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Greetings.  So  we  will  continue  our  discussion  on  Angular  Momentum and  we  will

discuss  today the  matrix  of  the  Clebsch Gordan Coefficients.  We will  discuss  some

further  properties  of  the  Wigner  D Rotation  Matrix,  and then  we will  introduce  the

Irreducible Tension Operators today.

(Refer Slide Time: 00:33)

So, we know what the Clebsch Gordan coefficients are these are the vector coupling

coefficients, when you couple 2 anglular momenta. And you can express the coupled

angular momentum with these circular brackets, in terms of the direct product of the

uncoupled vectors. And likewise, you can have the inverse transformation and represent

the direct product of uncoupled vectors, in terms of the coupled angular momenta.

So, what we will now compose is the matrix of Clebsch Gordan coefficients, in which

we will label the rows by the direct product of the uncoupled vectors, and the columns by

the coupled vectors. So, there are two alternate bases sets, both are orthonormal bases

sets, and you can always carry out a transformation from 1 to the other, so I will illustrate



this procedure by taking a specific example, in which I will couple 2 angular momenta,

both of which are equal to half.

So, j 1 is equal to half j 2 is equal to half and from these we compose a third j, the j 3 or

the final j, which is j 1 plus j 2. And the size of j would go anywhere from modulus of j 1

minus j 2 to j 1 plus j 2 in steps of 1, so in this case, it can take only 2 values 0 and 1

right, and for each value of j the corresponding value of m would go from minus j to plus

j.

(Refer Slide Time: 02:21)

So, we can already see what will be the dimensionality of this matrix because, we will

begin to label the rows by m 1 m 2. So, the dimensionality will be 2 j 1 plus 1 times 2 j 2

plus  1,  so both are  half,  so the dimensionality  will  be 4 and we already saw in the

previous slide the expected this dimensionality to be 4. So, this will be a 4 by 4 matrix

which is called as the matrix of clebsch gordan coefficients.
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Now, this is how you compose a matrix, so you first generate a 4 by 4 table, do not even

look at the columns first, first see how the labels are row the rows are labeled, these are

the labels for the rows. So, the first row is m 1 m 2 both having their highest value,

which is half, so for m 1 equal to half what is the maximum value of m 2 that is half,

then what is the next value of m 2 for the same value of m 1. So, the next row is labeled

by m 1 equal to half, and m 2 equal to minus half.

Then the third row is labeled by the next value of m 1, which in this case is minus half

and for this minus half again you pick what is the highest value that m 2 can take. And

then go to the next value of m 2, whichever it can take and in this case it is minus half, so

this is how the rows are labeled and the first thing to do, while preparing your table for

the clebsch gordan coefficients is to first decide how the rows are going to be labeled.
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So, this is how you do that then you begin to label the columns and label the first column

first, label the first column such that you have the highest value that j can take, and then

the corresponding highest value that m can take. So, this is j equal to 1 and m equal to 1,

now what this choice is going to give you is give you the matrix element in the first row

at first column, which will be equal to unity, because that is the only transformation

which is possible. Now, after you label the first column notice that I have put a question

mark in the remaining 3 columns, and now we want to label these columns we have

already labeled the rows. Now, we want to label these 3 columns, so after labeling the

first column we will label the last 1.



(Refer Slide Time: 05:20)

So, we will now label the last column and last column we will label with j equal to 1 and

lowest value, which is the maximum negative value then the corresponding m value can

change. Because, what this will do is to give you in this position, which is the element in

the last row and the last column, this value will also turn out to be 1 because, that is the

only combination which is possible there.

Now, you already know that for the remaining elements in the first row and the last for

the first column and the last column m is not equal to m 1 minus m 2, so those clebsch

gordan coefficients must vanish, because that is a necessary condition for the clebsch

gordan coefficients to be not 0, so put 0 in all those locations.
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Now, you can label the remaining columns and what you do is label them such that you

get 0's over here, and 0's over here as well. And you can easily do this by fixing j equal to

1 and j equal to 0 because, let the value of j diminish from here, and then choose the next

value of 0 from this set. And now you have got 0's over here and non 0 elements along

the block diagonal, so you have. So, it is very easy to compose the matrix of the clebsch

gordan coefficient tables, and there is this simple procedure which I just illustrated.

(Refer Slide Time: 07:12)



So,  now, we are  almost  ready because,  we can  now use  the  recursion  relations,  we

derived these  recursion  relations  in  the  previous  class.  And  we have  got  the  matrix

elements in the 1 1 location and in the n n location, the last row and the last column and

also the first row and the first column. So, the these two have already been pinned down,

and now you can go to the neighboring coefficients using the two recursion relations,

you have.

What you find the screen are two relations, one corresponding to the to one sign like, if

you  take  the  minus  sign  over  here,  you  take  the  upper  sign  over  here  and  the

corresponding upper signs in the rest of the terms. So, this is a set of two equations then

with these two recursion relations, you can then generate the entire matrix of the clebsch

gordan coefficients. So, you really do not need to consult any book or anything you can

do it by hand for coupling of any angular momenta in the exams you will do it by hand,

so you know how to do it.

(Refer Slide Time: 08:13)

So, you will need to use the recursion relations to do that, and this table in this particular

case of combining j 1 equal to half j 2 equal to half, the table turns out to be 1 then you

have got root 1 over root 2 in these two positions, and 1 over root 2 and minus 1 over

root 2 over here and then the 0's elsewhere you have got 1 over here as we already

illustrated.
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So, let me give you one more example, so that you know the method sinks in this case

we will take 1 of the 2 angular momenta to be half j 2 equal to half, and j 1 we will

choose to be 1. So, the values of j that we can get out of it would be 1 plus half and 1

minus half, so 3 half and 1 half these are the only 2 possibilities, and what will be the

dimensionality of the bases now, it will be 2 j 1 plus 1 times 2 j 2 plus 1. So, that will be

6, so the clebsch gordan coefficient matrix will be a 6 by 6 matrix, how will we compose

it first we will label the rows.

So, we generate an area for a 6 by 6 matrix then we label the rows begin with the m 1 m

2, m 1 taking the maximum value that it can, and m 2 taking the maximum value that it

can. So, m 1 can take the maximum value corresponding to j 1 equal to 1 right, the

maximum value for m 1 for j 1 equal to 1 is 1, and then m 2 equal to half then the next

lower value of m 2, which is minus half. Then the next lower value of m 1 which is 0,

and then the two values of m 2, and then you go to the lowest value that m 1 can take and

then the corresponding 2 values of m 2.

So, this is how you label the rows, so do not mix them because, if you do that you will

not get the clebsch gordan coefficient matrix in a block diagonal form, if you do not label

them appropriately. Now, you want to label the columns, so notice that you take the

highest value over here, the corresponding highest value over here, the lowest value over

here, the lowest value of m which is minus 3 by 2 corresponding to j equal to 3 half.



And this is what will give you 1 and 1 in the element position number 1 1 and n n, which

is 6 6, 6 over 6 column. And then you use the recursion relations to get the other value,

so you can go from one to the other using the recursion relations.

(Refer Slide Time: 11:04)

So, this is what it will turn out to be, so you can generate the clebsch gordan coefficient

tables  very  easily  by  hand by yourself,  these  are  catalog  on the  internet  if  you just

Google  you will  get  these  tables.  So,  that  you do not  always  have  to  calculate  this

yourself,  it  is a good idea to may be some of you might want to write a program to

generate it, and these are good exercises actually.
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There  are  other  properties  which  are  very  useful,  the  orthogonality  relations  of  the

clebsch gordan coefficients. And you can already see that since you have an orthonormal

basis set, so you have an orthogonality between m 1 prime index and m 1 and m 2 prime

and m 2. But, you can also plug in a unit operator in between, now when you do that this

is a unit operator which is a resolution of unity in the basis, which are the bases of the

coupled angular momenta, so this is the j m basis.

So, which is why I have used the curved brackets over here, and once you plug in this

resolution of unity you have this orthogonality relation expressed as the left hand side is

the same. And the right hand side is the double sum of a product of these clebsch gordan

coefficients, you can also write this element before the other one it does not matter. So,

notice that this is an orthogonality between this m 1 prime index and m 1, and then this

m 2 prime index and m 2 and what is sandwiched in between is the unit operator. So, it is

a very simple relationship all that you have exploited is the resolution of unity.
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So, you have similar relations you can you have to keep track of what the orthogonality

is in between, in this expression this is the other orthogonality relation that you get. This

is  the orthogonality  between j  prime and j  and m prime and m, and you can get  it

similarly by sandwiching a unit operator. So, it is exactly an identical relation, and these

are complex conjugates, so the clebsch gordan coefficients being real you can always

write them, with the coupled part on one side and the uncoupled part on the other or vice

versa it does not matter.

(Refer Slide Time: 13:43)



So, you will see them in different forms, we will now discuss the representation of the

rotation  group in angular  momentum basis,  and this  is  a  very  simple  topic.  But,  an

extremely important one and you will see why it is, so important you will see it being

used in  atomic  physics  and also in  nuclear  physics,  very  often  when you deal  with

angular momentum properties. So, you already know what the rotation operator is this is

the exponential form of the rotation operator.

This will be expressed in a basis, which is an Eigen basis of the angular momentum j

which will be a 2 j plus 1 dimensional basis. So, the matrix will be a 2 j 1 plus 1 times 2 j

1 plus 1 basis, and each matrix element is the matrix element of the rotation operator in

these angular momentum Eigen states right. So, these are known as the Wigner rotation

matrices as I mentioned earlier we have met them earlier on sakurais cover.

(Refer Slide Time: 14:53)

So,  let  us  have  a  look  at  this  in  some  further  detail,  now you  know that  J  square

commutes with any one component. And since, the rotation matrix for a finite rotation is

also made up of a sum of these terms, which generates exponential series the rotation

matrix also commutes with J square. And therefore, the rotation matrix will be diagonal

in the j index. So, you can always choose J as one of the indices to label it because, it is a

diagonal in J index and it will  be fixed for every element. So, this property we will

exploit that the rotation matrix is diagonal in the j index the matrix size will be 2 j plus 1

times 2 j plus 1.
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And you can denote the matrix element by a row index and column index, so this is the

row index m prime, this is the column index m. And the super script j will remind you, as

to which angular momentum it really belongs to because, so far as this superscript index

j is concerned the rotation matrix will definitely be diagonal in this index. So, now let us

ask  when  you  have  a  composition  of  two  angular  momenta  you  take  two  angular

momenta,  and  combine  them  generate  a  composite  angular  momentum a  sum  total

addition of these two angular momenta.

Then we have seen in our previous class, the j will go from this modulus j 1 minus j 2 to

j 1 plus j 2 the triangle inequality that we have seen. And we will now obtain, the matrix

elements of the rotation operator when you are dealing with coupled angular momenta.

So, these are the ones that really are; obviously, important and have to come on sakurais

cover.
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So, the block diagonal form will contain these Wigner D matrices, the smallest block will

have a dimensionality which is equal to the modulus of j 1 minus j 2. So, it will be a

square matrix, the largest one will have j 1 plus j 2 right, and then you will go one from

the other by adding unity. Because, j goes from the lower limit j min to j max in steps of

1, so this is the block diagonal form of the Wigner D matrix, and in each block the value

of j will be different, this j is j min for this block it is j min plus 1 for the next block and

it is j max for the last block, which is j 1 plus j 2.

So, each block will have a dimensionality 2 j 1 plus 2 j plus 1 times 2 j plus 1, but the

value of j will be different it will increase from upward left to the lower right in steps of

unity. And there is no way you can reduce any one of these blocks, notice that if you do

not label your rows and columns appropriately, you can scramble this or carry out a

similarity transformation on this entire matrix. And scramble the elements and get a form

which is on in the block diagonal form.

So, typically when you express it in a block diagonal form you have what is known as

irreducible  representation.  A reducible  representation is  very easy  to  define  it  is  one

which is  not irreducible,  but you know what  an irreducible  representation is,  so that

defines both irreducible as well as reducible.



(Refer Slide Time: 19:16)

So, essentially it is important to arrange the rows and columns appropriately, so that you

will get the matrix in a block diagonal form.

(Refer Slide Time: 19:27)

Now,  let  us  consider  the  irreducible  representations  in  the  composite  space,  the

composite space will then have a number of D matrices. So, this is one in the upper left

and this is D j 1 plus j 2 in the lower right, and you know sometimes you use the script

D, sometimes a fat D to denote these matrices. So, this is just a matter of notations and

different books will use different kind of symbols.
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So, let us do a theorem that the matrix element of the rotation operator in the direct

product states, is the product of the matrix elements of the rotation operator in the factor

states it is a very simple theorem. But, we will need to prove it this is what we mean, by

matrix element of the rotation operator in the direct product state, so this is the direct

product right j 1 m 1 j m 2 j 2 m 2 is the direct product of the 2 vectors j 1 m 1 and j 2 m

2, which are independently Eigen vectors of two different completely disjoint angular

momenta.

So, there are two angular momenta j 1 and j 2 they have their own Eigen spaces, you

combine them to get a net angular momenta. And now we ask, what is the relationship

between the matrix element of the rotation operator in the direct product states to what it

is in the factor states.
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So, we will prove this theorem now and we begin proof by first considering the response

of this direct product to the rotation operator, the both being angular momentum states

both of these will respond to the rotation. So, j 1 m 1 will respond to the rotation and the

result  will  be expressible  as  a  linear  superposition  of  the  component  vectors  in  that

corresponding space. So, you will carry out a sample over a dummy index m 1 prime

from minus j 1 to plus j 1, and the coefficients will of course, be the Wigner D matrix

elements, in the factor states right.

Likewise,  this  j  2  m  2  will  also  respond  to  the  rotation  and  you  will  get  a  linear

superposition of an mixture of the base vectors. So, m 2 prime will go from minus j 2 to

plus j 2 in this, and you combine these base vectors with appropriate coefficients which

will be the Wigner D matrix elements belonging to the j 2 space. So, now let us write this

in  a  slightly  different  form in  which  all  I  have  done  is  write  the  Wigner  D  matrix

elements over here, and then I can once again get these factor states written out explicitly

over here.

So, it is the same expression written differently and I compose the direct product states of

these two factor states to get j 1 m 1 prime j 2 m 2 prime, and this is the result of the

operation by the rotation operator on a direct product state. So, you have to compose this

superposition over double, you know this is a double summation over m 1 prime and m 2

prime.
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So, we get this result and we will bring this up to the top of the next slide which is here,

and now you what you do is to take it is projection on another direct product state. But,

this time we choose this to have different indices, so since we have already used m 1 and

m 2 and also m 1 prime and m 2 prime, I have used m 1 double prime and m 2 double

prime,  so that  we do not  mix  up the indices  So,  I  take  the projection  of  this  entire

equation on a direct product state.

So, now, on the left hand side I will get the matrix element of the rotation operator in the

direct product states. And here you have the matrix elements of the rotation operator in

the factor states, but now you have this element as well, but you can easily recognize that

this is going to give you the chronicle deltas because, this is coming from an orthonormal

basis. So, only those terms will survive for which m 1 prime is equal to m 1 double

prime, and m 2 prime is equal to m 2 double prime and there is a double summation over

here. So, you contract the sums and that really completes the proof, so this is the matrix

element of the rotation operator in the direct product states, and you find that it  is a

product of the matrix element of the rotation operator in a factor states.
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So, that was the theorem that we had set out to prove and it has a very simple proof as

you  have  just  seen.  So,  all  you  do  basically  is  to  make  use  of  the  orthonormality

conditions  of  the  basis  sets,  and  use  the  usual  transformation  properties  of  how an

angular momentum, vector responds to rotation. And that is the basic relation that you

already know and you will find that almost all of this algebra is based on very simple

properties of the response to the rotation operator.

(Refer Slide Time: 25:21)



Now, there is another theorem which gives us a result which is known as the clebsch

gordan series, this is also a very important relation, so I will establish this as well. And

this equation is what is called as the clebsch gordan series, notice that you have on the

left hand side product of two rotation matrix elements. And these are in the factor states,

on the left hand sides both of these, this is the matrix element of the rotation operator in

the j 1 m 1, so this is in the Eigen basis of j 1, this is in the Eigen basis of j 2.

So, the left hand side you have got the matrix elements of the rotation operator in the

factor states, on the right hand side you have a triple sum then you have two clebsch

gordan coefficients. And you have another rotation matrix element, but this one is not the

coupled state, this is in the j m basis, so on the right hand side you have the coupled

angular momentum j m. So, this is the matrix element of the rotation operator in the

coupled basis.

And now you will begin to see, there is a little bit of advantage of choosing the notation

in which you differentiate between the coupled vectors and the uncoupled vectors, both

are angular momenta. And it really does not matter because, the bracket is a bracket is a

bracket, it  really does not matter how you denote it,  but I have chosen to denote the

brackets of the uncoupled vectors by angular brackets, and the brackets of the coupled

vectors by the circular brackets.

Because it helps me keep track of what is what, otherwise they all look the same and

then  you  lose  sight  of  the  physics  on  it  sometimes.  So,  this  is  just  a  matter  of

convenience, and we will prove this theorem this is what is known, what leads us to the

clebsch gordan series.
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So, we will use the previous result that the matrix element of the rotation operator in the

direct product states, is the product of the matrix element of the rotation operator in the

factor states. So, that theorem which we just established we will use that, and using the

statement  what  we  do  is  between  this  and  this  rotation  operator  I  sandwich  a  unit

operator over here. And I sandwich plug in a unit operator here as well, and this that is

all I have done in time, which is to plug in a unit operator.

But, this unit operator comes from the resolution of unity in the coupled basis, that is the

idea. So, you plug in the resolution of unity, twice one before the operator U and one

after it, and now you notice that when you look at this relationship you find in the middle

the matrix element of the rotation operator in the coupled basis. Now, this is what you

wanted to appear on the right hand side, because on the right hand side in the clebsch

gordan  series,  you wanted  to  see  the  matrix  element  of  the  rotation  operator  in  the

coupled basis. And you can discover it very easily by noticing that right here, you have

that element already, so it is a very simple trick.
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And you find this matrix element over here which is nothing, but the matrix element of

the rotation operator, but we also know that this is diagonal in the j index, you know that

this is diagonal in the j index. So, this will carry the superscript j prime with the 2 j's to

be equal, so j must be equal to j prime, but do not you have a summation over j prime

somewhere here it is. So, you can exploit that and use the chronicle delta contraction, so

the sum over four dummy indices reduces to a sum over three because, you exploit this

delta D j prime over here. And, now you have the superscript j prime over here is j prime

equal  to  j,  and  that  pretty  much completes  the  relationship  that  we are  looking  for.

Because, you can just rewrite this as a product of these two clebsch gordan coefficients,

write this matrix element at the last.



(Refer Slide Time: 30:13)

And you already have this result from the previous theorem that we established right, so

we use it and we have the net expression, which is famously called as the clebsch gordan

series. It is a very simple proof, and all you have to do is to learn to play with these

resolution of unit operators, use the orthonormalities and you will have to do a lot of

algebra using these techniques.

But, you run into a large number of summations sometimes summations over 3 dummy

indices or 4 dummy indices 6 and 7 and even 10 and more, when you do complicated

you know atomic physics. And it is very easy to make a mistake, so make sure that you

keep track of what is what.
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So, you will find alternate forms in different books because, you can interchange the

dummy labels. Since the clebsch gordan coefficients are real, they can be transposed and

you will find them written differently, but they will all be completely equivalent of this,

and you have very simple ways of going from one form to another.

(Refer Slide Time: 31:22)

So, what I am going to do now is to define what is known as irreducible tensor operators,

and these are really important. These are, you know in classical mechanics also we deal

with physical quantities, and these are scalars, vectors and  so on right whatever, you



work with physical quantities like temperature, energy, velocity, force, momentum you

know these are physical quantities that you deal with. And these are all tensors of various

ranks.

So,  0  tensor  of  rank  0  as  a  scalar  tensor  of  rank  1  is  the  vector,  tensor  of  rank  2

sometimes you call it as a die deck, and you know there are various tensors of various

ranks that you work with. And these physical quantities will, then correspond to certain

dynamical  variables  in  classical  mechanics,  for  which  you  will  have  corresponding

quantum operators because, that is what quantization is about. So, interactions will also

be represented by some operators, which will be some sort of tensor operators.

So, perturbations for example, in the Hamiltonian, so here is an energy perturbation if

you have a magnetic dipole, which you put in a magnetic field. So, this will be some sort

of a perturbation, and you will express it as some tensor and then you will quantize it

have  the  corresponding  quantum  form.  So,  all  of  these  are  made  up  of  you  know

fundamental tensor operators, and it is for this reason that this is an extremely important

topic.

(Refer Slide Time: 33:04)

So, I will first define what is called as a Irreducible Tensor Operator ITO, an irreducible

tensor operator is defined to be 1 of rank k. And it is actually not just a single operator,

but it is a family of operators it has got number of you know members, this family has



got a certain number of members. The number of members is 2 k plus 1, where k is a

rank of this operator.

So, the irreducible tensor operator rank k is a family of 2 k plus 1 operators, and you

designate these by writing the rank k as a superscript. And the members, as subscripts

and 2 k plus 1 you designate by an index which goes from minus k to plus k in steps of 1.

So, it has got a terminology which is very similar to what you have found in angular

momentum designations right, so it is the same kind of notation that you carry.

And  the  defining  relationship,  and  this  is  what  is  called  as  a  defining  criteria,  this

equation is what defines this irreducible tensor operator. So, it is a family of 2 k plus 1

operators such that a certain relationship holds, now what is that relationship that is the

defining relationship, it is this equation it tells you how a member operator transforms

under rotations. The responsor rotation, and this is again something this is not new to us

because, we know how tensors are defined even in classical mechanics right.

That basically a scalar is a it is characteristic feature is that it remains invariant, under the

rotation of a coordinate system right. Vectors are those whose components, transform

according to the cosine law, so the law of transformation how the system response to

rotations is what defines a tensor. So, it is the same idea it is exactly the same idea, what

you must examine is how these quantities respond to rotations, and we know that the

response of any operator to another operator is shown by U dagger T U, right.

So, if U is a certain transformation right U dagger T U will tell you how it response, so

this is what defines the response of the operator T k q to rotations. And the law of this

transformation is defined by the right hand side, the right hand side tells you that the

response  of  any  member  to  rotation  is  that  the  result  is  expressible,  as  a  linear

superposition of the entire family of the tensor operators, with appropriate coefficients.

And these coefficients are the Wigner D matrix elements.

Now, you see that these Wigner D matrix elements are you know showing up, at many

new  places  which  is  why  they  are  really,  so  important.  And  the  Wigner  D  matrix

elements appear as coefficients in this expansion, so this is the law of transformation, this

is the definition of what an irreducible tensor operators. Now, we know what the rotation

operator is, the rotation operator is 1 minus i over h cross j dot theta, where this is any



direction in space, this is the rotation operator, this is the ad joint. So, the left hand side is

a product of these three operators.

So, we have written the rotation operator explicitly now, so it is just that definition that

we have rewritten explicitly in terms of the rotation operator. And we can find what we

get from the product of these three operators, and you do it term by term because, you

will multiply this is a unit operator. So, you will get a term in 1 into 2 into 1 then you

will  get  a term in 1 into T into this  operator, which is  the J  z or  J  U which is  the

component of I in one direction. Then you will get this term J z or J U into T into 1, so

term by term you can expand the left hand side.

(Refer Slide Time: 38:08)

So, let us do that the first term is the operator T which you get from the product of 1 into

T into 1 right. Then you get these 2 terms J dot theta into T and then you get another term

with a minus sign here, which is T times J dot theta right, so you will get the committer

because, the first one comes with the plus sign, and the second one comes with the minus

sign. And I have extracted the i over h cross as common, and then since you get the first

term with the plus sign and the second minus, you get a committer of these two. And

then you get a third term, which will be quadratic in the small infinitesimal angle, and

the square of a small angle is ignorable, so you can throw that term you get a quadratic

term which is coming from the last term. So, essentially all we have done is to rewritten



the definition of the irreducible tensor operator, explicitly in terms of the definition of the

rotation operator, and expanded the algebra.

So, now, after ignoring this quadratic term, you have the remaining two terms which is

the first term and the second term, which is nearly equal to the right hand side. And this

nearly equal to sign only reminds me that I have ignored this quadratic term, it is of no

consequence in linear superposition's.
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So, we will throw that term completely and we will write an equivalence here after, so

now we have this relationship, and here these coefficients are exploit the fact that this is

a unitary operator. So, I can do the transposition and complex conjugation, so I have

written this in terms of matrix element of the joint of the operator, and the joint operator

you  know  is  1  plus  i  over  h  cross  J  dot  theta.  So,  now, you  have  a  very  simple

relationship, and right hand side also now you can simplify because, here you have got

the unit operator.

So, when you take the projection of this k q and k q prime you will get a delta q q prime,

and summing over q prime you can contract the chronicle delta. So, you should always

be looking for these orthonormalities wherever you can find, them as that will simplify

the algebra. So, now you have the left hand side written just as it is, the right hand side

has this unit operator, the matrix element of the unit operator in k q prime and k q, which

is the first summation over q prime. The second term is again a summation over q prime,



but a summation of matrix elements of J dot theta, theta is just a multiplier which I have

written outside this bracket. Basically you are getting the matrix element of this J dot

theta which is a projection of the angular momentum in some direction does not matter

what.
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So, now you have a contraction showing up from this first term because, this is a matrix

element  of  the  unit  operator. So,  you  get  the  delta  q  prime  q  I  choose  the  axis  of

quantization to be e z just for simplicity does not matter whatever it is, and then you have

the matrix element of j dot theta, which is a matrix element of J z over here. So, this is

the matrix element of J z and J z operating on k q will give you q times h cross times the

same vector right.

And that q time h cross comes out as a multiplying factor you get the orthonormality

between k q prime and k q, and then you sum over q prime. So, that only the term in q

prime equal to q survives, and there is only one term surviving over here, and now you

see that you have got this operator, which is equal to this operator. So, these two terms

cancel, in the remaining term you have got theta which is just as tiny angle which is this

common angle in both sides of the equation.

So,  that  cancels  and  you  get  a  commutation  relation  between  the  irreducible  tensor

operator and angular momentum theta. We have got this essentially from the fundamental

criterion of how we define the irreducible tensor operator, so there is nothing new that



we added, all we did was to manipulate the terms. In other words, this relationship can

actually be used to define an irreducible tensor operator.
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And you can certainly define the  irreducible  tensor  operator  using this,  so these are

equivalent definitions, you can define it also with respect to the J plus and J minus by

working out similar algebra I will not work out all those details. Now, it is a very similar

exercise as we just did, and you will find in various books an irreducible tensor operator

defined, either by the relation at the top or by the relationship that you see at the bottom,

which is in terms of how the components. The member of the irreducible tensor operator,

how the  family, each  member  of  the  family  commutes  with  the  angular  momentum

operators J x J y and J z, so J plus and J minus you know are made up of J x and J y, so

the commutation relation of the irreducible tensor operators can also be used to define

irreducible tensor operators.
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And that with you can take an example over here of an irreducible tensor operator of

rank 1, you expect it to be a vector operator. So, you write the spherical components of

this the Cartesian components are A x A y A z, and the irreducible tensor operators are

minus 1 0 and 1. This is an irreducible tensor operator of rank 1, so it is members will go

from minus one to plus one in steps of 1 and these are the transformations between

Cartesian and you know the spherical components.
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And we will be using this, the next we will be introducing a very important theorem in

spectroscopy, which is known as a Wigner eckart theorem. So, now, we have the tools to

discuss the Wigner eckart theorem, it needs the angular momentum algebra which we

have, it needs a good handle on how angular momenta are coupled. We have that we

know how to use the rotation matrix elements, we have the clebsch gordan series with us,

we have got the addition theorem of the spherical harmonex with us.

So, now, we have all the tools to establish what is an extremely important theorem in

quantum mechanics,  and specially  in  spectroscopy in atomic spectroscopy, molecular

spectroscopy,  nuclear  spectroscopy  any  branch  of  spectroscopy.  Any  branch  of

spectroscopy, you it could be nuclear magnetic resonance spectroscopy if you like in any

branch  of  spectroscopy.  Because,  what  you  deal  do  in  spectroscopy  is  to  look  at

transitions, and these transitions are from a certain initial state to a final state, induced by

a certain physical interaction.

And this physical interaction is represented by an irreducible tensor operator, so what

you are looking at is the matrix element of a tensor operator. And the states will have

some angular momentum elements, so you will have to extract the matrix element of

these tensor operators, in angular momentum states or what the Wigner eckart theorem

does is to help you, look at this in a very simple fashion.

So,  this  is  at  the  very  heart  of  any  branch  of  spectroscopy,  atomic  spectroscopy,

molecular  and Zeeman spectroscopy starc  affect,  Zeeman affect,  NMR spectroscopy,

double resonance spectroscopy, Mossbauer spectroscopy whatever you are referring to

and  that  is  what  a  physicist  does.  Because,  ultimately  you  are  going  to  look  at

interactions and transitions between you know a certain initial state to a certain final

state, those are the observables of a quantum system. So, we will introduce the Wigner

eckart theorem in the next class.


