potential, and I

you would not have the one over c, but in atomic physics it is more convenient to use

Gaussian  system.  So,  everything  hangs  together  and  you  get  the  Lorentz  force

relationship as 1 over c time v cross b, which gives this the confidence that the insert we

made for the Lagrangian is a correct, and we can use the Lagrangian further.
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So, let us to use it Lagrangian, now we know that it is no longer s postulate it has led to

the correct equation of motion, for the electron in the electromagnetic field. So, we will

use this Lagrangian, we opting the momentum which we have done already, and now we

are ready to put the charged, which is the electron charge which is minus e. So, this m v

plus q over c a becomes m v minus e or c a, and now you quantize. This which is to

replace all  the momentum operators by the corresponding derivative operators,  along

with the i h cross and so on.

So, that is something that you know how to do go ahead, and quantize it, and what you

have  is  you  have  the  fourth  component  you  got  the  3  traditional  components  of

momentum.  And  the  fourth  component  p  0  of  the  generalize  momentum  of  four

momentum is nothing but the gamma times m c.
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As, you can see and this is what leads you to the dirac equation, for the chasse particle in

the electromagnetic field. Now, you no longer have to ignore the electromagnetic field,

in fact that is what you are really interested in. So, let us collect all the terms and this is

the 4 by 4 dirac equation that you get, along with the operators, it has got the derivative

operators.

It has got the magnetic vector potential, which has come from the generalize momentum,

and  you have  all  of  these  terms  stack  together  in  a  metrics  equation,  but  the  wave

function  is  got  4  components.  That  is  a  new  feature,  we  did  not  have  written  the

schrodinger equation now you have a wave function, which has got 4 components.
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So, this is a 4 by 4 metric operator, and of the right side is a 4 by 1, 4 rows and 1 column

null  metrics,  these  are  the  4 dirac  matrices,  and make sure that  you use the indices

carefully, because of your signature of the g. You have got this a 0, a 1, a 2, a 3, which

translate to a 0 minus a 1 minus a 2 minus a 3 keep track of sign carefully, use this

signature correctly. And you can write these terms expand them in term of the betas and

the  alphas  beta  have  introduced,  write  out  the  components  of  the  vector  potential

explicitly.
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And  you  get  a  relationship,  which  you  can  also  write  in  terms  of  the  Cartesian

component and this is your dirac equation, as it is refer to in the standard form. This is

beta times alpha dot p this i h cross gradient gives you the momentum operator, this plus

sign goes over to the minus sign, and this is what refer to as the dirac equation. In the, so

called standard representation,  you can transform it  and put it  in different equivalent

presentation, but this is the representation that I shall make you use of it.
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Now, we have used the momentum operator p, but now we have the fourth component,

so it is called as generalize energy momentum 4 vector, it includes the magnetic vector

potential. And you can write the 4 vector function, if you want to write it in a block

diagonal form because you know that the 4 by 4 dirac matrices can be written in the

block diagonal form. You can write wave function also in 2 blocks, a top block made up

2 elements and the lower block made of 2 elements, and you can write it as Fital the

Kaital the, and alpha and beta matrices are the gamma matrices that we have defined

earlier.
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Now, for a free electronic rest,  you can simplify it  and it  has got these solutions, so

before we consider more general solutions, let us look at the free electron solutions. So,

you set the electromagnetic field equal to 0, that traditional mechanical momentum equal

to  0,  that  is  what  gives  you  the  particle  addressed.  And  this  is  a  very  simple  first

derivative equation involving only the beta operator, and it has got 4 solution not one psi

1 satisfies it psi 2 also satisfies it, psi 3 and psi 4 also satisfy it, but here you have got

minus m c square by h cross as you expect.

Whereas, over here you have plus m c square over h cross as you do not expect, or you

did  not  expect,  these are  the positive  energy solution,  these  do not  surprise  us.  The

negative energy solution too, and one has to see, where these are coming from and what

do they have to what is their place in physics.



(Refer Slide Time: 52:42)

So, you first of all you get a multi component wave function, and whenever you have

multi component function that is a signature of a spin, that the particle must have a spin.

And all elements in particles which obey Fermi statistics have 2 components, these are

spin half particles this is result that you get from the quantum field theory. Electron is a

fermion, so it is a two components of particle, but the dirac equation has given us 4

components, 2 more than what we want and we cannot avoid, because it came out of

whatever we did to get a relativistic quantum equation.

And then these negative energy solutions, which cannot be avoided, in fact have a real

place in physics, and the history of the interpretation of the negative energy particle is

very fascinating one, but that goes beyond our domain of atomic physics. You need to

study this in particle physics, but this is what led dirac to predict the positron the anti

particle, in fact is a earlier prediction was that these were proton rather than positron,

because anti particle were not known dirac had to postulate them, invent them.

And  then  Carl  D  Anderson  actually  found  them,  the  origin  actually  lies  in  this

relationship that we began with, because you have a quadratic energy term, which will

have two roles one with plus sign and the other with minus sign. So, the origin can be

traced to that, and these are what gave you the anti particles or anti matter. Now, where is

all these anti matter we see matter as a anti matter does not matter, but it does it comes



out of the dirac equation, and where is all this anti matter, when I read this question when

I was preparing for this slide.

I first saw that I will ask this question to cosmic horizon asking, where the anti matter,

because he knows the cosmos, he rules a cosmos, but he rules only the cosmos and not

the anti cosmos. So, he is going to tell us to go to the anti cosmic range, but that is a

matter of particle physics, and I will not discuss this.
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These are interesting questions, now these are a conclusion is that you have 4 component

function,  two  components  is  what  we  need  for  the  electron.  The  remaining  two

component have made the negative energy solution, they correspond to the anti particles

to the positron and present case, but we need only two components. And we need to find

a mechanism to reduce over 4 component theory, to a 2 component theory, it is not clear

that it is possible, but we are going to attempt to do.

So, there two ways of doing it one is the poly reduction, which I will discuss and other,

which is the more correct one more appropriate one which is also what I will discuss and

the Foldy Wouthuysen transformation are very important this context. And that will take

a good bit of our time, in the next few classes, so today I will conclude the class over

here I will be happy to take some questions.
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So,  there these two techniques  of  reducing the 4 component  theory  to  2 component

theory, and I will discuss this in next few classes next couple of classes, but for now if

there are any questions I will be happy to take otherwise goodbye for now.


