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Hello student to the foundation of classical electrodynamics course. So, today we have lecture 72 

and today we will be going to discuss some problem on magnetostatics. 
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So, today we have class number 72, so let us directly go to the problem, problem 1. So, in problem 

1 we have 1 problem like an infinite wire carrying a current I is bent in the form of a parabola. The 

question is find the magnetic field at the focus of the parabola. So, consider, so the another part is 

given the problem that take the distance of the focus from the vertex as a. So, let me draw that then 

it will be clear. 

 

Solution, so we have a parabola, so let me draw first the parabola. This is my origin and my 

parabola if something like this. So, this is the parabola we are having and this is my focus and from 

vertex to focus this length from here to here this length is a, that is given. And the current is flowing 

through the wire I, so this is a problem where you directly use the Biot-Savart law. But the thing 



is that normally we have a simple geometry but here we have something which is little bit 

complicated we have a wire having parabola. 

 

This kind of problem we are going to encounter in several cases where the design of the wire 

should be like half circle or it will be square. But the strategy will be same that you need to find 

out for small element and then you need to integrate over the entire length of the wire to find out 

what is the magnetic field for the given point. 
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So, here let us consider take a small segment here. So, suppose this is from here to here this is my 

𝑟, this angle say θ and this angle is my dθ and here this length is say d𝑙, so this is the length d𝑙. So, 

now we know using the Biot-Savart law if I want to find out �⃗⃗�, my �⃗⃗� should be 
𝜇0

4𝜋
 ∫

𝐼 𝑑𝑙 × 𝑟

𝑟3 . So, 

here we need to first find out what is 𝑑𝑙  × 𝑟. 

 

So, if you look carefully to the figure 𝑑𝑙 is this one and 𝑟 is this one, so if I make 𝑑𝑙  × 𝑟 it is 

nothing but amount of area that is generated here. So, so here 𝑑𝑙  × 𝑟 this quantity is the area swip 

by the vector 𝑟 with d𝑙 increment. So, if that is the case then this quantity simply is r multiplied by 

r dθ or it is simply r2 dθ, from the simple geometry we can have this. 
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Then my �⃗⃗� whatever the �⃗⃗� I am having is 
𝜇0 𝐼

4𝜋
 and 0, 2𝜋 because the length of this parabola is 

infinite, so my θ range from 0 to 2𝜋 and then divided by r. So, I just put 𝑑𝑙  × 𝑟 here, I I take 

outside 𝑑𝑙  × 𝑟 I put r2 dθ and in the denominator I have r3, so this r3 is going to cancel out, this r2 

will be going to cancel out with r3 and we have remaining 1 r here, so that is the simplified form. 

 

Now what I do? I now equation I am going to use because I need to know what is the relationship 

between r and θ. So, now the equation of the parabola, in polar coordinate we know it is r(1 - cos 

θ) = 2a if the distance between the vertex and the focus is a then that is the equation we know from 

the parabola. Now we are going to exploit this equation here because in this equation we know the 

relationship with r and θ. 

 

So, I am going to replace, so 
1

𝑟
 if I replace here, so 

1

𝑟
 then simply 

(1−cos 𝜃)

2𝑎
, that is the value of 

1

𝑟
 and 

that value I am going to replace here. So, this is the B; I should not put any vector sign here because 

I am calculating only the magnitude. So, my B here, magnitude of B rather is simply 
𝜇0 𝐼

4𝜋
, which is 

already there. 
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And then 
1

𝑟
 term I just write 

1

2𝑎
 that should come outside and then we have the ∫ (1 − cos 𝜃) 𝑑𝜃

2𝜋

0
. 

So, everything in now in θ inside the integral, so I can simply write B is 
𝜇0𝐼

4𝜋
 × 

1

2𝑎
. Now in this 

integration you can see that the first integral will give me the value 2𝜋 and the second integral the 

cos θ if I integrate 0 to 2𝜋 it should be simply 0, so I will not be going to get any contribution of 

the second part. 

 

So, that will be our result, so B will be simply 
𝜇0 𝐼

4𝑎
. And the direction of the B is perpendicular to 

the plane of the parabola. So, because this is the way the current is coming and since this is in a 

plane if it is in x suppose this is in x y plane. So, if it is an x y plane then the B should be 

perpendicular to that and then it is going to revolve around, so it should be in the φ actually it 

should be the �̂�. 

 

But anyway the magnitude will be this one. So, the trick of the problem here again you need to 

find out the small whenever you have this kind of problem where you are encountering a wire, 

which is having a different given set, for this case suppose it is a parabola. It can be a rectangular 

shape or it can be a half circle shape, so different kind of shapes are there. So, you need to calculate 

for small element dl and then you need to correlate with the when you integrate because at the end 

of the day you need to integrate you need to correlate the parameters. 

 



So, here I need to correlate with r and θ and I correlate with this information because this is a 

parabola, so we use this important relation between r and θ, this one and execute the problem. So, 

this is one typical problem related to the Biot-Savart law then let us go to the next kind of problem. 
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So, the next problem, problem 2 says that a straight wire of length 2l carries a linear charge density 

cell λ. Now the wire rotates with an angular velocity say ω about an axis passing through the 

midpoint and perpendicular to it is length. The problem is show that the magnetic dipole moment 

m = 
1

3
 λ ω l3. 
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So, let me first draw the picture solution, so we are having a small wire of length 2l suppose this 

is my wire and this is the middle point. And now an axis perpendicular to this rod and passing 

through the middle point along that axis it is rotating, so if I draw the, so it is rotating this direction 

with an angular velocity ω. And also it is having a linear charge density λ, so λ is a linear charge 

density it is having. 

 

So, what happened that if it is having a linear charge density and if it is moving that means 

eventually the charge is moving, so it will generate some kind of current. And we know that the 

magnetic dipole moment is current multiplied by the area, so it will create an area and because of 

that some sort of magnetic dipole movement will be going to generate, so you calculate that 

quantity. 

 

So, the strategy is let us take a, so suppose I am having an axis here, this is say x axis, say this is 

my y axis. So, I can take from here to here a distance y and take a small section here, this section 

is say dy and we are going to calculate the amount of magnetic moment that is generated due to 

the current here in dy and then we are going to integrate. The length of the wire is 2l, so this is the 

coordinate here is say at this point the coordinate is 0, -l and the coordinate of this part is 0, l. 

 

So, that is the structure we are having. So, it will be going to rotate and when it rotates it will 

generate suppose it is rotating like this, so it will generate a, so this small very small dl you are 

going to rotate. So, from here to here we have y and this length is dy and when it rotates with a 

frequency ω, so one current will be going to generate and we already had the area. So, magnetic 

moment is current into area, so we are going to get the magnetic moment and then we need to 

integrate over this system. 

 

So, what is the current we are having? First let us calculate this. So, the amount of current that we 

are having here dI that is the amount of charge that we are having here λ is a linear charge, so it 

should be charge that we are having in dy divided by the period and that is T, so charge divided 

by time that should be the current. And T here is the period and I can write T as 
2𝜋

𝜔
, ω is the angular 

frequency. 

 



So, dI is essentially 
𝜆𝑑𝑦

2𝜋
 and then ω, that is my dI. So, the magnetic moment for this small area this 

small length associated to this current element, so this the small amount of current dI I can write 

this magnetic moment dm it should be current dI into the area. So, which area we are talking here? 

We are talking about this area, this is the area we are talking, here this is the area we need to 

calculate. 

 

Because we know that when we have a current then current multiplied loop when you have a loop 

then this current loop, so magnetic moment let me remind. Suppose we have a current loop when 

current I is flowing then the magnetic moment is current multiplied by the area of this loop. So, 

here we are going to use this area, so area will be simply because we know this is y and it is moving 

in this circular path. 
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So, it should be simply 𝜋y2, dI we already know, so dI is this 
𝜆𝑑𝑦

2𝜋
 and then ω then 𝜋y2. So, this 𝜋, 

𝜋 will be going to cancel out, so whatever we are having is this, it will be λ multiplied by ω and 

then y2 dy. So, when we calculate the total magnetic moment then I need to integrate because I am 

just calculating for this small. 
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So, the total magnetic moment m, so the total magnetic dipole moment that should be m, this is 

the integration of dm. So, that quantity is simply ∫
𝜆

2
𝜔𝑦2𝑑𝑦

+𝑙

−𝑙
. So, 

𝜆

2
𝜔 it value should be y2 simply 

I write 
𝑦3

3
. 

 

So, it should be 
𝜆

2
 and that quantity we calculate for -l to l. So, if we put this -l to l it should be 

simply 
1

3
λω l3, that is the amount of magnetic moment that we are going to generate and in the 

question that is the value that is given. So, this way you calculate the magnetic moment for a 

distribution of the charge and when it is rotating under certain angles, rotating in certain direction. 
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After that let me go to the next problem, the problem 3 saying that a cylindrical wire made of linear 

magnetic material of permeability μ has a current I distributed uniformly over its cross section of 

radius R. Question is calculate all the bound current density and determine the total current. So, 

what is the problem? Let me draw that and then I am going to understand the solution. 
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So, we have a wire made of linear magnetic material. So, here we are having a wire, suppose this 

is my wire and the material is magnetic material. So, we have a μ here and the current we are 

having here is uniformly distributed, the current I is flowing. Now if a current is flowing then we 



should have a magnetic field here inside, so �⃗⃗� will going to generate and that give rise to 

magnetization and from that you can calculate the current density, so let us do that first. 

 

So, we have the expression of the magnetization is 
�⃗⃗�

𝜇0
 - �⃗⃗⃗� that we know, this is my magnetization. 

So, first we need to find out what is �⃗⃗⃗� because the current is flowing. So, we are going to exploit 

this expression close line integral, so this step ∮ �⃗⃗⃗�  •  𝑑𝑙 that is the free current that is flowing here. 

And �⃗⃗⃗�  •  𝑑𝑙, so if I have Amperian so current here what is the current that is flowing. This is I 

and then I should have 𝜋R2 is the total current, so this is the current per unit area and the current 

that is enclosing is this one when r is less than R. 

 

So, here that means from here to here it is R, so I calculate the current somewhere which is here 

and so if I make this figure that will be better. So, this is my R and I find at some r, which is less 

than this one inside this wire. So, I simply have H × 2𝜋r and in the right-hand side we have I 
𝑟2

𝑅2 . 

So, �⃗⃗⃗� simply comes out to be 
𝐼𝑟

2𝜋 𝑅2 and if I want to find out the direction it should be �̂� for r less 

than R. 
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So, again �⃗⃗� I can also write it is μ�⃗⃗⃗� because the permeability of this material is μ. So, then my 

magnetization simply comes out to be if I replace this �⃗⃗�, so (
𝜇

𝜇0
 – 1) and this �⃗⃗⃗�. So, this �⃗⃗⃗� we 



generate, so it is simply (
𝜇

𝜇0
 – 1) and H is 

𝐼𝑟

2𝜋𝑅2 , which is a function of r with a direction say �̂� 

direction. 
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Now we know what is the magnetic current density 𝐽m and �⃗�m is replaced by that ∇⃗⃗⃗ × �⃗⃗⃗�. So, if I 

calculate here the ∇⃗⃗⃗ × �⃗⃗⃗� because �⃗⃗⃗� is there, so I need to use the cylindrical coordinate here of the 

curl then I have �̂� r�̂� and �̂� then the operator 𝜕r and then 𝜕φ and then 𝜕z. And the component of the 

M 0 rMφ because Mφ component is only there and 0. And you note that Mr = Mz = 0 and the φ 

component that we calculate it is (
𝜇

𝜇0
 – 1) and then 

𝐼𝑟

2𝜋𝑅2 . 
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So, my 𝐽m then simply becomes (
𝜇

𝜇0
 – 1) 

𝐼

2𝜋 𝑅2, these are constants and it will be operated by this 

way 
𝜕

𝜕𝑟
 and then I simply have 

𝜕

𝜕𝑟
 this operator will be going to operate one r is there. So, it should 

be r2 and then �̂� direction. So, that quantity is simply (
𝜇

𝜇0
 – 1) 

𝐼

2𝜋𝑅2  and if you calculate it should 

be 2R and this R will calculate will be there. 

 

So, it will be 2 and �̂�, this 2 will be going to cancel out here and here. So, finally we have the value 

of my 𝐽m, this is the magnetic and that value is (
𝜇

𝜇0
 – 1) 

𝐼

𝜋𝑅2  �̂�. So, that is the value of the magnetic 

bound current density due to the magnetization. And why the magnetization is there? Because the 

current is flowing and that is why the magnetic field is going to generate and that magnetic field 

this since the material is magnetic material, so we have a magnetization. 

 

And this magnetization is now function of r, so that is why curl of this magnetization is not equal 

to 0, so that means we should have a non-vanishing curl and that is equivalent to the value of this 

𝐽, which is the magnetic bound current. And what about the bound surface current? And that we 

also know. 
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We represent is �⃗⃗⃗�m and that is �⃗⃗⃗� × �̂� at the surface and if you do that because this value we know 

(
𝜇

𝜇0
 – 1) 

𝐼

2𝜋𝑅
 �̂� × �̂� here = �̂�. So, that value �̂� × �̂� gives me something like (

𝜇

𝜇0
 – 1) 

𝐼

2𝜋𝑅
 and this �̂� 

× �̂� is essentially −�̂�. So, that value is my bound magnetic surface current. 

 

Now if I want to find out the total volume current Iv, I need to integrate because I need to calculate 

the 2 term current now 𝐽m over this surface and that is simply (
𝜇

𝜇0
 – 1) that value is there. And we 

have 
𝐼

𝜋𝑅2  multiplied by 𝜋𝑅2 , whatever the 𝐽m value I had here is 
𝐼

𝜋𝑅2 , so and then the total area is 

𝜋𝑅2. 
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So, these things will simply be (
𝜇

𝜇0
 – 1) I this is not the current density but the total volume magnetic 

current, so I simply write it as Iv. In a similar way what is the total surface current I should have Is 

is simply �⃗⃗⃗�m • d𝑙 and that is −(
𝜇

𝜇0
 – 1) and then 

𝐼

2𝜋𝑅
 multiplied by 2𝜋𝑅. Because this came whatever 

I get is 
𝐼

2𝜋𝑅
 here and with a negative sign and the total circle is 2𝜋𝑅 over this periphery. 

 

So, this will be going to cancel out, so I have here something is −(
𝜇

𝜇0
 – 1) I. Now if I calculate the 

total current I it should be Iv + Is, this is the current due to the magnetization and if you see it this 

value is 0, which should be. Because this is a bound magnetization surface current, this is a bound 



magnetization volume current. So, if I add these 2 together then I am going to get a 0 result. So, 

ok, we do not have much time today to discuss more problem. 

 

So, in another class to do few other problems. So, with that note I am going to conclude, so 

hopefully this typical problem will help you to understand the subject in a deeper way. So, please 

try to do the exercise for taking the problem from different books, these are few typical problems 

I have given. Next class I will be also going to continue, we will do maybe some couple of 

problems related to electromagnetic wave. 

 

And then try to understand how or related to thing etcetera. So, with that note let us conclude, 

thank you very much for your attention and see you in the next class. 


