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Lecture - 29: Resolving power of Fabry-Perot interferometer

Hello, student, welcome to the wave optics course. Today we have lecture number 29 and
today we are going to discuss an important topic called resolving power of the Fabry-Perot
interferometer. So we have lecture number 29 here. And we are going to discuss the resolving
power of the Fabry-Perot interferometer. So, quickly describe again what our system was. So,
we have a cavity here in the Fabry-Perot interferometer system. This is the cavity where this
side is a highly polished side made by two glass plates, quartz or mirror, and then the light
falls here and then we have this pattern that is light is reflected back and forth inside this
cavity and whatever the outcome we have this is essentially the transmitted light and this is a
source extended source plane s. And if I place a lens here, it will converge the entire light to
some point and they will superimpose all these light rays or waves essentially superimpose on
this point P. This is the structure. So if I have a source with a circular pattern then obviously
here we will see this kind of structure that is the typical pattern for Fabry-Perot, if you have a
circular kind of structure. Now if I calculate what is the intensity of this transmitted light that
we had already calculated in our previous calculation, I transmitted the intensity of the
incident light divided by some factor and that factor contains something called F, which is the
coefficient of finesse. This is sine square delta by 2, where delta is the consecutive path
difference, the path difference between the consecutive rays. So, delta is the phase difference,
it will be multiplied by k 0 into the path difference delta where kO is 2 pi divided by lambda.
And this phase difference was 2 of nf multiplied by thickness t and cos of theta t. So, where
was the cos of theta t was this angle?
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This angle was theta t, if it is air and this is a thickness we had, if this is air then n effective is



basically equal to 1, and based on that we do all the calculations. Another issue that we also
discuss is the transmittance of the system and that is the transmittance spectra. This sharpness
depends on the value of f that we describe this is over delta, this peak arises when delta m and
that is 2 m pi this is the point where this peak arises and this is basically I divided by I max,
which we plot and the separation we called the free spectral range. We define something like
this and also this width we calculate full-width half maxima and then we define another
parameter we call simply finesse, which is f and that is delta free spectral range divided by
the ratio between these two, then the full-width half maximum of this structure. So, that was
overall the thing we discussed in the last few classes. So, today we will extend this idea to
understand what is called the resolving power or chromatic resulting power of the
Fabry-Perot interferometer. So, before going to the detailed calculation. So, by definition
actually. So, this chromatic resolving power by definition, is simply lambda divided by delta
lambda, where delta lambda is a deviation, and is a minimum wavelength difference. So,
delta lambda is the minimum wavelength difference that can be just resolved at the
wavelength lambda. So, the point is suppose we have 2 lambda very closely separated one is
a lambda and another is a lambda plus, say, the delta lambda that is the two wavelengths we
have and we use this Fabry-Perot interferometer to find out what is the minimum separation.
So what will be the outcome here? If we have this lambda separation in the transmittance plot
we have a peak here at some Delta. And this delta, if you remember, this delta is, this is the
delta m at which we have the peak. And this delta m depends on the wavelength that we are
going to use. Now, for one particular wavelength, we have this transmittance. On the other
hand, if we have delta plus lambda plus delta lambda, that is another wavelength. Say this is I
write lambda 1 for simplicity and this is lambda 2. So, 2 wavelengths are there where lambda
2 minus lambda 1 is my delta lambda. So, in principle what we have is | have another delta
prime m where we will get the transmission of that data. My drawing was not good, but this
is a very closely separated peak. Now the point is what will be the condition for which this
separation can be calculated.
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So these two things will when we see together what we are going to see let me draw it once



again in a nice way. So I have one transmission and I have another transmission. These two
wavelengths are placed so that these two transmittances are there in this way for two different
wavelengths. So, the resultant will be given by this dotted line where we have a dip here and
we will see the resultant distribution of this intensity in this way. Now, you can see that if
these two peaks are very close to each other it is very difficult to resolve the two
transmittance lines or these two transmittance spectra. So, that means if they are a bit apart
then this dip which is here will be a little bit lower. And, then there is a condition called
Rayleigh's criteria, and based on this Rayleigh's criteria one can calculate what should be the
value, and one can calculate what should be the condition for resolving those two different
lambdas. So, that resolving power we will show that in fact proportional to that specific
parameter F, it is proportional to this specific parameter F. So, that means if the finesse is
very high then we can resolve a very tiny amount of delta lambda if that is present in the
given wave and if I use the Fabry-Perot interferometer we can resolve these two wavelengths
nicely. So, let's see how one can resolve that. So, the starting point should be this. So, the
transmitted intensity which obviously would be a function of delta will be the intensity that
we have incident intensity plus 1 divided by 1 plus F sin square delta by 2. So, the delta was k
naught, this k naught was 2 pi by lambda and delta was 2 of nf then thickness and cos of theta
t nf is normally 1 and theta t is small. So, cos theta t is roughly equal to 1. So, this is the
phase difference for the successive transmitted ray. This delta is the phase difference between
transmitted successively transmitted rays. So, as I mentioned, nf is nearly equal to 1 here and
theta t is small. So, that makes cos of theta t of the order of 1. So, nf'is equal to 1 cos theta is
equal to 1. So delta is simply 2 pi divided by lambda and then this quantity will be simply 2
of t where t is a thickness. Now, if [ write delta lambda here the deviation of these changes of
phase with respect to lambda then we should have minus of 2 pi divided by lambda square
and then 2 of t multiplied by delta lambda or in other words delta lambda divided by delta
will be equal to minus of I can write 2 pi t. So, delta is 2 pi multiplied by 2 t divided by
lambda. So, that I can use here and that becomes delta here.
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So, it is simply delta lambda divided by lambda. So, the negative sign suggests that, the



negative increment. So, we have this quantity that is the deviation. So, the resolving power is
lambda divided by delta lambda. So, the delta divided by d delta will be equivalent to the
resolving power. So the negative sign suggests that if we increase the lambda in the positive
direction, on the positive note, then there will be a change of delta in the negative side. So
that is the only thing that we have here in this expression. Okay so, now, what we do is we
calculate meticulously. After having this we calculate meticulously what is the value of this
resolving power, and how to calculate this resolving power in a systematic way. So, let us
calculate that. So I need to draw that same figure in a nicer way. So we have this
transmittance curve, this is one and I have another one. So this is the central point and we
have another somewhere here to say.

Okay let me draw it, so this is the point where they will cut, so this point should be in the
same line. My drawing is not good. That is why it shows a different place but anyway, the
resulting one will be, let me try to draw in a different color, maybe blue. So the resultant line
will be like this, the resultant intensity will go up because of these two intensities, where the
intensity of 1 and intensity of 2 will add up because these two incoherent lines when
superimposed will be simply the addition one can expect and we are doing that only. So, let
me draw first then I will explain once again. What we are doing here is, we are drawing the
resultant intensity distribution. This is the resultant intensity distribution drawn in the blue
line now noted here. So, for this resultant line, this is the minima and that line on top of that
is the maximum I write Imax okay and now these two maybe I can define as A and B, so this
is A and this is B, AB defines these two spectral lines. No, this AB maybe I can defined as a
peak point, then it will be meaningful. One by one I need to do it. So let us define this point
and this point as A and B. The cutting point here lets us define C, this point lets us define D
and this point lets us define this as E. Okay now, we know that this plot is a 1 delta plot, 1 is a
function of the delta that I am plotting and this side it is delta. So, this value is delta m, and
this value is where we have another maximum for another wavelength that should deviate
slightly. So, I write delta m plus this. This deviation should be there because the condition
will change for different wavelengths for this maximum. Now, here we can write that the
intensity at point A will be equal to the intensity at point B because these two are of the same
height. What is I max? Then let me write it, I max let me do it here, I max will be the
maximum intensity for the left-hand distribution which is A IA plus this amount of intensity
which is here plus ID or this is the same thing as IB plus IE because ID intensity at the point
of D and the intensity of point of E they are again same, these two points. My drawing is bad,
that is why it looks like they are not the same, but they are in the same horizontal line. So,
these and these are in the same horizontal line. So, what is IA? Then similarly if I want to
find out I min, this line is I min, which is 2 of IC because IC for one wave, one spectral line
intensity of one spectral line and another spectral line they superimpose and that is why we
have a large intensity and that is where I min. So this is the condition we have, this is now
what Rayleigh's condition says or Rayleigh's criteria of the resolution of two closely spaced
lines is that this is the resultant intensity we calculate. So, this minima in the plot, say, this is
the plot. So, this minima, should be at least the highest value of this minima should be 8 by pi
square I max. Whatever the maximum value we have, if this is I max then I min should be 8
by pi square of that quantity. So, that is the condition Rayleigh's condition one can have. So,
exploiting that condition I can write. So, in general, we have I at some point delta is I naught



1 plus F sin square delta by 2 where delta m is 2m pi that we know. So, what is IA here? IA is
calculated at delta m and that is my 10. Similarly, IE or ID whatever is 10 divided by 1 plus F
sin square. Here, this is calculated at d delta divided by 2 because I am shifting here by delta.
So, as per the formula, it should be delta by 2 And IC is in between these two points. So, IC
will be I naught divided by 1 plus f sin square d delta divided by 4. Okay so, now I put the
condition I know everything. So, I max, sorry I min the Rayleigh's condition 8 by pi square |
max that is the condition and that condition I now calculate. So, what is I min? I min is 2 of
IC and 2 of IC I already calculate here. So, it is 2 I naught divided by 1 plus F sin square,
which is equal to 8 by pi square into I max, I max again it is. What is I max? Imax is IA plus
ID or IA plus IE. So I calculate and it should be I naught because IA is I naught 1 plus, 1 plus
F sine square delta by 2. So, that is the equation we have and our goal is to find out what is
this big delta, this deviation delta. So, this is a transcendental kind of equation. So, on the
left-hand side and right-hand side if you plot there will be a cutting point, and that cutting
point basically gives you the solution you can simplify also one can. So, like sin square d
delta divided by 4 for small delta one can simplify this and sine square. One can simplify
these two and put it back in the equation and then they get a little bit simpler expression and
simple algebraic expression. So if we do some algebra then it simply comes out to be like
this. Let me just write it. I suggest the student please do that on your own to check whether
what I am writing here is correct or not. So as I mentioned a simple graphical solution one
can have. And if one does the graphical solution, he will get some value like 4.147 divided by
root over of F. Now, you can see that delta has become a function of S. Now, as per our
calculation, the resolving power R that is d by delta and it is essentially 2 m pi because delta
is 2 m pi divided by 4.147 and root over of F. So now, one can further simplify it to get
something like this. So, like 1.515 this 2 pi divided by 4.147 further one can resolve, but the
point is here we can see the expression of the resolving power and this expression of the
resolving power suggests that it depends on 2 parameters. One major parameter is F.
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And, that is proportional to the root over of F, in the earlier we mentioned that it is
proportional to F, but it is coming out to be root over of F. So, if the finesse is high, the



resolving power is high and also the order if I calculate this for higher order then also there is
a greater probability that we will get the better resolution of these 2 lambdas. So, that's all for
today. We already discussed in detail the working principle of the Fabry-Perot interferometer.
Now, we further discuss its resolving power and also I suggest that you please check the
assignment problems, where several assignment problems will be given on how to calculate
this Fabry-Perot interferometer by calculating the wavelength etcetera. That is the usual
experiment that we do in the labs. I hope you understand that. So, today we have completed a
major part of wave optics, which is the superposition of light that is interference phenomena.
In the next class onward we start the new topic diffraction. So how the light will go to
diffraction and the diffraction phenomena is what we are going to describe. So with that note,
I would like to conclude here. So hope you enjoy the first part of this course where we have
discussed interference. Now in the next part, we start another major topic which is

diffraction. Thank you very much for your attention. See you in the next class.
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