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Hello student the foundation of classical electrodynamics course. So, under module 4 we have 

lecture number 70 today. And we will be going to continue our discussion on Maxwell’s 

equation in matter. 
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Today I have class number 70. So, in the last class we find that when we have a material when 

we calculate the Maxwell’s equation in a matter. 
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Then the source equation, two equation containing the source is modified, one is ∇⃗⃗  • D⃗⃗  is ρf 

free charge density and that is one modification where D⃗⃗  = ϵ0 E⃗⃗  + P⃗⃗ . And another equation that 

we modified is the ∇⃗⃗  × H⃗⃗  = free current density + the rate of change of displacement current 

where, H⃗⃗  is defined like 
�⃗� 

𝜇0
 – M⃗⃗⃗ . So, these are the 2 equations that we modified. 

 

But the other two equation these are the equation having source term but the other two 

equations like ∇⃗⃗  • B⃗⃗  = 0 remain same. And also the equation like ∇⃗⃗  × E⃗⃗  = −
𝜕�⃗� 

𝜕𝑡
 is also remain 

intact. There will be no change, only change when we discuss the Maxwell’s equation in matter 

then this the term associated with the charge density and the current density we are going to 

modify. This is the Maxwell’s equations in the matter. Well, let us try to find out what should 

be the boundary condition then. 
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So, the boundary condition for this set of equations. So, now I write the Maxwell’s equation in 

integral form these Maxwell’s equation in matter in integral form if I write. So, I should have 

the first equation in this way, this is the integral form, since this integral form I should not have 

this operator anymore. So, I have the ∮ �⃗⃗�  •  𝑑𝑠  is equal to the total free charge that is first one. 

 

Second one is the magnetic flux is simply 0 that is the consequence of the second equation. 

Then we have the Faraday's law and if I write in integral form it should be �⃗�  •  𝑑𝑙  = −
𝜕

𝜕𝑡
 and 

then we have the magnetic flux �⃗�  •  𝑑𝑠  over surface integral. And finally we have the ∮ �⃗⃗�  •  𝑑𝑙  

that is the free current and then plus 
𝜕

𝜕𝑡
 ∫ �⃗⃗�  •  𝑑𝑠 . So, quickly if I in the right-hand side, so, this 

is corresponds to the equation ∇⃗⃗  • D⃗⃗  = ρf. 

 

This is the equation corresponds to ∇⃗⃗  • B⃗⃗  = 0. This equation corresponds to ∇⃗⃗  × E⃗⃗  = −
𝜕�⃗� 

𝜕𝑡
. And 

finally this equation is ∇⃗⃗  × H⃗⃗  is free current density + 
𝜕�⃗⃗� 

𝜕𝑡
. So, these are the equations left-hand 

side we have integral form and right-hand side we have the differential form, the usual form is 

the differential form. But, you should also appreciate the integral form. In this case for 

boundary condition we require this integral form. So, let us now do what is the boundary 

condition. 
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So, before we have a surface like this is the surface we are having and try to find out the 

boundary condition for �⃗⃗� . So, we had a surface pill box like this below that we have the dotted 

line. So, surface is over this region. And let us consider σf to be the free surface charge density 

here and if I have 2 �⃗⃗�  so, this is the region 1. So, let me consider this as region 1. Say here we 

have region 1 and this region is region 2. 

 

And if we have the �⃗⃗�  like in this case, this is my �⃗⃗�  in arbitrary direction like say this is my �⃗⃗� 2. 

And suppose this is another �⃗⃗�  along this direction, say so this is my �⃗⃗� 1. So, now if I try to find 

out the components and exploiting the way we did before I am not going to do the detail 

calculation but, you can understand that. So, 𝐷1
┴ - 𝐷2

┴ = σf that is the first equation you will 

have. 

 

And for �⃗�  it is 0 so, you should have 𝐵1
┴ - 𝐵2

┴ = 0. So, the perpendicular component of the 

displacement vector is discontinuous. It depends on the surface current density. If the free 

surface current density if there is no free charge here. Then it is the perpendicular component 

is continuous but, if there is then it should be equivalent to this difference is in fact equivalent 

to the free surface charge density. And for magnetic field �⃗�  field this perpendicular component 

is conserved. 

 

Now the parallel component whenever we discuss the parallel component, then I need to use 

the expression of �⃗⃗�  here and for parallel. So, I am going to use this curl expression that means 

this line integral I am going to use. So, in first case, when I use the surface integral, then the 



equation this equation and this equation was considered and that is why �⃗⃗�  and �⃗�  components 

are written here. 

 

Now we are going to consider the other 2 equations, which is the line integral. And for line 

integral we need to write down the expression in terms of boundary condition in terms of �⃗�  

and �⃗⃗� . So, again let me draw quickly the surface. So, this is the surface. So, this is our surface 

say and previously we have a surface here but, now we should have a line here closed line. 

These things we did in earlier class. 

 

And inside below we also have the continuation of this line. And the line direction here is along 

this. And this length is usually l and the surface current that is flowing here free surface current 

is �⃗⃗� f. And this is a perpendicular direction of the surface �̂�. And this is region 1 and this is 

region 2. Now here if I calculate like the way we calculated earlier. So, it should be 𝐸1
‖
 - 𝐸2

‖
 = 

0. 
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And if you calculate in terms of �⃗⃗�  it should be 𝐻1
‖
 - 𝐻2

‖
 that should be equivalent to the �⃗⃗� f  × �̂� 

because, If the free current is simply �⃗⃗� f  • (�̂� × 𝑙 ) and that is (�⃗⃗� f  × �̂�) • 𝑑𝑙 . Now if I exploit this 

equation and this equation considering the line integral here. So, this is the result one can expect 

and this is precisely the boundary condition in terms of �⃗⃗�  and �⃗⃗� . Now after having these 

boundary conditions, let us now jog down what we had so far in terms of Maxwell’s equation 

in different medium. 
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So, here what I am writing is the Maxwell’s equations in different mediums, in different cases. 

So, the first one is the most simple one that we discussed. So, in first case I write in free space 

or in vacuum. In free space what we had both the source term ρ and 𝐽  should be 0, that makes 

the equation even simpler and I simply write this equation in this way. So, equation 1 is ∇⃗⃗  • E⃗⃗  

is 0. Equation 2 ∇⃗⃗  • B⃗⃗  is 0. Equation 3 ∇⃗⃗  × E⃗⃗  is −
𝜕�⃗� 

𝜕𝑡
. 

 

And finally we have ∇⃗⃗  × B⃗⃗  is μ0 ϵ0 
𝜕�⃗� 

𝜕𝑡
, ρ and J  0, so, this is the expression these are the 

expressions in free space, this is Maxwell’s equation in free space. So, now the Maxwell’s 

equation with source term, if there is a source term so how should I write. 
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So, we write Maxwell’s equation with source term. When we write source term that means, 

now no longer ρ and J  are 0, rather they are not zero. And the 4 equations again a similar kind 

of equations will be there, only equation 1 and 4 will be modified. So, ∇⃗⃗  • E⃗⃗  is now 
𝜌

𝜖0
 then I 

have ∇⃗⃗  • B⃗⃗  = 0. Then we have ∇⃗⃗  × E⃗⃗  is −
𝜕�⃗� 

𝜕𝑡
 and then ∇⃗⃗  × B⃗⃗  is μ0 J  + μ0 ϵ0 

𝜕�⃗� 

𝜕𝑡
. 

 

This is the expression most of the books you will find. This is the expression for Maxwell’s 

equation with source term but not in the medium. We need to introduce this ρ and J  explicitly 

in a different way in the medium that I like to write here. 
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So, now if I want to write Maxwell’s equation in matter, then the form of the equation is slightly 

modified that we discuss but let me write it here. So, the first equation will be modified like 

this. Instead of E⃗⃗  I am going to get D⃗⃗  and here I have ρf. Second equation will not want to 

change because, there is no source term and I mention that the term the Maxwell’s equation 

having the source term is only going to modify, when we are discussing the Maxwell’s equation 

in a matter. 

 

Third equation again will remain unchanged. So, ∇⃗⃗  × E⃗⃗  = −
𝜕�⃗� 

𝜕𝑡
. And finally I have the equation 

again that having certain modification it should be 𝐽 f + 
𝜕�⃗⃗� 

𝜕𝑡
. Here you should remember few 

things because, I am writing this in terms of D⃗⃗  and H⃗⃗ . So, the expression of the D⃗⃗  and H⃗⃗  should 

be given. 
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The expression of the D⃗⃗  is in terms of E⃗⃗  it is ϵ0 E⃗⃗  and the polarization P⃗⃗  that is one. An 

expression of the H⃗⃗  in terms of B⃗⃗  and magnetization M⃗⃗⃗  is also there. So, let me write it −M⃗⃗⃗ . 

So, we can also write few things because, the relationship with D⃗⃗  and E⃗⃗  and H⃗⃗  and B⃗⃗  can be 

written in this way. So, here it is ϵ0 E⃗⃗  and P⃗⃗  again I can write in terms of E⃗⃗  like ϵ0 χe E⃗⃗ . 

 

So, that makes me ϵ0 (1 + χe) E⃗⃗ . And that is simply D⃗⃗  = ϵ E⃗⃗  where, ϵ is ϵ0 (1 + χe). This is the 

way we define the relationship between E⃗⃗  and D⃗⃗  in terms of ϵ the permittivity. Similar way I 

can have my B⃗⃗  here. So, B⃗⃗  is simply μ0 H⃗⃗  + M⃗⃗⃗ . So, here I write μ0 H⃗⃗ , there is a relationship 

between M⃗⃗⃗  and H⃗⃗  and I have μ0 multiplied here. So, it should be μ0 M⃗⃗⃗  here. And let us take μ0 

common first μ0. 

 

Then I have H⃗⃗  plus then I have magnetic susceptibility multiplied by H⃗⃗  that is the relationship 

between M⃗⃗⃗  and H⃗⃗ . So, it should be H⃗⃗  here. So, I can write it as μ0 (1 + χm) H⃗⃗  or simply B⃗⃗  = μ 

H⃗⃗ . My μ = μ0 (1 + χm). So, this is the way we can represent the Maxwell’s equation in different 

cases. In free space the first one, second one is when we have a source term and then when we 

have a Maxwell’s equation inside a matter. 

 

Inside the matter only thing that you need to consider is now it is written in the first equation 

and the last equation that is the equation having the source term is modified. It is written in 

terms of D⃗⃗ , which is the displacement vector and H⃗⃗ . The magnetic field is now in written in 



terms of H⃗⃗ . And the relationship between the B⃗⃗  and E⃗⃗  with D⃗⃗  and H⃗⃗  is shown here. So, the 

relationship is this. 

 

This is the relationship between D⃗⃗  and H⃗⃗ . And this is the relationship between μ B⃗⃗  and H⃗⃗ , D⃗⃗  

and E⃗⃗  and μ and H⃗⃗ . So, now we have an idea that how to write down the Maxwell’s equation 

in different system. So, now we will be going to discuss about the electromagnetic wave. 
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So, our next topic is to understand the EM wave in a conducting medium. So, far we are dealing 

with the dielectric medium and write down the Maxwell’s equation. Now the situation is 

different we are having a conducting medium, dielectric medium or magnetic material we deal 

with the Maxwell’s equation. But, now we are dealing with the conducting medium and in 

conducting medium the Maxwell’s equation going to modify. 

 

So, as the corresponding wave equation that we are going to find out and that should be our 

final topic in this module. In module 4 we have a final topic, this is the final topic. So, 

eventually this is our last class but we will be going to discuss few tutorial problem later. So, 

in the conducting medium, so, let us write in this way. Let the conducting medium is charge 

free. That means, we consider there is no free charge ρ is 0 here and external current free also. 

 

External current free means, there is no free current charge density. So, this is f is 0 and also 

there is no J f and this is such that. The current existing in the medium is produced by the EM 

wave itself. So, what is the meaning of that? That we are having a medium where the free 



charge density is not there and also the external current is free. There is no such external 

current. Only the current that because, it is a conducting medium. The only current that we 

have in the system is due to the electromagnetic wave itself. So, what current we are talking 

about here, we are simply talking about the current that is driven by the external electric field. 
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And I can write an expression like J  is equal to then σ E⃗⃗ . So, that is a well-known equation. So, 

that is the relationship with the current that is governed by the electromagnetic wave, electric 

field is there. So, J  should be σ E⃗⃗  where, σ is conductivity. 
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So, the Maxwell’s equation now under that condition, the Maxwell’s equation we can write in 

this way. For this case, the first equation is ∇⃗⃗  • E⃗⃗  = 0 because, there is no charge density. Second 



equation ∇⃗⃗  • B⃗⃗  or ∇⃗⃗  • H⃗⃗  let us write in terms of H⃗⃗  is 0. Third equation is ∇⃗⃗  × E⃗⃗  is −
𝜕�⃗� 

𝜕𝑡
 let us 

write in terms of H⃗⃗ . So, I should write it – μ
𝜕�⃗⃗� 

𝜕𝑡
. 

 

And the fourth equation is ∇⃗⃗  × H⃗⃗  is σE⃗⃗  because, there is a J . And that J  should be σ E⃗⃗  + ϵ 
𝜕�⃗� 

𝜕𝑡
. 

So, these are the 4 equations we are having. Now if I want to find out the Maxwell’s wave 

equation. 
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So, I will should make a curl over the equation third equation ∇⃗⃗  × (∇⃗⃗  × E⃗⃗ ) the standard procedure 

that we followed. That should be equal to – μ 
𝜕

𝜕𝑡
 and then I have ∇⃗⃗  × H⃗⃗ . So, left-hand side the 

famous identity that ∇2E⃗⃗  + ∇⃗⃗ (∇⃗⃗  • E⃗⃗ ). Right-hand side what I write is simply – μ 
𝜕

𝜕𝑡
 then (σE⃗⃗  + 

ϵ
𝜕�⃗� 

𝜕𝑡
) that I find. Now this is equal to 0. 
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So, what I get we get simply −∇2E⃗⃗  and then + μϵ 
𝜕2 �⃗� 

𝜕𝑡2
. Now - μ σ then we have 

𝜕�⃗� 

𝜕𝑡
 that is equal 

to 0. So, we have a first order derivative term with respect to time, first order derivative of E⃗⃗  

with respect to time. So, that gives me, so, that is the wave equations up to these we can identify 

this to a wave equation. 

 

But, this additional part is putting some kind of damping. So, this is a damping part. So, this 

equation is overall a damped wave equation. We are having a damped wave equation here in 

our hand. When we deal with the here I think I have this sign will be plus. So, we have a 

damped wave equation in our hand. And let us now consider the plane wave solution because, 

we know the solution for the wave equation is plane wave. 
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So, the plane wave solution, if I consider plane wave solution that is E⃗⃗  = E⃗⃗ 0 𝑒𝑖(�⃗�  • 𝑟 −𝜔𝑡)  that is 

the way we have our plane wave. Now if I put this plane wave here in this equation. So, what 

we get is like putting the solution in to the damped wave equation then what we have is this. 
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We have – k2 + μ ϵ ω2 + μ σ i ω, just make the derivative and you will get all these things. Now 

k2 is simply ω2 μ ϵ + i μ σ and ω. Now this is a complex term. You can see that k is now a 

complex term, which is having a term associated with i, which is here sitting. 
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Now I can write k in 2 forms. So, say k I can write the real part k is a propagation constant. So, 

I can write this propagation constant real part and an imaginary part like this kr + i km. 
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Now k2 is simply kr
2 - kim

2 + 2 kr kim and there should be a i term or you make a square of that. 

So, if I tally with this equation whatever we get here, this one from, this one and this one. Then 

I can write it like kr
2 - kim

2 that is simply ω2 and then μ ϵ that is one term. And another term is 

2 kr kim is ω μ and σ. So, from those 2 equations I can have this relationship. And if you solve 

that it is not a complicated task to solve with 2 equations, 2 unvariables, 2 unknowns. 
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Then one can have kr solving I am just writing the solving you have kr = ω √
𝜖𝜇

2
 and then we 

have [√1 + (
𝜎

𝜖𝜔
)2  + 1]1/2 that is my real part of the k. And what is the imaginary part of a 

considering the damping? Imaginary = ω √
𝜖𝜇

2
 [√1 + (

𝜎

𝜖𝜔
)2 - 1]1/2 that is the solution for kr and 

kim. 
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Now the solution if I go back to the solution it was E⃗⃗  = E⃗⃗ 0 𝑒𝑖(�⃗�  • 𝑟 −𝜔𝑡)  that is the form of the 

solution. 
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Now k is now a quantity, which is having the imaginary part. So, I should have write k say a 

direction �̂� and this is having 2 parts the amplitude it is kr + i kim and the vector �̂�. So, if I put 

in the solution one can readily find that E⃗⃗  is simply E⃗⃗ 0 𝑒𝑖(𝑘𝑟𝑛 • 𝑟 − 𝜔𝑡) that is a sinusoidal kind of 

term. But, we have an exponential term as well. 

 

So, let me use this part. We have an exponential term, which is a decaying part governed by 

the imaginary part �̂�  •  𝑟 . So, this is this term is the attenuation we are having. This is the loss 

term. This is exponentially decayed. So, few things we can note. 
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So, let us note this facts that. When note. I am making σ is 0, then kim whatever we have kim if 

I go back to the equation here. If I put σ = 0, then you can see that kim simply vanishes. So, kim 

is 0 and so there is no attenuation. And this attenuation is coming only because, of the non-

vanishing sigma. This conductivity basically gives some sort of attenuation here in 

electromagnetic wave. Now for a good conductor, we have the condition. 

 

For a good conductor, what we have is σ divided by that quantity 
𝜎

𝜔𝜖
 should be very, very 

greater than 1. And in that case, we can have kr = kim, which is n equal to ω and then 
𝜎𝜇

2
. So, 

that we can put this condition you can put here in the solutions and if you put this in the 

solutions then we simply have kr kim n l equal to this. 
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Now, the quantity 
1

𝑘𝑖𝑚
 that is the reciprocal part of the imaginary part of the propagation 

constant is generally measures the depth at which the electromagnetic waves entering a 

conductor is attenuated at the new it to 
1

𝑒
 of it is initial amplitude, which is straight forward 

here. So, kim is here. So, when kim if I have 
1

𝑘𝑖𝑚
 then this term should be to the power -1. 

 

So, if I compensate if I put this r in such a way that it should be 
1

𝑘𝑖𝑚
. Then this quantity, which 

is loss it should be 
1

𝑒
. So, the amplitude will be reduced to 

1

𝑒
 term. So, that quantity so, whatever 

the attenuate you know its initial amplitude at the surface. 
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So, whatever the surface we have so the amplitude is decay 
1

𝑒
 time. So, it is known as skin 

depth. So, there is a specific name. So, it is known as skin depth. So, 
1

𝑘𝑖𝑚
 = δ. The skin depth 

and can be defined by 
2

𝜔𝜎𝜇
. So, if you can see that for a given conductor. 

 

When ω the frequency is high the skin depth is small. So, very high frequencies suppose, we 

have a conductor here, so, when the electromagnetic wave is propagating in this conductor. 

Suppose, this electromagnetic wave is propagating throughout this conductor. So, when it goes 

inside the conductor there is attenuation huge attenuation of the amplitude. So, this is 

exponential decay. So, it when it goes here is amplitude will decay down. 

 

So, this is say 
1

𝑒
 amplitude and from here to here the depth we call the skin depth see δ. So, now 

if the frequency is very high, then the skin depth is very small. So, most of the electromagnetic 

wave for high frequency electromagnetic wave is moving through a conducting material 

through the surface. So, over the surface this is the �⃗�  value that is attenuating with respect to 

𝑟 . 

 

So, most of the electromagnetic wave the entire part of the electromagnetic wave is containing 

over the surface of the conductor. Because, if it enters into the conductor then there should be 

decay and this decay is due to the imaginary part of the propagation constant �⃗� . And that is 

arising due to this quantity σ that is the conductivity. The conductivity of the material, in the 

conductivity of the conductor basically attenuates the electromagnetic wave. And restrict the 

electromagnetic wave to stay mostly in the surface of the conductor. 

 

So, with that note I like to conclude here in today's class. So, today is essentially the last class 

of the technical discussion. So, we should have a couple of more classes where, we are going 

to discuss about few problems, tutorial problems, mainly which will be helpful for you. And 

you can solve a different kind of problems, but these problems in the tutorial will be some 

typical type of problem, which generally you face in the exam. So, with that note I will like to 

conclude my discussion here. Thank you very much for your attention and see you in the next 

class. 


