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More on ITO, and the Wigner - Eckart Theorem

Greetings, so we intent to introduce the Wigner Eckart Theorem we will be studying it

and also proving it.  But,  before  that  we are  sought  of  laying the foundation  for  the

winger  eckart  theorem,  which  as  I  mention  is  an  extremely  important  theorem  in

quantum mechanics. And the foundation requires a very strong you know, background in

angular  momentum  algebra,  so  we  do  various  things  with  the  angular  momentum,

operators and the irreducible tensor operators.

(Refer Slide Time: 00:54)

So, one of the question that I am going to discuss today is that, if you have a certain

vector, what is the condition and a rich it becomes a vector operator is it automatic or is

there more to it. So, there are certain consideration which I will be discussing about this,

and these are some of the things that we need to equip ourselves to deal with the winger

eckart theorem, these are some of the questions that I want to discuss in today’s class.



(Refer Slide Time: 01:29)

But, before I do that I will illustrate how the recursion relations are used, so that you go

from one coefficient to another one, and let us take this example over here, we have

already discussed this.

(Refer Slide Time: 01:48)

So,  what  you do is  begin with a recursion relation,  we have already established the

recursion relation there are two of them. let us take this, and let us take a special case

with m 1 equal to j 1 and m equal to j minus 1, m can take all values from minus j to plus

j instead of 1. So, one of the value is j minus 1 now corresponding to this choice in this



coefficient here, this quantum number m plus 1 must be equal to the some of this chow

otherwise clebsch gordan coefficient is 0.

So, m 2 in this case must be the difference between this m plus 1 and m 1, so it is m plus

1 minus m 1. And since, we have chosen m to be j minus 1 it is j minus 1 plus 1 and then

you subtract j 1, so this is j minus j 1, so that is what you get for m 2. Now, rest of it is

very  straightforward  because  you just  substitute  all  of  this  quantum numbers  by the

specific values for this choice. So, wherever you have m you have j minus 1, so this is

the minus m. So, you have minus j plus 1 over here, here you have m, so it is replaced by

j minus 1.

Wherever you have m 2 like here, m 2 we found m 2 is j minus j 1, so m 2 takes a value j

minus j 1 over here. So, in this step all I have done is to use a recursion relation and only

substituted  the  quantum numbers  appropriately,  now let  us  have  look at  this  further

because we know the some of these terms will get simplified. For example, you already

see that the first factor under the square root here is j minus j plus 1. So, this is just one

multiplying the remaining factor right, and the remaining factor is minus 1 plus 1 cancel

each other and then you have j plus j. So, this whole thing will simplify to just square

root of 2 j.

(Refer Slide Time: 04:19)

So, let us do that, so this the same expression which I have brought to the top of the slide

and now I get square root of 2 j coming from this term. And likewise I simplify the



remaining terms, this is just mere substitution nothing very big about it, now once you do

that  you see that  the  recursion relations  are  giving  you a relationship  between three

coefficients. So, 1, 2 and 3 and quite; obviously, if you write this for this term it will

involve the difference between this term and this term, and that difference is what we let

the coefficient go either positive or negative. So, there is nothing very strange about a

coefficient going negative it is just the difference between those jobs. So, there is nothing

very strange about it, so let me call this is equation A.

(Refer Slide Time: 05:23)

Now, let us take the other recursion relation, now I am just demonstrating how you play

with these terms, you take the other recursion relation which also we have proved. And

in this you set m 1 equals to j 1 and m equal to j, but in this recursion in this coefficient

you must have this m minus 1 must be equal to m 1 plus m 2. So, m 2 must be m minus 1

minus m 1, but m minus 1 will be j minus 1 because we have chosen m to be equal to j,

and then you subtract m 1 from it and m 1 has been set to j 1.

So, m 2 now becomes j minus j 1 minus 1 now you do the same thing again, just go

ahead and substitute these terms in the recursion relation. So, here you get j plus m, so

that will become j plus j and here you have j 1 minus m 1, but m 1 has been chosen equal

to j 1. So, you get j 1 minus j 1 that will give you 0, so this term would vanish and you

will get some simplifications of this kind. So, this is just a matter of doing this carefully



and I let you workout the detail for yourself, I will only illustrate the technique just, so

that you know how this algebra is done.

(Refer Slide Time: 06:47).

So, now, you simplify this term and this j 1 minus j 1 this first term vanishes, and now

you have relationship between the remaining two coefficients, which is a most simply

relationship and I will call this as equation B. So, now, you have got two results one that

we got from the first  recursion relation and the second that we got from the second

recursion  relation,  and  these  are  the  two relations  that  I  have  called  respectively  as

equation A and equation B.



(Refer Slide Time: 07:21)

Now, notice that this term over here in equation A is exactly the same as what you have

over here in equation B. And you can there for borrow this result from equation 1 from

equation A and plug it over here a vise versa or either way right because these two terms

which are enclosed in this blue loop there exactly the same. So, once you do that you

have this left hand side, then you have this square root factor which is here, and then this

term is replaced by the right hand side of this divided by this square root of 2 j which

comes over here, so this very straightforward substitution.

(Refer Slide Time: 08:12)



Now, that you have this result and I write it for this coefficient, so this square root of 2 j i

again move to the right hand side. So, this root 2 j and this root 2 j give me a 2 j over

here, and now this is the relationship that you get right and now you can simplify this for

specific values of j 1 and j 2. So, this is the coefficient that you get and you have the

same term over  here,  so  you can  actually  combine  these  terms  and get  the  residual

relationship which will come out of it.

(Refer Slide Time: 08:57)

So, you have the same term coming in over here j 1 comma j minus j 1 minus 1 is same

over here, and this is j comma j minus 1 which is the same thing over here. So, when you

transpose and rearrange this term simplify this, and then take specific values let us put j 1

equals to half j 2 equal to half and j equal to 1. And just substitute these numbers, put the

specific  quantum  numbers  in  that  relationship,  and  you  can  get  a  much  simplified

relationship.  And then this is just arithmetic, this is half minus 1 plus half plus 1, so

minus 1 and plus 1 will cancel half into half will give you 1, save got 1 multiplying the

remaining factors, so you can do this arithmetic in a very simple manner.



(Refer Slide Time: 09:58)

But, you have to do it carefully and once you do that what you find is that this two

clebsch gordan coefficients, which is half minus half 1, 0 must be equal to minus half,

half  1 0 that  is  the result  that  you get.  So,  you get  some handle on the relationship

between the clebsch gordan coefficients by using this.

(Refer Slide Time: 10:20)

Now, let us extent this further let us use this result that we have just got in equation A,

when you plug it in and substitute all the numbers, you find the this coefficient turns out

to be 1 over root 2. So, that is it this how you get specific values and then of course, you



also  have  the  orthogonality  relationships,  and  by  making  these  orthogonality

relationships, you can get this particular block that we were interested in. So, using the

orthogonality  relations  and the recursion relations,  you can easily  get  the  rest  of  the

terms. So, this is just a demonstration of the technique and I will let you, you know work

out the details you know you can get some of the other coefficients just to get some

practice.

(Refer Slide Time: 11:12)

Now, you can also see the same result coming from thIS equation B, if you handle this

equation B in which you had this relationship. You can put j equal to 1 j 1 equal to half

and j 2 also equal to half and just plug in the actual values of these quantum numbers,

and simplify these terms and you find that this coefficient, which we know has got a

value equal to plus 1 right it has to be because that is the only one which can generate the

state 1, 1 that is the only one. So, you immediately get this coefficient to be 1 over root 2.

So, there are, so many different ways different roots to get certain result, and you know

essentially  what  you  doing  is  to  play  with  the  recursion  relation,  use  orthogonality

relationship. And you will be able to get all the clebsch gordan coefficients just from the

seed value, which is this which is m 1 taking it  is maximum value, m 2 taking it is

maximum value, j taking it is maximum value and m taking it is maximum value that

coefficient  must  be  unity.  So,  that  is  a  seed  coefficient  and  from this  you  can  get

everything else by using these recursion relations.



(Refer Slide Time: 12:40)

So,  now  I  really  take  up  the  question  that  I  really  wanted  to  take  up  for  today’s

discussion, as to when is a vector A vector operator. And we know what vectors are we

know what vector operators are and we need to address this question, and for a vector A

to  b  treated  as  a  vector  operator.  It  must  subscribe  to  the  properties  for  the  vector

operators, it is not enough there is side dissatisfied just the vector algebra, but it has to

side dissatisfied the algebra of the vector operators. And the vector operators, we know

they transform under rotations according to this rule. So, we have discuss this role and

we have seen that the wignor demetrics, elements, appear in these transformations.

(Refer Slide Time: 13:46)



So, this is the transformation of a irreducible tensor operator of frank k, you are taking

the q with component, and this is the defining relationship. So, this will be our guideline

this  is  the  basic  definition  of  the  irreducible  tensor  operator,  and this  is  completely

equivalent  to  these  commutation  relations.  So,  you can  define  the  irreducible  tensor

operator family, by this relation at the top or equivalently by this commutation relation,

the commutation with the generator of angular the momentum.

So, it is not surprising that they should be involved because when you deal with vectors

you always see how their components transform into the rotation of a coordinate access

right.  The generator  of rotation  is  the angular  momentum,  which is  why the angular

momentum operators get involved in the commutation relations, which define the tensor

operators of appropriate ranks.

(Refer Slide Time: 14:46)

So,  let  us take a  vector  operator  and these are  the spherical  components,  this  is  the

irreducible  tensor  operator  of  rank  1.  And  you  can  also  express  the  Cartesian

components,  as  you  always  do  and  then  you  have  these  relationships  between  the

Cartesian  components  on  the  spherical  components.  So,  there  are  the  transformation

which tell you how these tensor operators are related to the Cartesian components, they

both define essentially the same vector operators. So, it is just a matter of expressing

them either in Cartesian components or in spherical components, is much more much



nice say to express them spherical  terms because that  is  how the algebra of angular

momentum is developed.

(Refer Slide Time: 15:43)

And to study the fundamental criterion of when a vector A is a vector operator one must

study this response to the rotation.

(Refer Slide Time: 16:01)

So, let us find an equivalent criterion for this, so this is the response of a component to

rotations, and the corresponding equivalence with Cartesian components is given over

here. That if this relation holds, then the commutation of A i with J i would vanish when



both are the same components, if you take different components A x with J y, then this is

A x J y minus J y A x then this must be i h cross A z, this very similar to the angular

momentum commutation relation.

So, the angular momentum itself is an angular momentum vector operator, so this natural

that you should expect that relation to appear. Likewise it is commutation with the third

component J z will be minus i h cross A y, you can write this is J z A x then the b plus,

but  this  A x comma J z.  So,  this  is  minus i  h cross A y and then you have similar

relationships for A y with the other two components, and also for A z with the other two

components.

So, they are completely you know you just change the indices x to y, y to z and z to x

you will get the remaining relationships. So, you get the corresponding relationships by

simply shifting the subtract x to y, and y to z and z to x by cyclically rotating them, and

you get these two equivalent criterion one is what is denoted in this in set box, which is a

response to rotation. The second is in terms of commutation with respect to the angular

momentum generators.

(Refer Slide Time: 18:02)

Now, let us take some examples the position of vector, the momentum vector, and the

angular momentum vector I take this example. And we has the question are these vector

operators, we know they are vectors because we know how their components transform,

and  we  ask  if  they  are  vector  operators.  And  what  you  will  do  is  to  subject  these



operators  to  the  fundamental  criterion  that  we  have  defined,  and  if  the  criterion  is

fulfilled  either  in  terms  of  this  relationship  or  equivalently  in  terms  of  the  set  of

commutation relations, which we wrote down on the previous slide.

So, either this relationship or this and this for completely equivalent to each other, we

have seen that earlier by subjecting the these to the criteria that we have chosen to define

vector  operators.  We can  ensure  that  these  are  vector  operators,  but  mind  you  this

certainly  depends  on  how angular  momentum  J  itself  is  defined  because  it  appears

explicitly in this commutation relation. So, if you have not defined angular momentum

appropriately.

This will not work and in a few minutes you will see an example, where it will become

quite  obvious  to  you  as  to  what  is  meant  by  defining  the  angular  momentum

appropriately.  But,  at  this  point  you  recognized  that  it  definitely  has  to  be  defined

appropriately because it is appearing explicitly in the commutation relations.  So, this

particular  feature  as  I  mention  over  here,  it  actually  determined  how  the  angular

momentum J must be defined for the dynamical system. What exactly is the definition of

angular  momentum  of  a  dynamical  system.  So,  that  is  actually  determined  by  this

consideration and you will see why this is, so important.

(Refer Slide Time: 20:24)

So,  let  us  refer  to  the  criterion  over  here  and  it  is  important  to  remember  that  this

criterion is extremely important that they would determine, how the angular momentum



is appropriately defined. If this does not hold for the definition of angular momentum

that you have chosen, then it would mean either that A is not a vector operator or else it

could  mean  that  angular  momentum  has  not  been  defines  appropriately  that  is  the

consequence.  Now, this  is the necessary and sufficient  condition that if  this  criterion

breaks down, then it would either mean that this vector A is not a vector operator or else

angular momentum has not been appropriately defined.

(Refer Slide Time: 21:36)

So, let us take an example here that these operators that I took for the first consideration

the position momentum, angel of momentum. And we has this  question that  do they

satisfy the criteria or this is the matter of you know working of the algebra you can

discover for yourself that yes, they are vector operators. What about the spin is it a vector

operator, now here comes the nice answer that it is a vector operator, but only if angel of

momentum is defined, if the system already has orbital angular momentum.

Then the net  angular  momentum must  be defined as l  plus  s,  which  means that  the

rotation operator whenever you subject this component to rotations, you must subject the

components A i must include the components of l as well as s. If you do not do that it

would be that the angular momentum has not been appropriately defined, so spin would

be an angular of momentum operator.

But, only for a system which if it already has a orbital angular momentum, then the net

angular momentum will have to be defined as a some of the two. And this is where the



combination of angular moment are j 1 and j 2 have you coupled j 1 with j 2 becomes

important. Because, you have got now two sources of angular momentum, one is j 1 and

other is j 2, and you combine them using the clebsch gordan coefficient right. And the

two angular momentum in this case, one is orbital angular momentum l, the other is the

spin angular  momentum s.  So,  the spin wave function must  be subjected  to  rotation

simultaneously along with the space wave function, you cannot do just one and not the

other.

(Refer Slide Time: 23:40)

Now, let us see another example here, how are the electric vector, electric field we know

it is a vector. Now, we let us ask the question is it a vector operator, now we know what

to do what we are going to is to subject it to the same criteria right, now this electric field

we definitely know as a vector, there is no doubt about it we have been using it in vector

algebra, and vector calculus. And it is external to the dynamical system, like if you have

got the electron or an atomic system, which you place in an electric field.

So, now, the electric field is external to the dynamical system that you are really dealing

with, which is the atomic system or the electron angular momentum. And if you have not

included that in the definition of the angular momentum, it will not be a vector operator.

So, what you have to do is show examine the this commutation relation, these are the

equivalent defining criteria right, so these are the if equivalent defining criteria, and you

must subject the components of the electric field to these commutation relations and ask



yourself, if they satisfy the same relationship as you use to define what a vector operator

is.

Now, it turns out that if the electric field is included as an integral part of the dynamical

system. So, you define your system not to be the atom, but the atom pass the electric

field, and then define an angular momentum you can certainly do that, but it will have an

extremely  complicated  form.  And that  is  rarely done,  but  otherwise you treat  it  just

electric vector, but not quite as vector operator because we have two option over there

that  if  the  criterion  satisfied,  then  you know how to  define  a  vector  to  be  a  vector

operator.

And when the criterion is not satisfied, we know that either it is not vector operator or

angular momentum is not appropriately defined. So, you can certainly include this in the

dynamical system, but then the form of the angular the momentum would be extremely

complicated, then and many semi classical descriptions it is rarely done. So, electric field

will be a vector alright, but not a vector operator, so these are some considerations which

will be of significant to us.

(Refer Slide Time: 26:39)

So, these are the set of relations one is this  response of the spherical components to

rotations, and the other is the commutation of the Cartesian components with the angular

momentum components. And this is natural to expect because the angular momentum is



the generator operations, so that is what defines what how a tensor components, how

tensor components of tensor transform in a rotation of co ordinate system.

(Refer Slide Time: 27:22)

So, these are equivalent definitions you can use either one or the other, you can derive

this from the first or vice versa there completely mathematically equivalent.

(Refer Slide Time: 27:34)

And we will now work further with the irreducible tensor operators, so now, we have

some general similarities between angular momentum vectors, and the irreducible tensor

operators.  You  would  have  notice  them  already,  you  know  that  both  the  angular



momentum vectors, which are j m these are Eigen states of j square and j z, what is this,

this is an irreducible tensor operator, which is define according to the definition as to

how it  is  components  transform under rotation,  now both of them have very similar

response to rotation.

(Refer Slide Time: 28:33)

Now, this really interesting because if you look at this relation the response to rotation of

these  components  is  that  you  get  a  sum  over  all  the  remaining  components,  the

coefficient  being  the  elements  of  the  Wigner  D  matrices.  Likewise,  if  you  see  the

response  of  an  angular  momentum vector  to  rotation,  you have  an  exactly  identical

relation. The first relation over here is for irreducible tensor operators, this relation over

here is  for vector, how do vector, how do angular momentum of vectors respond to

rotations.

So, this is the two different questions, but the answers a very similar the response of both

to rotation  is  very similar, and they involve the liner  super  position of  the elements

waited by appropriate Wigner the metric elements that is the similarity. So, this is our

conclusion that the irreducible tensor operator, and the angular momentum vector have

got similar response to the rotation. Now, let us plug in another fact that we have learned,

that angular momentum vectors are coupled using clebsch gordan coefficient we know

that.



We have  learned  how  to  handle  this,  may  be  then  ask  if  it  is  possible  to  couple

irreducible tensor operator using the clebsch gordan coefficient. So, we are building on

the analogy between the angular momentum vectors, and the irreducible tensor operators,

we find the both of them have similar response to rotations, we know that one of them

can be  coupled  using the  clebsch  gordan coefficients,  we now ask  can  the  other  be

coupled using the clebsch gordan coefficients right.

(Refer Slide Time: 30:44)

So, let us raise this question we take two irreducible tensor operators, one is X and the

other is T, X is an operator of rank k 1 T is an operator of rank k 2. So, this will be a

family of 2 k plus 1 operators, and this will be a family of 2 k 2 plus 1 operators, and you

take one of this elements q 1 and q 2 element over here. And combine them using the

clebsch  gordan  coefficients,  and  this  is  exactly  what  we  did  when  we  coupled  two

angular momentum.

See the comparison as I have written angular momentum of coupling this is the coupled

angular  momentum k q,  which is  a super  position the you can recognize this  as the

resolution of unity of you like, this is similar to sum over m 1 m 2 m 1 m 2 right. [FL]

But, I am now using dummy labels to be q rather than the m's, so it is exactly the same

relationship,  and  I  now  have  a  construct,  which  has  been  composed  using  the

prescription,  what  is  a  prescription  that  you have  to  combine  two irreducible  tensor

operator X and T.



Like over here, you combined two angular moment k 1 and k 2, here you combine two

kind of angular moment k 1 and k 2 or you can write it in the long notation. So, that will

make it explicit because this k q is a shorten notation for coupling of k 1 k 2 leading to k

and q, k would go from more or less of k 1 minus k 2 to k 1 plus k 2 right. And for each

value of k q would go from minus k to plus k in case of 1, so you know what we are

talking about.

So,  this  is  an exactly  an identical  relation  in  which you have constructed  a coupled

angular momentum stage from the factor states, using coefficients which are the clebsch

gordan coefficient. And you use exactly the same clebsch gordan coefficient, namely q 1

q 2 k q which are precisely the once which are appearing here, this is q 1 q 2 k q clebsch

gordan  coefficient  in  the  short  notation,  which  is  this  right  is  exactly  the  same

coefficient. And we are now going to ask that if, but coupling of k 1 and k 2 gives you a

new angular momentum k.

Then, likewise would coupling of X and T using the same prescription, which is using

the same law of combination,  the law being combine them using the clebsch gordan

coefficient. So, using the same law the construct that you get on the right hand side for

which you generate a symbol T k q is this then an irreducible tensor operator that is the

question. How we know how to answer it because whether or not it is an irreducible

tensor operator is determined, by whether or not it satisfies the defining relationship for

an irreducible tensor operator and we know what it is.



(Refer Slide Time: 34:23)

So, what we are going to do is to take this construct, which I have written in the long

notation over here just for clarity. But, you know the writing k 1 and k 2 is not important

they or specifically in this context, the ranks of these two tensors over here you know in

the  context  of  the  angular  momentum  of  coupling,  those  who  are  the  two  angular

moment j 1 and j 2 that we are talking about.

(Refer Slide Time: 34:56)

And what we do is to state this theorem that if X n t are two irreducible tensor operators,

and if they are combined using the clebsch gordan coefficient, which is a same law that



you use to combine angular momentum spheres right. Then the result that you get is also

an irreducible tensor operator of rank k, such that k belongs to this range from a certain

minimum value to a certain maximum value. And you notice that, you once again see the

triangle law popping up.

And then for each value of k the q component, which is the member index in that family

of irreducible tensor operators would go from minus k to plus k. So, this is the theorem

that one can prove and all you have to do is to subject it to this criterion because this is

our definition of an irreducible tensor and operator. Now, this is your homework that you

subject this operator to this criterion.

And if the response to rotation turns out to be given by an expression this kind, then you

can conclude that it is, in fact an irreducible tensor or operator. So, that would prove the

theorem I am not going to prove it over here in this class, but you have to manipulate this

terms, and see it for yourself.

(Refer Slide Time: 36:37)

So, subject this construct to this criterion actually you can see that the proof is really not

very difficult, you can subject it to the equivalent criteria of the commutation relation as

well do one or the other.



(Refer Slide Time: 35:53)

And now we ask another question, we had combine an angular momentum vector with

another angular momentum. Then we combined two irreducible tensor operators, using

the same law, now we ask if you take one of this to be an operator and the other to be

vector. And construct a new creature,  which is some sort of a hybrid creature alright

because  it  is  coming from the combination  of  irreducible  tensor  or  operator, and an

angular momentum state.

But, this is an operator, so this operator operating on a vector you know will give you

another vector. So, the right hand side is a super position of vector, so you know that it

will  turn  out  to  be  a  net  vector,  and  we  ask  if  this  net  vector  will  be  an  angular

momentum vector right. And since, this has been composed form a tensor operator and

angular momentum of vector I have denoted it this time by a beautiful bracket, once we

find that it is, in fact an angular momentum of state, we could use the same notation use

an angular bracket or recycle or bracket or a beautiful bracket it does not matter.

But, just keep tracker what we are really doing I have used different notations, and they

are I think quite useful. Because, when you look at angular momentum coefficient you an

especially when you put in numbers q 1 equal to half q 2 equal to half k equal to 1 q

equal to 0, then it is useful to keep track of which is the side which corresponds to the

coupled state, and which is the side which corresponds to the uncoupled state. So, that is



part of reason I like this notation in which I use angular bracket on one side and circle of

bracket on one side.

But, now we have constructed using the same prescription a completely new kind of

vector, in which you are super posses super posing the result  of an operation  by an

irreducible tensor operator X on this angular momentum of vector. So, this operating on

a vector will give you a new vector, then you carry out this double sum and have each

term waited by a clebsch gordan coefficient. So, this is the exactly the same kind of sum

as we used, when we composed two angular momentum j 1 and j 2 right.

So, our question now is what kind of a vector is this, and notice that this relationship is

exactly identical to the composition of two angular momentum of vectors, using clebsch

gordan  coefficient.  So,  exactly  an  identical  relationship  and  the  question  is,  is  this

beautiful bracket is it an angular momentum vector that is the question that we ask, and

to answer this we must examine how it transforms on the rotation.  So, we you must

subject this to rotations subjected to defining criterion, find out how the responses we

will  discuss  it  in  the next  class.  We will  see that  you can  subject  it  to  the defining

criterion, and it turns out the it is also angular momentum vector.

(Refer Slide Time: 40:53)

And that is very nice feature because what you find is that what you have composed over

here is an angular momentum vector, which comes from the result of an operating on a

vector. And the left hand side is an angular momentum vector, now just ask yourself



what would happen if you take a projection of this vector on an adjoin vector, if you take

a projection, so this is now eckart you construct a scalar which is a bracket that is how

you get the projection of eckart right.

So, you come construct a bracket scalar and that is what you get on the left hand right

side. And the right hand side you are going to take the projection of this entire right hand

side, you going to take the projection of this entire right hand side on the same adjoin

vector. This will factor out as a multiplier coefficient, and you will get essentially the

metrics elements of an operating, which is this X into angular momentum states.

Now, this is the quantitative of interested in periscope because in physics you are always

interested  in  doing  quanta  mechanics.  So,  that  at  some  point  you  can  relate  to  the

observations, and what are the observations, what kind of observable do you really have,

you have got  the probability  density  for example,  the size are  side or  you can have

transition  probability  amplitudes.  What  is  the  probability  amplitude  that  an  operator

which is going to represent a physical interaction that you have got physical interaction.

And is this physical interaction going to new transition from a certain initial state on the

right, to ascertain a final state on the left. So, this metric element will actually give you a

major of the probability amplitude, it is module square will give you the probability and

then,  when you put  the right  numbers  this  will  give you a major  of the intensity  of

transition from an initial state to a final state. That is what you doing in spectrum, when

you look at a spectrum right.

You see various lines with various intensities, and these intensities are proportional to the

transition probabilities, which are the modulus square of the transition metrics element,

which is a creature of this kind. And the Wigner eckart theorem addresses the metrics

element,  what  the  Wigner  eckart  theorem  does  and  that  is  our  topic  for  discussion

tomorrow that it will factor this metrics element, into two parts of physical part and a

geometrical part. So, that will be our topic for discussion in the next class, if there any

questions today I will be happy to take questions.

Student: ((Refer Time: 44:13))

So, the question is whenever you have an interaction of the electric vector, when you

place an atom an electric field for example. Then electric field vector will not be treated



as a part of the angular momentum of the dynamical system, so you have to define it

correctly,  it  will  generate  a  perturbation,  but  it  will  not  be  a  part  of  the  angular

momentum. And therefore, it will not be an operator.

Student: ((Refer Time: 45:06))

You can do it, but that is not particularly advantageous in this case because you will you

can  generate  an  angular  momentum  which  will  include  that.  And  have  an  angular

momentum which is extremely complicated mathematical form, and it is not of much

interest there is no need to do that. But, in principle one can do that and if you are keen

that  it  should  be  defined  as  an  operator,  then  you  will  have  to  include  it  into  the

definition of the angular momentum, any other question. 

Thank you very much.


