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Introductory Lecture about this Course

Greetings,  a  very happy welcome to this  course on Special  Topics  in Atomic Physics or

preferred to call it as Select Topics in Atomic Physics, because the subject is vast and there is

only a certain selection of topics that one could do in a course.

(Refer Slide Time: 00:33)

And we begin with a tribute to Satyendranath boss, and of course to Albert Einstein, who has

perhaps more than anybody else contributed to the both of quantum mechanics in the last

century.



(Refer Slide Time: 00:48)

And I begin with the course from Feynman, he asks the question that, if in some cataclysm,

all of scientific knowledge were to be destroyed and only one sentence passed on to the next

generation of creatures. What statement would contain the most information in the fewest

words, Feynman goes on to answer this question and he says that, it is atomic hypothesis, that

all  things  are  made of atoms and this  is  what  you will  find in  volume one of Feynman

lectures.

(Refer Slide Time: 01:35)



So, quite obviously, atomic physics is a very exciting field and the subject grow along with

quantum mechanics in the last century. Large number of scientist, here is an experimentalist

have contributed to growth of this field. And I have reviewed some of the excitement in the

development in atomic physics in a talk, which was given as a special lecture for the NPTEL

and the national knowledge network. This is available of the, you tube called an Odyssey in

atomic physics.

(Refer Slide Time: 02:08)

But, what we will do in this course is to go through some of the important areas, on which

studies in atomic physics are based and this course will be covered in 40 lectures. So, in

addition to today, today is introductory lecture, there will be 39 lectures that will follow and

we will  cover  this  in  8 units.  In  the 1st  unit,  I  will  discuss the quantum mechanics and

symmetry of the hydrogen atom. In the 2nd unit, I will discuss angular momentum algebra

and quantum mechanics of angular momentum in Wigner Eckart theory.

In the 3 rd unit,  we will study the relativistic hydrogen atom, the Dirac equation and the

Foldy Woutheysen transformations. In the 4th unit, we will go over to many electron atoms

and  talk  about  the  self  consistence  field  and  the  Hartree  Fock  method  of  getting  many

electron wave functions.  In unit  5, we will  talk about perturbative analysis of relativistic

effects and in unit 6, we will study how an atom is probed and one could use, either collisions

or photo ionization to study this.



And in unit 7, we will discuss photo ionization in some further details, in which we will use

the boundary conditions, which we would develop in unit 6, because for photo ionization,

you need one set of boundary conditions opposed to another set of boundary conditions for

collision. And then finally, in unit 8, we will study about atoms in external fields, we will talk

about  the  STARK  effect  or  ZEEMAN  effect.  And  also  provide  a  very  rudimentary  in

introduction to some exciting phenomenon like laser cooling, the Bose-Einstein condensation

and the atomic clocks, attosecond metrology and so on.

(Refer Slide Time: 04:18)

So, I will give a very brief overview of, what we are going to do in this course and how we

will do it.  But, first of all let me explain, who these courses meant for and I will like to

inform or suggest that, this course is best suited for those, who have got some introduction to

quantum mechanics,  but  not  whole  lot.  Because,  the  subject  of  quantum mechanics  and

atomic physics develop together in the last century and a foundation for a course in atomic

physics requires a strong background in quantum mechanics.

So, some of it will be developed as an integral part of the course, so you do need a little bit of

introduction to quantum mechanics, but perhaps not a whole lot, if you already know a lot,

you perhaps no need this course at all. Then, I will also like to mention, how to benefit more

from this course, because I am going to be using the course material is developed and I will

be using some of these PowerPoint slides for this course and these will be uploaded as PDF

files on the course webpage.



So, it is a good idea to refer to this PDF files, you do not have to sit down and take notes

during the class, but it is a good idea to refer to these PDF files before the lectures, during the

lectures, after the lectures. And in the class, just concentrate on discussion, ask questions,

have conversation, that is the best way to take this course. Now, of course if you have any

question at any point, you should send them to me.

(Refer Slide Time: 05:56)

And I will now give an brief overview, what you will do unit 1, which will be on the quantum

mechanics and symmetry of the hydrogen atoms.

(Refer Slide Time: 06:07)



So, the hydrogen atom along with alkali metal atoms belongs to the first group and they all

have an outer n s 1 electronic configuration. All the alkali atoms like sodium atom, rubidium

atom, cesium atom, you know these are all, they have all the similar structure and one of the

thing, which is used, which is very well known about the speck of these atoms are the famous

D 1 D 2 lines of the alkali atoms. Sodium atom, rubidium atom, cesium atom, all of them

have got the D 1 D 2 lines, hydrogen does not, although it belongs to the same group.

And the question is, where have D 1 and D 2 lines of hydrogen disappear and the reason of

course is that, the 3 p and 3 s energy levels of the hydrogen atoms are degenerate. Whereas,

for other alkali atoms, the outer n p and outer n s, where n s 3 for sodium, but it is 2 for

lithium and then, so on. So, for rubidium, cesium and so on, so the outer n p and n s levels are

not degenerate and you do need a difference in the energies of n p and n s to have d to p

transition.

There is further spin orbit spreading, but that is the matter of detail, which we will also be

discussing it in separate unit, which is relativistic effect. But, essentially, one recognizes the

fact that, the Eigen value spectrum of hydrogen is not just quantitatively, but qualitatively

different from that of the other members of the group 1 atoms and this is the problem that, we

will discuss in the first unit.

(Refer Slide Time: 08:00)

We will introduce a complete set of commuting operators corresponding to complete set of

compatible  observations  that  can  be  made  on  the  hydrogen  atom,  because  this  is  what



physicist looks for, to study any quantum systems. And we will therefore, introduce some

basic foundation of quantum mechanics toward the beginning. So that, we know, what are the

measurable  properties  of  the  hydrogen  atom  and  how  can  we  get  a  complete  set  of

commuting operators.

(Refer Slide Time: 08:37)

When we study this, it tells out that, if you look at the redial part of the Schrodinger equation

for the hydrogen atom, it reduces to a one dimensional problem if you just look at the redial

part. And then, by fundamental theorems in quantum mechanics, one know that, the energy

spectrums is not degenerate, so there is a one to one correspondence between energy and

wave functions for the hydrogen atom, according to this theorem. So, the degeneracy of the 2

s or 2 p levels in the hydrogen atom cannot be explained on the basis of this fundamental

theorem. In fact, it is in contradiction to the consequence of this, the result of this theorem, so

this is what, was called as accidental degeneracy.



(Refer Slide Time: 09:36)

But then, it is now understood in terms of this complete symmetry of the hydrogen atom,

which is not just SO 3, but it is SO 4, this is sometimes called as a Fock symmetry. So, we

will discuss the Fock symmetry of the hydrogen atom, we will develop the Casimir operators

for this SO 4. And by studying the group properties of this particular symmetry, which is SO

4 symmetry of the hydrogen atom, we will get the Eigen value spectrum of the hydrogen

atom. And we will recognize that, it explains the degeneracy in the hydrogen atom and it is

not really an accidental degeneracy, there is a good physical reason for it.

(Refer Slide Time: 10:14)



Then, in unit 2, we will study angular momentum in quantum mechanics, angular momentum

in classical mechanic is just r cross p. But, quantum mechanics requires different treatment of

angular momentum and we will proceed to get a Wigner Eckart theorem as well.

(Refer Slide Time: 10:33)

So, we will give an appropriate definition of angular momentum in quantum mechanics and

then,  use  this  definition  to  deal  with  the  algebra  of  angular  momentum  in  quantum

mechanics.
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So, we will discuss things like, what are the values of angular of momentum, now we all

know from our earlier introduction in quantum mechanics show electron spin that, electron

spin is 1 half. And one finds that, from the angular of momentum algebra, you can get this

half integer quantum numbers like j equal to half, not only j equal to 0 1 2 3 etcetera, which

are the integers, we can also get a half, 3 half and so on.

So, we will explain, how it is possible to get this half integer quantum numbers, we will also

highlight the fact that, because this method accommodates half integer a quantum numbers. It

is not the same as a sighing half integer quantum number to the electron, that has to come

only  from relativistic  quantum mechanics,  it  comes from the  Dirac  equation,  as  we will

discuss later in a different unit.

(Refer Slide Time: 11:42)

So,  we  will  have  a  fairly  extensive  discussion  on  the  rotation  group,  because  angular

momentum is the generator of rotations. We will discuss the Wigner rotation matrices, which

you find on the cover page of Sakurai's book. So, these are obviously important in quantum

mechanics, in all aspects of mechanics, not just atomic physics, but in many other branches of

quantum mechanics with applications in nucleus matrix and everywhere. So, these are the

matrix  elements  of  the  rotation  operator  in  angular  momentum states  and we will  study

properties of the Wigner rotation matrices element.
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We will then recognize that,  the total angular momentum for any system is given by the

quantum vector sum of all contributors to angular momentum. And you could have the orbital

angular momentum as one contributor, you could have spin angular momentum as another

contributor. In many particle system, you may have the orbital angular momentum and the

spin angular of moment of all different particles and all of them would add up to give a net

angular momentum of the quantum system.

And this is done by adding, now this is not just a vector addition, these are quantum vector

operators, so one has to develop the tools to study this addition of these vector operators. And

this is done using these coefficients called as the Clebsch Gordan coefficients, we will discuss

how these Clebsch Gordan coefficients are obtained. You can get them from first principles,

there  are  certain  recursion  relations,  which  are  available,  so  that  if  you  know  the  root

coefficient, from this root coefficient, you can get the rest of the coefficients.
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So, we will discuss some of these methods and then, we will establish the Wigner Eckart

theorem and find that, it is extremely powerful tool in spectroscopy, because it tells us that,

the probability amplitude for transition from a certain initial state to final state, which is what

we investigate in spectroscopy. This probability amplitude can be factored into two pieces, a

physical  part  which  is  called  reduced  matrix  elements  and  a  geometrical  part,  which  is

contained in the Clebsch Gordan coefficient.

So, this in fact, goes on to give us selection rules, the spectroscopic selection rules, like the

dipole selection rules are the selection rules for the quadruple transition and so on. So, all

kinds of different selection rules come out from the application of Wigner Eckart theorem.
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In unit 3, we will study the relativistic hydrogen atom and this comes into play, because the

speed of light is finite. And therefore, all consequences of the special theory of relativity must

be accounted for and an important consequences that, space intervals and time intervals are

not independently invariant under transformations, when you go for one frame to another

frame, which is moving even constant of velocity with respect to an earlier frame.

So, all of consequences of the constancy, and the finite value of the speed of light in vacuum

have to be accounted for… Now, what it does is, it makes us necessary to go the beyond the

Schrodinger equation and for electron, you make use of the Dirac equation and then, study

the consequences of the relativistic quantum mechanical equation.
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Now, in  particular  what  happens  is  that,  momentum  is  what  you  quantize  in  quantum

mechanics. So, the operator for momentum is minus h cross radiance operator, which we

would have learned in your first course. But then, what is momentum, normally you will

define it as mass times the rate of change of velocity, rate of change of position. Velocity is

rate of change position, so mass into velocity is the momentum. But, the numerator here and

the denominator here, are not independently invariant under Lorentz transformations.

The  numerator,  the  space  intervals  undergo  Lorentz  contractions  and  the  time  intervals

undergo time dilation. So, one has to be introduce a fore momentum, one has to introduce,

what is  called as a proper velocity and proper momentum. So, we will  go through these

corrections or revisions to some of the classical ideas in non relativistic classical mechanics.

They are important also in classical relativistic mechanics, which is does not involve quantum

phenomenon,  even  there  these  things  are  important.  But,  in  particular,  they  will  be  of

significance to ask in the contest of quantum mechanics.
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So, in the process we will also learn, what is the correct expression for the relativistic energy

of  a  particle.  And then,  we will  proceed to  quantize the system by having a  appropriate

operator in place of dynamical variables and we will arrive at the frame is Dirac equation,

which you see at the bottom. Now, this Dirac equation of course, has some very important

consequences, when you set it  for the electron you find that, it  assigns to the electron an

additional integral property, which is integral to the presence of the electron and this is the

intrinsic  angular  momentum of  the  electron.  Now, this  can  couple  to  the  orbital  angular

momentum  and  that  is  the  famous  spin  orbit  coupling.  But,  where  is  the  spin  orbit

interactions s dot l in the Dirac equation, you do not see it in the form, in which you see the

Dirac equation in front of you.
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But, what you can do is subject, the Dirac equation to a number of transformations, which are

known as the Foldy Woutheysen transformations. And we will discuss this paper to some

extant in  this  unit  that,  this  is  the procedure to  transform the Dirac equation to different

representations.  And  you  go  through  a  series  of  representation  called  as  the  Foldy

Woutheysen's  first  representation,  the second representation and third representation.  And

when you go through these different Foldy Woutheysen representations, you arrive at a form

of the Dirac equation, which is completely based on Dirac equation.

(Refer Slide Time: 18:24)



But  then,  it  attains  a  form,  in  which  the  Hamiltonian  has  got  these  terms  and  you  can

recognize clearly, what are the terms which are responsible for the relativistic kinetic energy

correction or the spin orbit interaction and so on. So, all of these terms, which are already

there in the Dirac equation, they become manifest. So, Foldy Woutheysen transformation is

really an extremely important one to get into the hard of physics, which is coming out to the

Dirac equation, so we will discuss this in some details in this unit.

(Refer Slide Time: 18:54)

We will  also learn about,  what  are  the good quantum numbers  for  Dirac electron,  so in

particular, we will discuss the kappa quantum number.
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And then, we will proceed to get the radial coupled equations for the large part in the small

part of the wave function in the Dirac equation. And the motivation to do this is to ((Refer

Time: 19:18)) with some of the preliminary tools that are required to read about relativistic

atomic physics. Because, anything in relativistic, anything in atomic physics will begin with

wave functions and quantum numbers and so on, and the appropriate quantum numbers and

wave functions are of course, the relativistic ones.

Because, nature does obey relativistic quantum mechanics more so than the non relativistic

quantum mechanics, for the simple reason that, laws of nature are determine also by the finite

speed of light. So, if you want to read any of these articles, which are the most common

literature or other papers also, which was equivalent to them in some sense and they will give

you a short and you will get sort of any introduction to the terminology and methodology of

quantum mechanics, which is used in literature. So, you will get some introduction into that,

as a result of this unit.
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Then, in unit 4, we will have 5 classes on many electron items and the method to deal with

many electron atoms comes from Hartree, further developed by Fock and Slater, and some

others.

(Refer Slide Time: 20:41)

And basically, it addresses the CATCH 22 kind of situation that, to set up this Schrodinger

equation for the n electronic system, H psi equal to E psi for the n electrons, you need of

course, the Hamiltonian. So that, you can set up, you can solve the differential equation and



get the solutions but then, to be able to set up the Hamiltonian itself, you need the solution in

advance.

And  this  is  a  situation,  which  needs  to  be  addressed  and  using  methods,  which  were

developed by Hartree and then, further there were contributions to include the electron spin

by Fock and Slater. This is the method which is known as Hartree Fock method, so we will

discuss the self consistent field method of developed by Hartree Fock.

(Refer Slide Time: 21:34)

And in this, the problem is, addressed using a variations techniques, in which one minimizes

or gets the extremum of the expectation value of the Hamiltonian in n electron quantum

mechanical state of the system. And this n electron state must be properly antisymmetrized,

because the electrons are fermions. And using a properly antisymmetrized n electron state,

you obtained a variation of extremum of the Hamiltonian, subject to certain constraints that,

the variation of remain orthogonal to each other and they are also normalized. So, subject to

these constraints, you get variation solutions.
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They  give  you  a  certain  set  of  coupled  integral  differential  equations,  which  are  called

Hartree Fock equations. And essentially, this equation emerges as a condition that must be

satisfied so that, you get self consistent field solution. So, it is a condition, which merges

from this analysis from the variation tool so that, the constraints are respected and you get an

extremum in the expectation value of the Hamiltonian. So, this is the Hartree Fock equation

that we will develop in this unit.

(Refer Slide Time: 22:48)



We will also explicit in, what is called as the Hartree Fock equation in the diagonal form and

this is a very powerful frame work. Because, it tells us that, the variational parameter which

are introduced through via the method of Lagrangious method of variation multipliers, they

acquire a very specific physical meaning, which is amenable to measurements. So, it connects

the Hartree Fock theory to physical measurements directly, because the energy values which

appear in the Hartree Fock equation in the diagonal form are then, associated with binding

energies,  which  are  measurable  like  ionization  potential.  So,  you  can  carry  out  some

measurements and actually connect them.

(Refer Slide Time: 23:35)

So, there is very famous theorem which does this, which is known as the Koopmans theorem,

which we will derive and prove, and we will establish this. So, it tells you that, the energy

difference between n electron state and n minus 1 electrons state gives you the energy value

that appears in the Hartree Fock equation in the diagonal form. So, that is the Koopmans

theorem, which we will discuss.
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But,  this  remains  valid  in  an  approximation.  which  is  called  as  independent  practical

approximation, because Zeeman effects takes into account the electron electron interaction 1

over r by r i j, it does leave out what is called as electron electron correlation. And there are

two kinds of correlations, one is exchange correlations or the statistical correlations coming

from  the  electron  spin  and  there  are  other  correlations,  which  are  known  as  coulomb

correlations.

And  the  coulomb  correlations  require  many  body  field  theoretical  methods,  second

quantization methods, configuration interaction methods and so on. So, one requires some

further  quantum mechanics  would  develop  this,  which  will  go  beyond the  scope of  this

course.  But,  I  will  certainly  mention  that,  this  is  what  provides  the  frame work  for  the

fundamental Hartree Fock.
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Of course, one can extended to, what is called as a multiple configuration Hartree Fock or if

you do a relativistic coefficient, you get what is called as the multi configuration Dirac Fock.

There  are  other  methods  of  dealing  with  electron  correlations  like  the  random  phase

approximation, the relativistic correlation, relativistic random phase approximation and so on.

So, there are you know, one can go a long way but then,  the Hartree Fock of the Dirac

Hartree Fock restricts you to, it enables you to accommodate the statistical and the exchange

correlations,  but  it  leaves  out  the  coulomb  correlations.  So,  that  is  the  difference  and

limitation of the Hartree Fock and Dirac Fock method.

(Refer Slide Time: 25:35)



Then,  in  unit  5,  which  will  be  a  tiny  unit,  just  two  classes  in  this,  we  will  deal  with

perturbative  analysis  of  the  relativistic  effects.  So,  we  would  have  already  consider  the

relativistic  effects  in  our  earlier  unit  on  Dirac  equation  and  Foldy  Woutheysen

transformations.

(Refer Slide Time: 25:55)

But, in this unit we will see that, if you look at these individual corrections, you can think of

these terms as correction to the non relativistic problem or as additional factor has to be taken

into  account.  And  you  take  them into  an  account  piece  wise,  like  you  can  plug  in  the

relativistic kinetic energy correction, you can plug in the Darwin connection and you can plug

in the spin orbit correction. And you can get these corrections using first order perturbation

theory or even higher order perturbation theory if you like, in which the energy correction is

given by the expectation value of the perturbation Hamiltonian in the unperturbed state. But

then, the question arises as to what are the appropriated bases such to be used and this is an

important question, which we will discuss in this unit.
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And you will find that, if you look at the corrections due to the relativistic kinetic energy term

or the spin orbit term or Darwin term, they are all of the same order of magnitude, they are all

of the corrections are go as Z alpha square, where alpha is a fine structure constant, Z is the

atomic number, so they all equally important and notice that, they all depend on the value of l

in some way. So, if you did only this correction,  but not the other two, you will  get n l

dependent answer.

But, the final Dirac solution, which we have already got, which we would have already got in

unit 3, in fact would tell us that, the Dirac energy is depend only on the j value and they are

independent on the l value. So, only when you put all of these three corrections together you

find that, the dependence of energy is only on j and not on l quantum numbers. So, how it this

to be treated pertubativly, what are the appropriate unperturbed stage, which must be used to

get the corresponding perturbative corrections, so this will be the subject of this unit.
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And then, unit 6, we will discuss, how an atom is probed and to probing the atom, you need

some tools, something which will come and interact with the atom.

(Refer Slide Time: 28:16)

And the kinds of probe that you can think of are, either particles like electrons you can have,

you can fire electrons coming out of an electron gun at an atom and see the scattering, so this

can be one way probing the atom. Another way of probing an atom could be to shine light on

it and see, how the atom response to this light. So, there are these alternate tools that are

available to you like photo ionization or electron scattering and so on.



And you recognize from this figure that, if you go from left or right in this figure, that you

got a photon, which is observed by an atom giving you an electron and an ion in the final

state. This is the same state that you can get, if you had completely different ingredients in the

initial stage. That if you want to have an electron ion scattering experiments, again you can

get electron and an ion in the final stage. So, which means, that for the same final state, you

can have completely different pears of ingredients.

In this case, you have got electron and an ion, in this case you have got a photon and a neutral

atom. So, obviously, one expects some sort of connection between these two processes and

indeed, there is such a connection, which allows you to develop the techniques in one field in

scattering  theory  for  example,  and  use  them  in  photo  ionization  and  vice-a-versa.  So,

basically both photo ionization and scattering, they are two aspects of the same quantum

mechanics. And there is no real fundamental difference between scattering and spectroscopy.

(Refer Slide Time: 29:57)

So, the relationship is governed by, what is called as the time reversal symmetry in quantum

mechanics that, if you have electron and an atom in or a target in the initial state, how you

can  subject  this  to  a  time  reversal  process.  And  this  time  reversal  process  in  quantum

mechanics  is  not just  t  going to  minus t,  you have to  take into account  some additional

factors, which we will discuss applying in this unit. And we will find that, photo ionization

and the electron ion scattering solutions are connected by the time reversal symmetry.
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This is important, because it will give you the boundary condition, which are appropriate for

the two processes. And you must use the wave functions with the correct boundary conditions

so that, you can apply this and get other things like matrix elements, the photo ionization

cross sections, angular distribution of the photo electrons and so on. And this is what we will

study in unit 7, in which we will need the continuum final state solution with appropriate

boundary conditions namely, what are known as ingoing wave boundary conditions. So, the

different between the ingoing wave boundary condition and outgoing boundary conditions is,

what we will study in unit 6.

(Refer Slide Time: 31:27)



And in unit 7, we will apply them to the study of atomic photo ionization, in which we will

use  the  wave function,  further  final  state  of  appropriate  boundary  conditions  in  a  photo

ionization experiment.

(Refer Slide Time: 31:37)

And then,  get  the  correct  expressions  for  the  oscillator  strengths,  photo  ionization  cross

sections. And we will also in the process define, what is meant by oscillator strength, what is

the classical idea of oscillator strength, what is the quantum mechanical idea of an oscillator

strength.
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And get  the  estimate  from the  cross  section  we  will  find  that,  at  least  to  a  very  good

approximation, which is called as born approximation.  The photo ionization cross section

goes, it reduces with an energy, but it reduces as e to the minus 7 by 2 power of an energy and

it also goes as Z to the 5, as n to the minus 3 and so on. So, these are very important results in

quantum mechanics and these will be arrived in this particular unit.

(Refer Slide Time: 32:29)

We will also recognize that, the matrix elements for transitions can be obtained in different

form like the length form, velocity form or what is called as momentum form. And there is

also a  form known as acceleration form and it  was S.  Chandrasekhar, who wrote to the

formalism for this in a famous paper in 1945. So, we will acquaint ourselves with different

alternative ways of  the length form and the momentum form in particular  of getting the

matrix elements.
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And we will find that, these matrix elements can actually undergo a transition in the sign, you

can have matrix element, which is positive upto a certain energy and which changes that sign.

For example, here for Argon you see that, this matrix element is negative, this is 0 and this is

where,  the matrix elements it  is  negative.  And as energy increases from left  to right,  the

matrix element changes, it undergoes change of sign over here and goes to 0.

And when it goes to 0, the matrix element vanishes, the corresponding probability vanishes

and photo ionization cross section actually goes through a minimum, which is called as a

Cooper minimum. And this is a property of gradients in photo ionization in physics, so you

will get some introduction to this.
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You will  also learn  about,  what  is  meant  by a  dipole  approximation,  what  is  the  dipole

approximation, why is call a dipole approximation and what are the consequence of dipole

approximation. So, most of discussion will be essentially on the dipole approximation, but the

toes that we will develop can be very easily extended to other multipole transition as well.

And in modern way, atomic spectroscopy is certainly very necessary to go well beyond the

dipole approximation, but you will get some sort of the start in that consideration.

(Refer Slide Time: 34:35)



You will also learn about, what are known as sum rules, oscillators lying in sum rules like

Thomas Riche Comb sum rules and so on. So, we will derive these expressions in this unit.
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And we will  also get the famous Cooper Zare formula,  which for angular distribution of

photo electrons. So, they tell us, which is the direction, in which electrons are more likely to

be emitted or if they are showing angular dependence, how is that angular dependence to be

estimated.  So, in  the non relativistic  quantum mechanics,  this  is  done using a  formalism

developed by Cooper and Zare. So, you will learn the Cooper Zare formula, but of course,

when you do relativistic quantum mechanics, you have to make corrections to the Cooper

Zare formula.

So, the relativistic expressions what developed by Walker and Waber, and we will only give

you the references for this, because it will go beyond the scope of this course. And then, you

can also plug in the electron correlations, so you need a relativistic many body theory to get

the correct expressions. And you will find it in the work by Johnson and Lin and some others

also, so you will get some sort of interaction to the angular distribution of photo electrons.
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And then, in the last unit, we will talk about an atom in various external fields, so we would

have already consider interaction of an atom with electrometrical variation. So but in this

unit, we will talk specifically about the famous Stark effect, the Zeeman effect, that we will

also take into account further corrections like the fine structure, the hyperfine structure. And

it will lead us to the consideration of somewhere exiting phenomena in modern day atomic

physics when you also deal with quantum collisions, electron correlations and so on. Then,

you  get  into  the  domain  of  exciting  phenomena  like  laser  cooling,  Bose Einstein

condensation, cooperative phenomena, correlated phenomena and fast processes, attosecond

processes and so on, so this would be the subject.
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In unit 8, we will find that, in the presence of an external field, you have of the atom behaves

differently, because the presence of the external field like the stark field for example, it can

actually change the life time of an excited state. So, we will learn about some of these things

when we deal with the Stark effect.

(Refer Slide Time: 37:08)

We will recognize that, in the presence of electric field, l is not a good quantum number, so

you have to consider the transitions in the presence of an electric field. So, you have to use



completely  different  kind  of  quantum mechanics,  use  perturbative  methods  dealing  with

degenerate states, so we will get some acquaintance with these techniques.
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And then, we will also learn about, what happens when you place atom in a magnetic field

and there is a family of interactions, which are known as the Zeeman family. It includes, what

is called the normal Zeeman effect, but also the anomalous Zeeman effect and also an effect,

which is named after as Paschen and Back, and these are named differently just because they

correspond to different magnitudes of the magnetic field that you can control.

But, for historical reasons, they have these different names and we will discuss, what is it that

happens,  how does  an atom respond to a  magnetic  field.  When you change the external

magnetic field, you can make it strong or weak or moderate and these terms are qualitative

terms.  They  obviously,  have  some  implicit  reference  and  the  implicit  reference  in  this

consideration is the spin orbit interaction, which is internal to the atomic structure, so with

reference  to  the  spin  orbit  interaction,  the  field  that  you  dealing  with,  which  applying

externally is a really weak or is it about the same value, equally strong or stronger. So, these

are some of the considerations, that we will have in studying an atom in a magnetic field.
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We will find that, the D 1 D 2 lines gets split into large number of transition and you can

study the spectroscopically.
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And then, we will also, once we have the tools for the Zeeman effect, we will also have

studied the little bit of the hyperfine structure, how it effect energy level spectra, and how

these can be exploited to subject and atom, to repeated cycles of cooling by exposing it to

radiation pressure, the atom gets a cake. But then once it gets excited as a result of absorption

of this electronic energy when it comes down to the ground states,  it  emits the absorbed



energy in random directions. And when this is done cyclically, the atom would actually cool

down, so this is the essence of laser cooling and we will discuss some of this towards the end

of the unit 8.
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In fact, when the momentum of the atom comes down, this de Broglie wavelength increases,

lambda is h over p, so lambda increases. And if the atoms are bosons, you can actually get

Bose Einstein condensation, so we will introduce you to this.
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We will also talk about Fermi mixtures, because you can have Fermion atoms, which can

constitute pears and you can pear them using some external controls like magnetic fields,

which will induce certain resonant phenomenon by controlling the scattering line. So, that

requires  tools  in  quantum  collision  theory  and  in  particular,  the  things  like  that  Fano

Feshbach resonance is exploited this, so that you can form completely new states of matter

like the Fermionic condensates.

So, the Bose Einstein condensates itself is a different kind of matter, which perhaps does not

exist anywhere else in the universe, may be it does. If there is life elsewhere and they did it

before they ask, I have no idea about that. But then, it is the different kind of state of matter

all together and then, you can also have the Fermionic condensates.
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So, this enables us to develop cool down the atoms, which is the good think to measure time,

because you need slow atoms and cooled atoms to measure time accurately. And you need

extremely high accuracy in the measurement of time at the logal of attoseconds and that is the

current day technology that people are  developing.  But,  to  study this,  one requires fairly

sophisticated tools in quantum collisions theory is  well  as in  the study of many electron

systems.

And in particular, the coulomb correlations, which we had sort of averaged out in the Hartree

Fock formalism, which we would have leveled out or averaged out at the Hartree Fock level

or in the Dirac Hartree Fock. These correlations effects are not taken into account and they



must be taken into account to study this phenomena. So, that becomes a subject of a different

course and this is pretty much the overview of this course.
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And in the next class, we will begin with the quantum mechanics of the hydrogen atom, so

any questions can certainly be sent to me.

Thank you.


