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Greetings, today we will introduce to the Wigner-Eckert theorem, and also conclude the

second unit.

(Refer Slide Time: 00:33)

Now,  we  introduce  in  our  last  class  certain  vectors,  which  were  composed  of  the

irreducible  tensor  operators,  and  angular  momentum  of  vectors.  Now,  we  were

encouraged to do this by recognizing that angular momentum vectors, and irreducible

tensor operators both respond, similarly to rotations, fact one. Second fact that angular

momentum vectors are coupled using the Clebsch-Gordan coefficient, so we asked if we

could coupled the irreducible tensor, operators could not be coupled using the same law

of addition. Have we discovered that indeed they can be coupled, and you get a new

vector, which is also an irreducible tensor operator.

A new construct by combining two irreducible tensor operators, we get a new tensor

operator again. So, now we have a mixed creature, which we know is a vector, because it

is a result of an operator X operating on a vector, so the result of course, will be a vector

and then you are summing over q 1 and q 2. So, it is a linear super position of various



vectors, on this will give you a new vector which I have denoted by a this beautiful

bracket on the left hand side, it could be any bracket it does not matter.

And our question is,  what  kind of a vector is  it  and we expect it  to be an angle of

momentum vectors and if it is so it will need to satisfy the defining criterion for angel of

momentum vectors, and it should have similar response to rotations. So, we ask how

does it respond to the rotation operator, so the same vector written with all the labels

with the full notation. Because, this is the vector which is made up of k 1 and k 2; k 1 is

the rank of the tensor, and k 2 is the angular momentum of this, so k 1 and k 2 are like j 1

and j 2 in dices, so those are the quantum numbers. But, one corresponds to the angle of

momentum vectors, the other corresponds to the irreducible tensor operator. So, this the

full notation for the same expression at the top and the Clebsch-Gordan coefficient is

now written fully over here.

(Refer Slide Time: 02:55)

And we are asking how does this  vector respond to rotations,  so what we will do is

consider  the  response  to  rotations.  So,  the  rotation  operator  is  going  to  operate  on

whatever it certainly does nothing to the scalar, which will just come out as scaling factor

multiplier. And then it would operate on this vector here, which is the result of the vector

obtain by operating on this vector by the irreducible tensor operator X. So, this operator

U is positioned over here and in between over here I have inserted a unit operator.



The  rotation  operator  being  a  unitary  operator  U  dagger  U  is  unity  and  I  have

sandwiched a unit operator in between, so there is no loss of generality there. And the

advantage  of  doing  this  is  that,  you  can  factor  this  multiplication  because  operator

multiplication is associated with multiplies both to the left and right depending on how

you look at this association. As long as you do not play with the order, the order you can

play  with  only  for  commuting  operators,  but  otherwise  you  can  always  have  the

association. And I can associate this unit operator which was inserted over here, and look

at what is inside this red loop. And this is nothing but the response of the irreducible

tensor operator X to the rotation operator, and we know what the law is.

(Refer Slide Time: 04:44)

So, we find that we have over here in this red loop, the response of the irreducible tensor

operator  to  rotations,  and  in  this  blue  loop  we  have  the  response  of  the  angular

momentum vectors to rotations, and both have similar responses. And we are able to get

it by inserting this unit operator, factor as U dagger U of which this UV associate on the

right and this U dagger we associate in this block. Now, we know what this response of

the irreducible tensor operator to rotations is, you get a linear super position of all the

members of the family of irreducible tensor operators.

The weight factors are nothing but the matrix elements of the Wigner D matrix and

likewise this also has got a similar response. And now you already have summation over

four indices, there is a summation over q 1, there is a summation over q 2 over here, now



you have got the summation over q 3 and a summation over q 4, so there already are four

summations.  Now, what do you have over here, you have a product of this D matrix

element with this D matrix element, and you can look at this product using the Clebsch-

Gordan series which we have studied earlier.

And if you remember the result of the Clebsch-Gordan series, it expresses this product in

a triple sum and now there will be three more summation indices, q 5 q 6 and q 7, so

there will be total of 7 dummy indices over which summations are carried out. Although

you  can  exploit  orthonormality  condition  and  so  on,  and  contract  them,  what  the

orthogonality relations are. So, I will leave it as an exercise, and you can work out these

contractions very easily by using the orthogonality relations. And it turns out that all of

these  7  summation  contract  very  nicely  exploiting  the  properties  of  Clebsch-Gordan

coefficient, and the orthogonality conditions. And you are left with only one sum, and a

single sum all those 7 through the chronicle deltas, they contract was single sum and the

result is this.

(Refer Slide Time: 07:28)

That  the response of this vector to rotation, is that you get a super position of similar

vectors with m prime going from minus j to plus j, and the weight factor the coefficient

are nothing but the Wigner D matrix elements. What does it mean that, this beautiful

bracket, this construct in the beautiful bracket is also an angle of momentum vectors. It is

not something that we were willing to take for granted, because we had not introduced it



using  angle  of  momentum vectors,  we had  constructed  it  by  coming  up with  super

position of the irreducible tensor operating on an angle of momentum vectors, waited by

certain Clebsch-Gordan coefficient.

And then carrying out some according to a law, which we know combined two angular

momentum states, so we use the same law to compose this vector, and we find from the

fact  that  it  has  the same response to  rotations,  it  is  actually  an angle of  momentum

vectors and you can write it in the full notation with all the dices plugged in. So, k 1 and

k 2 which were suppressed earlier can be put inside as well, and this is our conclusion

that this combination, this method, this prescription of con constructing a new vector,

actually gives us an angle of momentum vectors.

(Refer Slide Time: 08:58)

You can also show and this is also left as an exercise that this vector is an Eigen ket of J z

belonging to an Eigen value m h cross, and that the ladder operators operate on it just the

way they do on angle of momentum vectors. So, these properties are not surprising, but it

is good to work them out just to get confidence in this. 



(Refer Slide Time: 09:30)

Now, we are ready to work with the Wigner-Eckert  theorem, this  was introduced by

Wigner-Eckert independently around the same time 1930 and 31. And what it does is, it

deals  with  the  matrix  element  irreducible  tensor  operator,  now  this  is  obviously,

important,  because  physical  interactions  are  represented  by  operators  in  quantum

mechanics. It is physical interaction which caused the transition of a quantum system,

from a certain initial state, to a certain final state, and this is denoted by a matrix element

of this kind, that if omega is a certain operator which corresponds to physical interaction,

which induces a transition from an initial state to a final state.

That this matrix element is a major of the probability amplitude for transition from the

state  i  to  the  state  f.  And  this  physical  interaction  which  for  ask  is  now  a  certain

irreducible tensor operator, we have now to look at the matrix elements of this tensor

operator. Now, the  state  i  and the  state  f  will  be  labeled  by  a  appropriate  quantum

numbers,  it  will  be label by what we call  as good quantum numbers, these quantum

numbers  would  typically  consist  of  the  angular  momentum  quantum  numbers.  The

quantum numbers of j square and J z, they will also include quantum numbers of some

other operators, such as the Hamiltonian.

So, there will be also be an energy label and essentially, you will have a complete set of

commuting operators or complete set of compatible observables, which will give you the

right set of good quantum numbers for the complete system. And the label i and the label



f represent the complete set of good quantum numbers, for the initial state and the final

state  respectively. And we are interested in  finding what  is  the transition probability

amplitude for the transition from i to f and essentially we have to look at this matrix

element.

(Refer Slide Time: 11:47)

Now, let us do a little bit of angular momentum of algebra here, because we know from

the defining relation that,  the irreducible  tensor operator  have got very specific  well

defined computation relation with angular  momentum operator;  that  is  an equivalent

definition, that we have already learned earlier. So, we take this expression which we are

already familiar with, and we determine the matrix element of the operators on both the

left and the right in angular momentum states. So, we take this operator and take it is

matrix element in the state j m and j prime m prime and do the same on the right hand

side, of which this factor comes out as a multiplier.

And then you have to take the matrix element of this T k q plus or minus 1 in the states,

so we begin with the relation which is an identity, which comes from the definition of the

irreducible tensor operator. And take its matrix element in angular momentum states,

now on the left hand side you have got a commutator of J plus with T k and J minus with

T k, so you get two terms J T minus T J. And these are the two terms I have written on

the left side, which is J T over here minus T J, but J subscribe are plus or minus, so I am



dealing with two equation at a time, one corresponding to the plus sign and the other

corresponding to the minus sign.

(Refer Slide Time: 13:28)

So, you have two terms at the left hand side here they are, now this is something that we

know, because we know how an angle momentum state responds to the ladder operators,

and this is the same thing happening in the joints space. So, we know the results of these,

and we use those results and plug in that expression, so how does j m respond to J plus

and J minus you get the m index switched by unity. It goes either up or down depending

on this ladder operator being J plus or J minus, and you know what the corresponding

coefficient over here is.

Now, you can take the joint  of this  relation,  so this  is  just  that  joint  of this  relation

((Refer Time: 14:16)) and since this is an adjoin, the joint of J plus and J minus and the

joint of J minus is J plus, they being a joints of each other; you switch the sub switch

over here minus and plus and you have this relation here. So, this J dagger plus minus

become J minus or plus at the right hand side is the same, because the left hand side are

the same. So, the right hand side are essentially the same, but here we need the matrix

element of J plus minus, so the plus is on the top and minus at the bottom.

So, we have to aim to change these two signs, so let us do that, so first before I do that I

drop the label j m, I change this label from j m to j prime m prime. So, all the j and m are



replaced by the corresponding primed labels, because that is what I am going to insert

over here.

(Refer Slide Time: 15:26)

And now I have this relation for J minus and J plus from which by interchanging these

two signs, I have the relation for J plus and minus which is what I need over here, and

these symbols this was minus or plus. So, this is changed to plus or minus and you have

the same change in sign in every location, so you have to do it consistently. It is very

easy, but it is important to keep track of these details otherwise, it is very easy to make a

careless mistake.



(Refer Slide Time: 16:10)

So,  now we have everything that  we really  need,  we have both the relations  J  plus

operating on j m and this one in the joint space, so this is the relation for the joint space,

we use both the results. And now you have matrix element of this operator T in angular

momentum state, because this result is plugged in from here, this result is plugged in

from the first relation here. And now you have these multipliers h cross times the square

root terms with the appropriate plus minus signs, you remember how we got them; and

then what you are left with are one term coming from here, second coming from here.

So, this is the matrix element of T k q which is this operator, so there are two of these on

the left hand side and one of this on the right hand side, whose index is different. Now, is

this relation a little familiar, does it look like something you have seen before, that looks

like recursion relations Clebsch-Gordan coefficient. It is not the same, but it is similar, it

is obviously, not the same, so this is what we have got.



(Refer Slide Time: 17:37)

These  are  the  matrix  element  of  the  irreducible  tensor  operators,  and  the  recursion

relation for the Clebsch-Gordan coefficient have an exactly identical form, and you can

study term by term very carefully. And you discover that it is actually exactly the same

with the difference that the matrix element of the irreducible tensor operator are replaced

by the Clebsch-Gordan coefficient, in the expression for the recursion relations, that is

only difference.

Otherwise they are absolutely isomorphic term by term, what it means that you have got

a  family  of  equations,  these  are  linear  equations  one  in  x  and  the  other  in  y,  the

coefficient being the same. Because, the coefficience are exactly the same, these square

root terms with these are the coefficient, the square root terms this one ((Refer Time:

18:37)), then this one and this third one, and they are corresponding coefficience in the

expression for the recursion relation for the Clebsch-Gordan coefficient.

So, these square root terms are exactly the same, and when you have such a system of

equations,  then  from  your  knowledge  of  linear  equations,  that  the  ratios  of  the

corresponding term must be exactly identical, that is something that you know from your

knowledge of linear equations. Essentially what it means, that x j is proportional to y j

and  x  j  over  y  j  is  a  certain  constant  which  is  a  ratio,  so  there  is  no  very  involve

mathematics, which we have to invoke in getting this relation.



And what it tells us that, if you take the ratio of the matrix element of the irreducible

tensor  operator,  though  this  corresponding  term  over  here  which  is  nothing  but  a

Clebsch-Gordan  coefficient  and  all  of  you  are  now  expert  on  Clebsch-Gordon

coefficient. So, this ratio is what I have called as rho and this remains the same, no

matter what the indexes.

(Refer Slide Time: 20:02)

So, this is our relation, and this ratio allows us to introduce what is called as a reduce

matrix element, so this is just a math of notation the same ratio. So, you have got a

matrix element of the irreducible tensor operator in two angular momentum states, one is

j m the other is j prime m prime. Or you can use m double prime if you like, because

here you have used m prime minus or plus 1, it is some index. So, you have got the

matrix element of irreducible tensor operator, it bears a ratio to the angular momentum

coefficient, which is denoted by this rho.

And you can introduce a new notation which is rather convenient, because this ratio is

independent of the azimuthal quantum number m, it does not appear anywhere, but it

does depend on the angular momentum quantum numbers and the rank of the tensors.

So, it does depend on j prime, it depends on j, it depends on k, so this rho has a certain

dependence on j j prime and k. And then, you can write it as a function or introduce them

as parameters or introduce some notation, which explicitly tells us that, this ratio is going

to depend on j j prime and k.



And this  is  a  notation  which  is  introduce,  this  is  called  as  a  doubled  barred  matrix

element or reduce matrix element, this is the definition of the reduce matrix element.

And you can take this coefficient in the denominator to the right by cross multiplying,

and you have got an expression for the matrix element of the irreducible tensor operator,

which is a product of this reduce matrix element of the double barred matrix element

times the Clebsch-Gordan coefficient, this is the just cross multiplication.

And some books tell us that this is a theorem as well as a definition, because what it does

is a defines the reduce matrix element, it gives us the definition of the reduce matrix

element. We know that it came from the system of the linear equations that we solved, by

comparing the recursion relation for the Clebsch-Gordan coefficient with the relationship

we get, for the matrix element of the irreducible tensor operators. And this essentially is a

statement of the Wigner-Eckert theorem, we have actually proved it as you have just

seen.

And what is very nice about it is that, it tells us that the matrix element of a physical

interaction represented by an irreducible tensor operator, can be actually factor into two

pieces, one is this piece ((Refer Time: 23:17)) and the second piece is this.

(Refer Slide Time: 23:29)

So, whenever you have a certain quantity which you can factor into two pieces, then you

can look at each factor and get some independent physics out of it. So, this factor is the

geometry that is where the geometry is not work, because the excess of quantization is



along, let us say the z axis J dot U, is what can be simultaneously diagonalize with j

square.  So,  J  square  and component  of  an  angular  momentum along some direction

whatever, it is some unit vector U or you can call it as z if you like, that is how you

choose the z axis.

But, that is where the geometry is, and those quantum numbers which are coming from

the Eigen values of j z or they are coming from the Eigen value of J dot U. Those are the

only quantum numbers which appear in the geometrical part, because that has to do with

the access of quantization which is got a certain orientation in space. The remaining part

what is call is a physical part, so the matrix element of the irreducible tensor operator is

now  expressible  as  a  product  of  two  pieces,  one  is  a  physical  part  and  other  is  a

geometrical part.

And this off is great convenience and you will see some of the application as I will

discuss now, so this is the statement and the proof of the Wigner-Eckert theorem, along

with  the  definition  of  the  reduce  matrix  element.  So,  the  geometrical  part  consist

essentially of the Clebsch-Gordan coefficient.

(Refer Slide Time: 25:14)

And it  is  just  a  matter  of  notation,  because  there  may be  some additional  quantum

numbers which I have indicated by mu, because after all the quantum system is described

by a  complete  set  off  good quantum numbers,  which  come from Eigen  values  of  a

complete  set  off  compatible  observation.  So,  there  may be some additional  quantum



numbers, which you can indicate by mu and mu prime, this root 2 j prime plus 1 again is

the fact it depends on the value of j prime.

And the left hand side this physical part already has a dependence on j prime, so some

authors this root 2 j prime plus 1 in the definition of the reduce matrix element, it is just a

matter of convention, so that is not a such a big things. So, you will find some books in

which this root 2 j prime plus 1 is not written whereas, in some books you will find that

it is written, and it is just a matter of some convenience you can always factor it out. And

the essential ingredient of the Wigner-Eckert theorem is the factorization of the matrix

element  into  a  physical  part  and  a  geometrical  part,  so  it  is  got  very  important

applications.

(Refer Slide Time: 26:38)

And the  first  one  is  the,  one of  the  most  important  ones  that  I  will  discuss  are  the

spectroscopic selection rules,  which I  am sure you are familiar  with.  Everybody has

some familiarity with what are known as the dipole selection rules, and you will see how

they come into play. So, now you know that because a transition from a initial state to a

final state by any physical interaction is  affected through this  mediator, which is the

operator, sandwich between the angular momentum state, at this matrix element is factor

into a physical part and a geometrical part.

If the geometrical part is 0 then of course, the transition probability amplitude is 0 and

Clebsch-Gordan coefficient goes to 0, if this q is not the equal to the m 1 plus m 2, so the



selection rules. The triangle law of equality, because here in combine these Clebsch-

Gordan coefficient when you combine j and k to get a j prime, then j prime will belong to

this range to a minimum to a maximum, where in the minimum is given by a modulus of

j minus k and the maximum is j plus k.

This is the triangle law of an equality, which is involved in the coupling of two angular

the momentum and if this is not satisfied the angular momentum coupling does not take

place, it goes with the angular momentum coupling. Now, this especially gives you a

selection rule, because unless this condition satisfied, the transition will not take place;

what does it mean, this is triangle law of an equality which we have discussed earlier.

(Refer Slide Time: 28:46)

Now, if this interaction is a vector interaction, and let me use the result which you might

have  studied  in  time  dependent  perturbation  theory,  now  we  will  be  independently

dealing with this when we do some spectroscopic, and we will redevelop the Fermi's

golden rule, But, some of you possibly have an acquaintance with the Fermi's golden rule

from your  earlier  course  and  quantum mechanics.  And  you  will  remember  that  the

transition probability to a state f is given by the square of the matrix element and then,

there are delta there is a square of the coupling vector potential A and so on.

So, this relation we will redevelop again independently when we do spectroscopic, but

for the time being I will use it to illustrate the application of the Wigner-Eckert theorem,

because here you see that the transition is affected by this operator. You see the gradient



over here which is of course, the momentum operator, this e to the i k dot r is coming

from the vector potential. And you can expand this e to the i k dot r in powers of r over

lambda, lambda being the de Broglie wavelength of the electron, and if lambda is large

compare to r, compare to the atomic size.

So, you have what is called is a long wavelength approximation, which is equivalently a

low energy approximation, and when you expand empowers of r over lambda the low

energy approximation, the first low energy approximation is what you get, when you set

e to the i k dot r equal to 1, take the leading term. Now, this is what is called as a dipole

approximation, and the reason it is call as a dipole approximation is because when you

put this e to the i k dot r equal to 1, then you get essentially the matrix element of a

momentum operator. And you will see that you can write this also as the matrix element

of  a  dipole,  now the first  step is  to  recognize that  this  matrix  element  is  the matrix

element of a momentum operator. You see that, because of the gradient operator, so the i

over h cross takes care of that.

(Refer Slide Time: 31:22)

And then,  that  if  you write  the  commutation  between  the  position  operator  and  the

Hamiltonian, then this competitor is equal to i h cross over p time the momentum, which

means that the matrix element of the momentum operator can be written as a matrix

element of the r H minus H r. The matrix element of the momentum operator here, can be

written equivalently as a matrix element of X H minus H X, now H 0 operating on i



either on the right or H 0 operating on left on f, because it is a hermitian operator we

know that anyway.

So, that will give you the corresponding Eigen values and then, you have to take the

matrix element of the position operator. And the matrix element of position operator, the

position times charge is the dipole, the position displacement times the charge is the

dipole, which is why these are known as dipole transition. So, now we know what is

involve in the dipole transition the dipole is a vector.

(Refer Slide Time: 32:42)

So, you have to take the matrix element of an irreducible tensor operator of rank 1, a q

vector operator is a tensor of rank 1, so k is equal to 1; the triangle of an equality must be

satisfied with k equal to 1. So, j minus 1 must be less than or equal to j prime and this

must be less than or equal to j plus 1, all have done is to recognize that I have got a

dipole, which is a vector operator tensor of rank 1. And this essentially tells us that delta

will  have to be either 0 or plus or minus 1, so that is a selection rule, that a dipole

transition can take place, if and only f delta j is either 0 or plus or minus 1.

Now, so far so good, but you cannot have a transition from j equal to 0 to j prime equal

to 0, the reason this is excluded is very simple, because one must be less than or equal to

j plus j prime. But, if both of these are 0, then one cannot be less than 0 even in atomic

physics, so delta j equal to 0 or plus or minus 1 is the selection rules, with the exclusion.

So, j equal to 1 to j equal to 1 is allowed, because delta j is 0, but j equal to 0 to j equal to



0 is not allowed, so these are the dipole selection rules. And essentially you see that they

come straight out of the Wigner-Eckert theorem in a very simple paschan.

(Refer Slide Time: 34:26)

So, there are some specific applications of the Wigner-Eckert theorem, when you deal

with  the  angular  momentum  operator  itself,  now  this  relationship  is  valid  for  any

irreducible tensor operator and therefore, it will be valid also for the angular momentum

operator.  So,  if  you  write  the  angular  momentum,  you  can  write  it  an  Cartesian

components or you can write it in corresponding spherical components. So, you have got

spherical components of the angle of the momentum as j 1 1 j 1 0 and j 1 minus 1. And

this is nothing but the J z component and because that this clebsch-gordon coefficient

must necessarily have q equal to 0 for this particular components, it means that m and m

prime must be equal.



(Refer Slide Time: 35:27)

So,  that  is  you get  that  and m must  be  equal  to  m prime,  so that  is  what  I  put  in

expression  for  the  Wigner-Eckert  theorem.  I  have  k  equal  to  1  which  is  the  tensor

operator rank 1, I have got q equal to 0 m prime equal to m.

(Refer Slide Time: 35:44)

And now on the left hand side, I can actually solve this relationship, because this is and

Eigen ket of J z, so this is an Eigen cite of J z and then, you just have the projection of j

m on j prime m prime, which will give me delta j prime j and also delta mu prime mu.

Because, of the orthonormality between the mu and indices, so this is a very simple



relationship it has many applications and spectroscopy, you can strike out the common

terms that the m prime must be equal to m.

So, this m 1 the left hand side must be equal to this m prime on the right hand side, so

this m 1 the left hand side must be equal to this m prime on the right hand side. And you

get the double barred matrix element of the angular momentum given by this square root

factor and bunch of chronicle deltas.

(Refer Slide Time: 36:37)

Now,  this  angular  momentum  could  be  anything,  it  could  be  the  orbital  angular

momentum l, in which case the square root of j into j plus 1 into 2 j plus 1 becomes

square root of l into l plus of 1 into 2 l plus 1 whereas, if it is spin and the value of span

which is half. So, if you just put half for these values of j, you get root 3 by 2 times h

cross, and the chronicle delta between mu and mu prime.



(Refer Slide Time: 37:05)

So, the only thing I will like to mention here is a matter of notation, otherwise we have

pretty much done with the angular momentum algebra and the wigner-eckert theorem, is

a math of notation that in many books, you will find that the wigner 3 j symbols are used.

Wigner  3  j  is  just  defined  in  terms  of  clebsch-gordon  coefficient,  clebsch-gordon

coefficient you have handled quite extensively by now. And by carrying out these double

sum you can express this in terms of the clebsch-gordon coefficient, but you can also

have in inverse relation, because of the orthonormality conditions.

So, that is the simple exercise for you to work out, so I will not spend time on that and

there is a certain, this is again a math of notation, essentially this is square root of 2 j plus

1. But, some books write it as j in a square bracket, in a rectangular bracket raise to half,

so  this  is  again  a  math  of  notation.  And  here  you  find  that,  these  are  the  quantum

numbers which go into the angular momentum coupling, the two angular momentum j 1

m 1 and j 1 m 2 coupled to give you j m.

But, in the wigner 3 j the index here is minus m, so that the sum of these 3 m indices

vanishes, so there is some advantage in having a notation of this kind, this called is a

wigner 3 j symbol and depending on how complex angular momentum algebra gets.

Sometimes you work with coupling of more than two angular momenta,  coupling of

three  angular  momenta,  coupling  of  four  angular  momenta,  because  you  may  have

multiple sources, when you have an the angular momentum for a whole atomic system.



Then there are number of electrons each having it is own orbital's angular momentum,

each having it is own spin angular momentum, and you need to compose the addition of

all of them to get that net angular momentum. We discussed this yesterday, when we

argued  that  it  is  important  to  define  the  angular  momentum of  a  dynamical  system

correctly. Because, the corresponding angular momentum Eigen states must transform

together jointly  in the product space,  so you often have to  combined more than two

angular momenta.

And when you have to do that you introduce what are known as Wigner 6 j symbols or 9

j symbols, so the algebra where comes little more complex, but not difficult it is little

laborious it takes time. But, there is no new physics which is involved in it, and the basic

elements of physics are essentially the coupling of two angular momenta, so with that I

believe we are ready to conclude this second unit.

(Refer Slide Time: 40:04)

And I will like to take up some applications as spectroscopy, which is the heart of atomic

physics in a certain sense, and I will be taking a slightly unconventional root to this.

Because,  very often even when I  have thought  this  course earlier, I  have introduced

spectroscopy, before I did the Dirac equation other relativistic hydrogen atom. I have

chosen to reverse the order, I will first do the Dirac equation and the relativistic quantum

mechanics before I do spectroscopy.



Because, essential of factor which is of interest spectroscopy are when you do things like

Zeeman effect, you must know what are the electrons spinners. And you can plug in

electrons spin as an ad hog property, you begin with the Schrodinger equation and then,

say that you postulate that the electron has got an additional internal degree of freedom

which  is  the  electrons  spin.  And  it  has  got  a  angular  momentum,  and  it  has  got  a

corresponding magnetic moment, but then it is like a partiality that you have to insert on

an ad hog basis.

Instead  I  would  rather  do the  Dirac  equation  first,  because  when you do relativistic

quantum mechanics spin comes out naturally, so you do not have to make any ad hog

assumption, spin comes out naturally. And it is appropriated do the relativistic quantum

mechanics,  because  the  Schrodinger  equation  is  not  covariant  under  Lawrence

transformation,  it  cannot  be.  Because,  you have got  the potential  energy term in the

Hamiltonian, which is space dependent and space does not, it is not a space in trivial is

not invariant in the Lawrence transformation.

It is the interval in the mean course keys space, in the space time continuum which in

invariant, so the Schrodinger equation is not the correct equation of quantum mechanics

it is a very good approximation. And the reason you need to improve on it, is because the

speed of flight is not infinite, the speed of flight happens to be finite and that leads to

various consequences. The major consequence is that of the special there of relativity,

and we will then, find in appropriate quantum equation which is relativistic correct, and

that is what we get from Dirac.

So,  that  will  be  our  subject  for  unit  3,  I  will  be using  Bjorken and Drell  book the

relativistic quantum mechanics for this purpose. And it is a very good book, and many of

you might be able to get a handle of that; now if there any question on unit 2, I will be

happy to take or else good bye for now.


