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Greetings, I  will begin unit 3, which is a very fascinating topic Relativistic Quantum

Mechanics of the Hydrogen Atom. So, we obviously have to use relativistic formalism

together with quantum mechanics. And I will be using predominantly these two books,

both have the same title called Relativistic Quantum Mechanics, one is by Bjorken and

Drell and the other is by Greiner. And these two are very good sources for much afford I

will be discussing in this particular unit 3.

(Refer Slide Time: 00:51)

Now, again you would have had some exposure to some relativistic effects in atomic

spectroscopy from your earlier courses in quantum mechanics or atomic spectroscopy or

whatever the courses you have taken. Other various questions that may have been raised

for example, you would have seen this term possibly, if you have seen it, that is what I

am referring to, if you have not seen it, you are going to meet this term in this unit.

And a dominant relativistic effect in atomic spectra is the spin orbit interaction in the

atomic structure and spectroscopy collision and although atomic processes, this is a spin

orbit interaction. It has this form which you may or may not have seen earlier and if you



did, the question that would asked itself is, where does this form really come from and

we are going to figure out, how exactly you get this term. You also may have seen the

Dirac equation, which we shall introduce and discuss in some detail from first principles.

And you will notice that, this equation has got a matrix structure alpha and beta are 4 by

4 matrices, the wave function has got a number of elements and then, you also know that,

there are questions about negative energy solutions, antimatter and all that. Now, we do

know that, electron spin requires two components, but you see in the Dirac equation that

you have got four components. So, what is all this about, these are some questions that

we shall tackle in this unit.

(Refer Slide Time: 03:08)

So, before I get into the main subject of discussion, I will spend some time in today’s

class, which is the first class first lecture on this unit on brushing up the transition to

relativistic  dynamics.  So,  before  we  get  into  relativistic  quantum  mechanics,  I  will

remind you of, what is involved in the transition to relativistic dynamics as opposed to

non relativistic classical mechanics. So, I will spend just some time recapitulating those

ideas, I am sure that you are aware of that, but this will be just a quick brush up.



(Refer Slide Time: 03:56)

So, let us look at phenomena seen by two observers, one in an inertial frame of reference,

which is this red frame and the other also inertial frame of reference. We have second

observer in this blue frame is also an inertial  frame and inertial  frame is one, which

moves  the  constant  velocity  with  respect  to  another  one.  So,  the second observer  is

moving at a constant velocity, which is this u with respect to the first observer.

And let us say that, these two observers whose observations we are comparing and the

first observer looks at an object, whose position vector in his frame of reference is this r,

this is the instantaneous position vector at time t. The position vector of the same object

for the second observer  is  r  prime t,  this  is  a primed frame of reference,  this  is  the

unprimed  frame  of  reference.  And  from the  triangle  law of  addition,  you  know the

relationship between these two vectors, the differences this displacement of the second

frame of reference.

We assume that the X Y Z axis of both the frames lied on top of each other at t equal to 0.

So, the displacement in time t would be this velocity times t and this is the relationship

between the two position vectors. Now, if you took the time derivative of this relation d r

by d t, you get the velocity of this object in the first frame and d r prime by d t gives you

the velocity in the second frame and these two velocities are obviously not the same,

because you must add u c to this to get the velocity in the first frame.



Now, essentially this is the relationship between the velocities of an object in two inertial

frame of references. Now, this is Galilean relativity, this makes a certain assumption that,

the  speed  of  light  is  finite  and  all  of  these  conclusions  are  consistent  with  this

assumption.  And as long as you do not question this  assumption,  you are ok,  so the

relative velocity between as seen by two observers, it depends on their relative motion,

that is the essential point in this.

(Refer Slide Time: 06:40)

And I like to show this little radial of this kid, let me see it comes up, yes it does and I

really like this video. And what you see is, if you ask the question as to what is it is

velocity, is it positive, is it negative, is he going forward, is he coming backward, does

his velocity even have the same direction and it really depends on, what the frame of

reference is, that is something that you must ask, is it nice fellow, he makes it. This I

downloaded by the way from the YouTube and I have given the reference here, so this is

the full reference, you can also view it if you like.
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And then, our conclusion is that, whenever you are looking at the velocity of an object,

you must ask, velocity with respect to whom. Now, is it this car or the other car and with

respect to whom, is it with respect to somebody on the road or is it somebody who sitting

in one car or the others. So, these are the questions of immediate relevance, whenever

you are looking at any object and ask, how fast is that object moving.

Now, it turns out that, if the object of your interest is light, you are not looking at a car or

you are not looking at this little kid on the treadmill, if you are looking at light, a pulse of

light is fire then, what kind of considerations are involved. So, let us actually see, what

we are talking about.
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So, here you have got a light source or laser gun if you like and you fire, a pulse of light

and this light goes from left to the right in this frame of reference and you have got an

observer in this red frame of reference and this is our observer. Everybody is getting

smart these days, younger and younger people do more and more challenging things. So,

you have your observer over here, who is looking at this pulse of light and this observer

would measure the speed of this light in power frame of reference.

You have another observer who is moving in another frame of reference, which is also

inertial frame of reference and he is going at a constant velocity with respect to the first

observer and he also measures the speed of light. You can think of another experiment, in

which light is fired from a different gun in the opposite direction and now, you have

these two observers, who are measuring the speed of light. Now, what is the interesting is

that, no matter which observer is measuring it and no matter which light you are talking

about.

If it is a light which is going to from left to right or the other one from right to left, all the

observers get essentially the same answer, which is root of 1 over mu 0 epsilon 0, which

is a permeability of light, permeability of vacuum and electric permittivity of vacuum.

So, the speed of light is determined by properties of vacuum and it makes no reference at

all to which observer you are talking about. Now, this is very strange thing, because this



was not a very experience when we talked about the velocity of the child that we were

looking at.

If you are the child, it would be fun, but the speed would always be 0, whereas if you are

standing  behind  him  or  on  the  treadmill,  it  would  be  different  for  all  the  different

observers. Same thing with, if you are looking at a car which is moving, but the speed of

light does not make any reference to the observer, it is always the same, no matter which

observer  you are referring  to,  it  is  always the same value in  every inertial  frame of

reference and physics has to reconcile with this.

This  is  a result  which physics  was not  really  prepare for  and this  is  a  result,  which

Einstein was a first one to see and not just from the Michelson Morley experiment, but

from many other consideration that I will not going to the history of the special theory of

relativity, which is very fascinating. Because, in this course, I just want to refer to some

other main conclusions to lay the foundation for our discussion.

Now, this is what I would called as counter intuitive, because if our intuition was built on

our experience with regard to our conclusions on our observation about the child’s walk

on the treadmill or looking at a car from one frame of or another then, we would think

that, it is counter intuitive, but intuition is a function of education. And then, if you get

educated and built your intuition based on further knowledge of the laws of nature then,

you might find that, this particular conclusion would completely meet the expectation of

your intuition. It is a result which once you understand the implications of the special

theory of relativity, you would find that this is precisely what you would expect.
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So now, the reconciliation comes from the fact that, the laws of transformation between

the coordinates in one frame of reference and another frame of reference, are no longer

Galilean, they must be modified and they are what are known as Lorentz transformations

and these transformations transform not just the space coordinates, but also the time. So,

time is no more to be treated as absolute, this is one of the upshot of the special theory of

relativity, where we always think that, time is absolute and we do not connected to the

state of motion of the observer himself.

But,  that  is  something  that,  we  have  to  reconcile  with  and  these  are  the  Lorentz

transformations, you go from X Y Z and t to X prime, Y prime, Z prime and t prime.

Through these transformations, gamma is this ratio and V is a constant velocity of the

second  observer  with  respect  to  the  first  observer  along  the  X  axis,  so  that  is  the

coordinate system that I am chosen over here.
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Now, what are the consequences then and then, again I am not going to spend any time

discussing these consequences, because that will take us into specific discussion on the

special  theory  of  relativity, which  is  not  my intention,  because  we want  to  get  into

relativistic quantum mechanics. But, I will just remind you that, time is not absolute nor

a space, so what we think of space interval, the interval between two points in space or

the interval between two events that we talk about between the time it took for you to

come from your hostel to the classroom or whatever.

These intervals neither the time interval is absolute nor is the space interval absolute and

they depend on the state  of the observer  and it  leads  to,  what  is  referred to  as time

dilation and Lorentz contraction. So, both time and space intervals, we have to modify

our perception of time and space intervals, this is guided by a reconciliation with our

notion  of  simultaneity.  What  is  simultaneous  for  one  observer  is  not  necessarily

simultaneous for the other and then,  one needs to ask that,  if  neither  space nor time

intervals are invariant under Lorentz transformations, what is it that is invariant and that

is quantity of interest.
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So, this  quantity  is of interest  was,  because our interested quantum mechanics is the

following,  we deal  it  with  the  Schrodinger  equation  in  quantum mechanics,  the  non

relativistic  Schrodinger  equation.  You  have  got  the  dynamical  variables  position  on

momentum, you have the time derivative involved, when you take the time evolution of

state function of the state vector and the space interval that would go into the potential

function.

For  example,  even  in  the  simple  problem  like  a  one  dimensional  potential  barrier

problem if you like, the distances that you are talking about, these are no longer to be

consider as a invariant and you must take into account, the state of the motion of the

observer to analyze these dynamical variables. So, the distance l is not Lorentz invariant

and  then,  we should  therefore  ask  that,  the  Schrodinger  equation  since  it  cannot  be

Lorentz invariant,  how do we get a relativistic equation, which is consistent with the

Lorentz equation with the Lorentz transformations, which reconciles with the fact then,

the speed of light is finite.

So,  this  is  a  question  that  we  must  ask  and  again  this  comes  from non  relativistic

classical mechanics that, you need to extend your idea of space to four dimensions. And

this is an extension into a four dimensional space, which includes time, this is sometimes

referred to as a MINKOWSKI space time continuum.
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And then, an event in this space is characterized by four variables, these are the x 0 x 1 x

2 x 3. So, I will quickly remind you of the notation, I will not spend too much time

working this way up, I just to quickly remind you. And then, introduce the invariant

quantity, which is this scalar d x mu d x mu and this is the quantity, which is invariant

under Lorentz transformations.

(Refer Slide Time: 18:55)

Now, how do we know that, this is invariant, now first of all the way that you get it is

through this lowering of indexes, it  called through the g matrix and this g has got a



certain signature. This is a 4 by 4 matrix, which has got these diagonal elements, which

are given by 1 minus 1 minus 1 minus 1, all the remaining elements in this 4 by 4 matrix

are 0, so I have not written them out. And there is a specific difference between the

interval  in  a  four  dimensional  Minkowski  space,  which  is  referred  to  as  a  pseudo

Euclidean space, as opposed to a Euclidian space at the difference is in the signature.

Because, d s square is defined as this particular summation of these quadratic terms, but

the signature 1 minus 1 minus 1 minus 1 of the g matrix  assigns the specific  signs.

Whereas, if the four dimensional space was Euclidian, if it was an ordinary extension of

how we go from a two dimensional flux space into a three dimensional Euclidian space,

that is a straightforward extension, this is different, this is why it is called as a pseudo

Euclidean space.

(Refer Slide Time: 20:36)

And in  this  pseudo Euclidian  space,  the signature  of  g  is  particularly  important  and

special theory of relativity is built on this pseudo Euclidian space, in which all physical

events are described to take place in this particular pseudo Euclidian space. Now, this is

the signature of the pseudo Euclidean space.
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And what  you can do is,  look at  this  invariance  criterion,  because we expect  if  our

contention is correct that, d s square must be exactly equal to the square of d s prime.

And we can very easily verify this by subjecting all of these t prime X prime Y prime Z

prime through the Lorentz transformations, plug in the corresponding substitutes.

(Refer Slide Time: 21:40)

And do some simple analysis, which I will not spend any time on working out for you,

this is something that you will do very easily.



(Refer Slide Time: 21:51)

And if you just do this substitution and simplify the terms, your conclusion will be that

this d s prime square is exactly equal to d s square, which is how you demonstrate that

this  is  an  invariant  quantity  under  Lorentz  transformations,  so  this  is  our  invariant

Quantity.

(Refer Slide Time: 22:09)

It is a measure of the, what we called as an interval between two events and of course,

because each quantity is a square of a number and the first term is positive and other

three  terms  are  negative,  this  quantity  you can  of  course,  be  either  positive  or  0  or



negative. And depending on what it is, it has got different names, it is called as time like,

light like, space like.

(Refer Slide Time: 22:40)

But, we are now interested in quantization, so this is our machinery, this is our tool and

our  interest  is  in  quantizing  the  system.  We know  what  quantization  is,  we  have

discussed this at length in unit 1 that, you must abandon the dynamical variables q and p

and replace them by judicious operators. And dynamical variables, which are functions

of q and p get expressed as operators, which in turn or express in terms of the position

operator and the momentum operator.

Now, this was our notion of quantization and we expect something similar to be needed

to be done in relativistic quantum mechanics. Now, let us see how, we would go about

doing it,  now momentum is obviously a quantity of specific interest.  It is one of the

dynamical variables, which specifies the state of the classical system, it is quantization is

fundamental  to  what  else  we  do  in  quantum  mechanics.  So,  let  us  have  a  look  at

momentum, which to begin with, we defined as mass times velocity, although we have

better definitions like the derivative of the Lagrangian and so on.

But, if you look at the mass times velocity then, this velocity is a ratio of space to time in

the limit that, the denominator time interval goes to 0. And our concern here is that, the

numerator  space  interval  and  the  denominator  time  interval,  neither  of  these  two

quantities  is  invariant  under  Lorentz  transformations,  one  undergo  dilation,  time



undergoes dilation and the other undergoes contraction. Now, these are the upshots of

special theory of relativity, so obviously we are going to need some special afford to deal

with this quantity, which is a velocity.

And then, it will have consequences on, how we define the momentum and furthermore,

on how we would quantize it. So, in special theory of relativity what it do, is to construct

a ratio of space to time, but you do not take the space and the time in the same system of

frame of reference, you take what is called as proper length and proper time and these

two are different. And you have met these quantities in your earlier course on special

theory  of  relativity,  so  I  will  not  define  them,  I  will  not  spend  too  much  time  in

discussing it.

I need to introduce this proper velocity, which is a ratio of these two quantities and that is

what, that goes into the special theory of relativity. So, this velocity is now not just d r by

d t, but d r by d t times gamma, where gamma is this ratio which includes v square over c

square and this is not 0, because the speed of light is finite. So, this is now your proper

velocity and I have discussed this at some length in another course, which happens to be

available on the internet.

So,  if  you want,  you can look it  up,  it  is  available  in  the  NPTEL library, it  is  also

available on the YouTube. And I have dealt with some of these ideas, including the ideas

of time dilation and length contraction in some detail  in those lectures,  so I will  not

repeat any part of it over here.
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So, this is our introduction to, what we will call as a proper velocity, this gives three of

the four components, because events is described by four components, you have got four

vectors. So, velocity will also have four components and the fourth component is the

natural  extension  of  this.  So,  the  first  three  components,  which  we  get  from  this

relationship are this eta 1, eta 2 and eta 3, which are gamma times the corresponding

components in non relativistic mechanics and eta 0, which is a fourth component is given

by the ratio of d x 0 to this quantity over here. So, essentially you rationalize the whole

things in a consistent fashion, this is the natural way of doing it and this gives you the

four vector, which constitutes the proper velocity.



(Refer Slide Time: 27:41)

Now, that you have got the proper velocity, you can ask if it is invariant, so you construct

this scalar and all you have to do is, to plug in these numbers and determine what this

quantity is and it turns out to be the square of the speed of light. So obviously, it  is

invariant,  because  we  know  that  the  speed  of  light  is  invariant  under  Lorentz

transformations.

It is the same for every observer, which satisfies us that, our rather unorthodox way of

defining  velocity,  which  is  to  take  the  ratio  of  proper  length  to  proper  time.  This

unorthodox way of defining the velocity is well justified and very rationalized, so this is

an obviously invariant quantity in every inertial frame.
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We defined  the  proper  momentum as  mass  times  proper  velocity,  which  is  again  a

straightforward extension of the classical idea.  So, you have the proper velocity, you

multiply each term by m and you get the proper momentum, which is again it has four

components  and  the  first  component  involves  the  speed  of  light.  So,  this  is  your

description of proper momentum, again you can ask if it is an invariant quantity and you

construct the scalar and you find that, it turns out to be m square c square, which is again

invariant.

Although one must be careful about, how you define mass and you will see, why it is

important to define mass carefully. So, I am use a mass, which is invariant in the Lorentz

transformations, it is a same mass at every frame of reference. And this is m square c

square,  so  again  this  is  a  manifestly  invariant  quantity  in  a  every  inertial  frame  of

reference. Now, if you look at this expression, it has got two terms, one is the quadratic

term in this velocity and the other is quadratic term in the speed of light, and if you take

the difference, essentially this is E square by c square minus p square.
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Now, what I am made use of is a certain relativistic well known expression and now we

have the dynamical variables with us, we have the momentum, we have got the energy.

And we can proceed to find, how to go about quantizing this and then, how to describe a

state vector and how the evolution of that state vector to be described. Because, we know

that  the  fundamental  problem  in  mechanics,  whether  it  is  classical  mechanics,  non

relativistic  quantum  mechanics  or  relativistic  quantum  mechanics,  essentially  is  the

same, how do you describe the state of the system and how does the system evolve with

time. So, these are the questions that we are going to discuss, but before we proceed, I

will like to remind you, alert you to, what exactly we mean by mass.
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Because, mass obviously appears in two of the most famous equations in physics, one is

F equal m a and the other is E equal m c square. I do not think that, anybody would argue

that there are any other relations in physics, which are more famous than this, including

perhaps Maxwell’s equation, that this one is not right. So, first of all, I like to discuss

this, because you must understand exactly what you mean by mass. Because, the correct

way of writing this expression, which establishes the equivalence between energy and

mass.

This whole relationship between energy and mass is about a establishing the equivalence

between energy and mass, that it what have you make a bomb. Now, you and I may not

be interested in making a bomb, although some of you maybe, who knows.

Student: ((Refer Time: 33:08))

Now, I am going to explain this, there is good reason why I raised this, you will see very

soon in next few minutes.  It  is  not the same, because the whole idea of introducing

energy and mass and writing this relationship is to be able to convert mass into energy

and vice versa. This is to establish the equivalence and if the two are equivalent, you

cannot be required to introduce a relativistic energy and the relativistic mass, just one

will do, that is the key to understanding this, but I will explain this further.



Let us look at this expression,  this  is the correct expression, E equal to gamma m c

square, rather than E equal to m c square. This is the correct expression and write this as

m c square into the factor gamma, which is 1 over this square root factor. Go ahead and

expand this 1 minus x to the power minus half, which the little  kid on the treadmill

perhaps would do and you have various terms.

(Refer Slide Time: 34:35)

And if you look at the first term, that is what gives you m c square, if you look at the

second term, you get the non relativistic kinetic energy, which is half m v square. And

then, you get corrections of various orders, which go in multiples of v square over c

square. So, with that factor, those subsequent terms become weaker and weaker and you

can truncate it as you like.

And depending on the level of the approximation, even the first term which is the half m

v square, would be of interest, m c square would not count, because you are going to

measure only changes in kinetic energy, so it is a constant quantity for any mass. So, it

really  does  not  matter  and this  in  fact,  is  the  correct  expression  for  the equivalence

between energy and mass, not E equal to m c square. So, E equal to m c square would

give only the constant term in this complete expansion.

Now, the m c square itself does not really matter very much in our observations, I will

like you to note the third term, which is the leading term, which is leading relativistic

correction  to  this,  goes  as  a  fourth  power  of  the  velocity  or  the  fourth  power  of



momentum,  I  am going to  come back to  this  much later. But,  I  want  to  draw your

attention to this, because it will be of some importance at a later point.

(Refer Slide Time: 36:14)

Now, look at  the  expression  for  this  energy gamma m c square,  if  you are  looking

applying this  relation for a photon. Now, the photon is  the mass less particle,  which

moves at the speed of light, it always does, if it exists and moves at the speed of light.

So,  v  is  equal  to  c  for  the  photon,  so this  is  1  minus c  square  by c  square,  so the

denominator goes to 0, the numerator m goes to 0, because it is a mass less particle.

So, you get 0 over 0, that would make it impossible to define energy for a photon, but the

photon has energy, you know it. In fact, you and I live, because we get this energy from

the light, we get from sun light. So, photon has energy and this expression would give

you 0 over 0, which is indeterminate.
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Now, it turns out that, the question of whether the photon is a mass less particle or not, is

intimately  linked to,  how well  we know the Coulomb’s law, the inverse square law.

These  two are the same questions,  consider  this,  look at  the  Coulomb potential,  the

inverse square tells you that, the potential goes as 1 over r. The 1 over r potential is what

gives  you the inverse  square  law, take  a  different  kind  of  potential  like  the  Yukawa

potential.

Now, I have constructed a numerator here and I am chosen an exponent to include the

mass, the speed of light and the angular momentum. So that, the dimensions are m c over

h would cancel and you get a number and if you let this mass go to 0, you would get the

Coulomb’s law. Now, what is interesting is that, the mass going to 0 is linked to the

Coulomb’s law.

If one of the other was different, you would find some incompatibility between these

correlations. And this is what, I applied when I said that, the question of rest mass of a

photon is intimately linked to, how accurately we know the Coulomb’s law. If it was any

different then, it would require a mass, which is non zero.
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So, if we were to apply this relationship to light, we would get an indeterminate quantity

for the energy of the photon, but that is not a worry. Because, this relation that we got

from the invariant scalar constructed from the four momentum, it still  holds with the

difference  that,  now we should allow m to be 0,  no problem.  But,  let  us  define  the

momentum using  the  de  Broglie  wave,  because  if  you used  p  using  the  de  Broglie

wavelength, you get E equal to p c, which is h c over lambda, which is h nu and then,

you do not have any problem defining the energy of a photon. I have highlighted this,

because you could also write this E equal to c p, but I prefer that, you write E equal to p c

because then, it associates energy with mine issues.
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I do the same with the CPT theorem, which I always called as PCT theorem and this

brings me to the other relation, why it is not appropriate to define a relativistic mass,

which some books and some literature actually do. Because, you really deal with only

one mass and you need to deal with only one mass, if mass and energy are equivalent and

they are. So, it becomes pointless to introduce another mass, which is gamma times m,

they may be mathematically arithmetically equivalent, but this is completely redundant.

And then, you must define E equal to gamma m c square,  the only mass that I will

always referred to is the rest mass, which is what makes m square c square invariant in

all  inertial  frame  of  references.  It  is  a  conclusion  that,  we  are  going  to  base  our

formalism on and it also means that, E is equal to gamma m c square, rather than m c

square. So, we will proceed with this and now, what we want to do is to quantize the

system.

So, we have got the momentum and what we did in non relativistic quantum mechanics

is  to  quantize  a  momentum,  replace  the  momentum  by  the  gradient  operator.  We

discussed, why you need the gradient operator, so we expect something similar, we do

expect the gradient operator. After all, non relativistic quantum mechanics is not absurd,

it has given us an excellent results. So, it is something that must be corrected for, there is

no doubt about it, because it did not take into the account the fact that, the speed of light

is finite, no matter how large, it is huge, but it is finite. So, it must reconcile with that and



we can borrow many things from non relativistic mechanics, but not everything. So, we

are going to be guided by our method of quantizing momentum by expecting a gradient

operator.

(Refer Slide Time: 43:01)

But, we have to be prepared for some modifications and we have to look for quantization

of this four momentum, rather than the three momentum that we did in non relativistic

quantum mechanics. So, this is our four momentum and this is how, we quantized it in

non relativistic quantum mechanics. So now, our four momentum and this mu will take

four values 0 1 2 and 3, these are the four values of the index mu.

And there is a gradient derivative operator for each one of them and this is what the

operators  are,  this  would  be  a  natural  extension  of,  what  we  did  in  non  relativistic

quantum mechanics. This is the covariant one, this is contravariant one and you have a

minus sign here, but a plus sign over here and this you know comes from the fact that,

the signature that we have been using is this, plus 1 minus 1 minus 1 minus 1, so it

relates to that.



(Refer Slide Time: 44:12)

And now, we have the operator p 0, for which the quantum operator would be i h cross

del  over  del  c  t,  you  take  the  corresponding  variables  and  this  is  your  complete

quantization prescription. Now, this is how, we would go about quantizing it and then,

we are going to have to ask, does it lead us to satisfactory physics. We have followed, we

have taken some guidelines from non relativistic quantum mechanics, you have taken

guidelines from the special theory of relativity, as introduced in classical mechanics. We

have put it together and we have come up with a scheme for quantization.

(Refer Slide Time: 45:17)



But then,  we have to proceed, because we have to describe the state  of the physical

system and see, how this system would evolve with time. So, the quantization would

require these operators, these would need to operate on the state vector of the system or

the wave function and then,  you come up with a  wave equation.  So,  this  is  a wave

equation that you would get, so this is a quantization scheme.

(Refer Slide Time: 45:49)

So, far so good, looks fine and when you put in all of these operators in this relation, you

get  what  is  called  as  the  Klein  Gordon equation.  All  we have  done is  to  put  these

operators in this relationship over here, which comes from the Lorentz invariant quantity.

So, this is the Klein Gordon equation and this is the relativistic quantum mechanical

equation.



(Refer Slide Time: 46:17)

And I am going to conclude today’s class over here, tomorrow we begin from here, I will

mention certain difficulties with the Klein Gordon equation and quickly go over to the

Dirac equation, which is the one of interest was in atomic physics. It is a Dirac equation,

which would describe the electron in an atomic system, that is what I would introduce

tomorrow. Is there any questions, I will happy to take?

Student: ((Refer Time: 46:53))

It is and it serves well to a certain extent, it also creates some difficulties, I will mention

some of it. I would not spend too much time on it, because the relationship of specific

interest was for our interest in atomic physics is the Dirac equation, rather than the Klein

Gordon, so I will very quickly go over to the Dirac equation.

Student: ((Refer Time: 47:23))

Also by Dirac, I will discuss about these things in the next class, any other question, if

not goodbye for now.


