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Hello student to the foundation of classical electrodynamics course. Under module 4 today we 

have lecture number 69, where we are going to discuss the Maxwell’s equations in matter. 
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Today we have class number 69 and mainly today we are going to discuss the Maxwell’s 

equation in the matter, but before that let me cover one important thing that we missed actually. 

So, that is the boundary condition of the magnetic field �⃗� . There is interface how the magnetic 

for boundary condition of the magnetic field appears. So, that we are going to discuss quickly 

because, that we will use this in understanding the Maxwell’s wave equation in matter later.  
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So, we know the ∇⃗⃗  • B⃗⃗  is 0, which gives us that the closed surface integral of B⃗⃗  that is the flux 

should be 0 that is the second equation Maxwell’s equation. So, exploiting that expression we 

can figure out, what is the boundary condition of B⃗⃗ ? 
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Suppose, we have a surface boundary like this, suppose this is a surface and below here we 

have B⃗⃗  say perpendicular component and this is below. And over that also we have B⃗⃗  

perpendicular but this is above. So, 2 sections are there below and above. And the magnetic 

field the perpendicular component of the magnetic field I write B⃗⃗  below and B⃗⃗  above. 

 

And the surface current that is flowing here corresponds to k⃗  and that is flowing over the 

surface. So, we have the surface current that is flowing. Now if I want to calculate these integral 



that is the closed surface integral like the Gaussian surface we need to draw a pill box. If I draw 

that here. And then this is the small area, we are drawing. And below that also so this is 

basically having a cross section. 

 

So, this is the small surface we are having. And now the condition we are going to put here is 

this, closed surface integral = 0. And we know the perpendicular component of B⃗⃗ b and B⃗⃗ a and 

if I do that, so if I execute that considering the fact that the surface of these things is say ∆s. 

Then this quantity has to be B⃗⃗ 𝑎
┴ I just write B⃗⃗ a here. Then ∆s and then - B⃗⃗ 𝑏

┴ and ∆s = 0. 

 

Because other component will not be there in the surface because, when I take the �⃗� ┴ 

component then I am just taking this one along over this and the surface is the same direction. 

So, that is why B⃗⃗ 𝑎
┴ • d𝑠  and the negative sign is because the surface and �⃗�  is opposite direction. 

However we have also the surface here in this side and this side. 

 

And in this side surfaces I can make this length tends to 0, so, that this component will no 

longer alive. So, only the meaningful component we have is this perpendicular component and 

they will follow this equation. And that means we have a condition that B⃗⃗ 𝑎
┴ is equal to B⃗⃗ 𝑏

┴. That 

means the perpendicular component of the �⃗�  is continuous. 

 

That is the outcome that we had here. Also if I want to calculate the parallel component 

because, this is the condition of the perpendicular component but for any arbitrary direction �⃗� , 

if I have an arbitrary direction here. Say this is the direction of �⃗�  suppose it should have a 

perpendicular component that I already mentioned along this direction it should be the 

perpendicular component. 

 

And also one can expect or one can have a parallel component here which we write �⃗� ‖. So, this 

is the way the components are distributed. So, the parallel component is still there. And I can 

use another equation, which is the equation for the amperes law essentially. 
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And we had this again we have ∮ �⃗�  •  𝑑𝑙  that quantity is μ0 and then Ienc. This is the amount of 

current Ienc I do not put the c. So, this is the amount of current that is enclosed by this closed 

loop so that is. So, let us now consider what is I mean how to make this closed loop. Again 

consider the same surface, the way we consider. So, suppose this is the surface same surface I 

am considering this is the surface and over this surface we have now my loop. 

 

And the loop is from here to here and then I have here and have here. And then I go the 

downwards the downwards, which is below the loop below the surface. So, that is given by this 

dotted line. So, this is the way the loop is defined. Now the current flow the length of this loop 

is suppose from here to here is say l and this is the way the loop is there. And the surface current 

is flowing, so, surface current should play a role here the way we draw the surface current. 

 

So, I just draw it like this. Now the �⃗� ‖ component like the way we draw here the �⃗� ‖ component 

should be like this. So, this is the �⃗� ‖  component and �⃗� ‖ this is above and below also we have 

a �⃗� ‖ component like �⃗� . 
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Now I integrate this closed line integration and that integration means I need to integrate over 

this closed loop whatever the loop I draw here, amperian loop. So, if I draw you can see that I 

have B⃗⃗ 𝑎
‖  l - B⃗⃗ 𝑏

‖
 l and that should be equal to other component will no longer be there because 

the direction of the loop and the direction of the �⃗�  is perpendicular to each other. 

 

So, they will not going to interfere. Here also the similar thing happened actually. So, here 𝑆 , 

the direction 𝑆  and the direction �⃗�  they are perpendicular. So, these components are not there. 

Here we have the opposite case; the perpendicular component is no longer there because this 

is perpendicular to the length itself. But, here only the parallel component will survive and this 

will be the condition the negative sign again because of the opposite direction. 

 

The direction is opposite for the loop in this region. So, now this quantity is equal to μ0 Ienc. 

And this μ0 Ienc I should write simply μ0 the surface current density multiplied by the l that is 

all. Then we simply have B⃗⃗ 𝑎
‖ l - B⃗⃗ 𝑏

‖
 = μ0 and then k. So, here we can see that in the previous 

case, we had the perpendicular component they are conserved for magnetic field. 

 

But, here we see the parallel component is not conserved. It depends on thus if there is a surface 

current there, then it depends on the surface current k. If the surface current is 0 however, you 

can have the parallel component to be continuous again. So, what is the fate of the vector 

potential that we also calculate here? 
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So, also what we have here is 𝐴 𝑎 and 𝐴 𝑏  these are continuous the vector potential seems to be 

continuous. A 0, we can do that, this vector potential is continuous whatever the vector potential 

we have in the below that is the same vector potential we have in the above part of this interface. 

And that we can show by that means, the parallel component and perpendicular component 

both are continuous. 

 

So, we can use this expression the ∇⃗⃗  • A⃗⃗  = 0 that is the condition we have for magnetostatic this 

is the condition, coulomb gauge condition is there, that is the condition that need to be satisfied 

by A⃗⃗ . And then that leads to the equation ∮𝐴  •  𝑑𝑠  = 0. And similarly the way we calculate for 

B⃗⃗ , we can see that the A⃗⃗ 𝑎
┴  is equal to A⃗⃗ 𝑏

┴  same way. 

 

So, like the magnetic field the vector potential is also having the same relationship with the 

perpendicular component of above and below. They are continuous. Well, what about the other 

component that you can also figure out that. Let us do in the next page. 
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So, we know that ∇⃗⃗  × A⃗⃗  = B⃗⃗  that is the relation we are having. Now if I try to find out that ∇⃗⃗  × 

A⃗⃗  • ds  suppose I am making a surface integral. So, that quantity is simply ∮𝐴  •  𝑑𝑙  and that is 

nothing but ∫ �⃗�  •  𝑑𝑠  and that is the magnetic flux. We had this equation several time we know 

that. So, this magnetic flux calculation, so we can do so. So, here if I make a loop like this. 

 

So, this is the loop and in this loop if I calculate. So, and this length suppose δl. So, by making 

delta tends to 0 we can make this ɸ be vanished. And in that case, what we get is simply so, 

what happened? That if I make making δl tends to 0 because this is my choice I can make δl 

according to my choice. So, we can have ɸB tends to 0 that means, the flux is almost 0 or the 

flux will simply the flux will vanish because the surface area I can make 0. 

 

So, that basically gives me an expression like A⃗⃗ 𝑎
‖  = A⃗⃗ 𝑏

‖
. Exploiting the same technique that we 

used here. Only difference is that I can make this δl tends to 0 to make this surface area 0. So, 

flux can be 0 and then we had simply this equation. So, so this is the 2 conditions we get and 

perpendicular and parallel component. If both are conserved then we can say that the vector 

potential A⃗⃗  is conserved in this interface, in this boundary. 

 

If I have an interface between two, this is a boundary between the two region. Then the 

magnetic field in the lower and magnetic field in the upper should have the relationship like 

this. But the vector potential that is producing the magnetic field is continuous. So, that 

information may be we can use in our future calculations. 
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Now let us after having that let us now go to our main topic Maxwell’s equation in matter. So, 

in Maxwell’s equation in matter so that means, previously whatever the Maxwell’s equation 

we discuss is mainly in the free space and then calculate the wave equation in this free space. 

But now we are going to deal with the Maxwell’s equation in matter. 
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In matter we have 2 special things. So, we have whenever we consider the matter we have the 

bound current, bound surface charge density, which is associated with the polarization of the 

material. If it is a dipole, if it is dielectric then it is related to this polarization �⃗� , which is a 

dipole moment per unit volume and that is the relation. Also we have a bound current here. If 

the system is magnetic and it is related to the magnetization and we have ∇⃗⃗  × �⃗⃗�  = 𝐽 b. So, these 

two additional components should be there in the Maxwell’s equation. 
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So, polarization current let me try to understand make you understand that polarization current. 

So, polarizations current suppose we have a rod like this. And this is a polarization and this is 

the area, small area say perpendicular direction to the polarization. And there is a difference 

between the two ends there is a difference between the bound surface charge density. So, one 

is negative and another is a positive. 

 

So, one is this side and another is that side. So, there is a difference. So, the current flow ideally 

so let me write it first. So, any change in the electric polarization that means any change in 

vector �⃗�  involves a flow of bound current 𝐽 b, which we called this 𝐽 b, actually we called the 

polarization current. So, here we are having a change over �⃗�  over the distance and that is if I 

have a surface bound charge density minus and plus there is a difference. Then it leads to the 

flow of current. 
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So, I can calculate this flow of current and that is dI is the amount of current that is flowing 

that is the change rate change of this bound surface charge density multiplied by the area, which 

is perpendicular. And that eventually leads to 
𝜕𝑃

𝜕𝑡
 and then da perpendicular because, P the 

polarization P is σ. So, that we know that polarization �⃗�  is polarization dot �̂� is σ. 

 

So, that is the relation we had, I do not need to write it several time. So, that expression we use 

here to find out that thing. So, let me write it. So, �⃗�  what I am trying to say is, this �⃗�  • �̂� is our 

σb that we know. So, the bound current density that we are having here, which is the 

polarization current that we are having 𝐽 P that is equal to the rate of change of the polarization. 

 

This is the time rate of change of the polarization. And if I make a divergence both the side, ∇⃗⃗  

• 𝐽 P then I can have 
𝜕

𝜕𝑡
 and the ∇⃗⃗  • �⃗� . And this ∇⃗⃗  • �⃗�  is the ρb that is the bound charge density. 

So, this rate of change of bound charge density can leads to the ∇⃗⃗  • 𝐽 P that is the divergence of 

the polarization current. That is generated due to the change of time change of P. And that is 

due to the flow of bound current that leads to basically the flow of bound current. 
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Now it follows that this equation is simply follows the continuity equation. That if I write it in 

a standard way. So, ∇⃗⃗  • 𝐽 P + 
𝜕𝜌𝑏

𝜕𝑡
 = 0. So, the continuity equation is satisfied for the polarization 

current 𝐽 P, the continuity equation is satisfied for that. 
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So, we finally what we have after doing that, so, we have the total charge density into two parts. 
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So, total charge density ρ can be divided into two parts, one is the free charge density that is 

the thing we always consider. But, for polarized system we also have the bound charge density 

ρb. So, this condition is simply ρf −∇⃗⃗  • �⃗�  that is my ρ. Also the total current this is for total 

charge. This is the total charge density. 
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What about the total current density? The total current density 𝐽  is now having 3 components; 

one is the free current density that we have. Apart from that we have a bound current density 

that we derived here that is due to the rate change of the polarization. And another we already 

had in magnetic material and that is for this magnetization we called it 𝐽 M. So, it is simply 𝐽 f 

plus the rate of change of polarization. 

 



If there is a time dependent variation of the polarization then we have 𝐽 b and if we have a space 

variation of the magnetization. Then we have 𝐽 M and if I make a curl of that quantity. Then you 

are going to have this current density 𝐽 M. 
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So, I have the equation now ∇⃗⃗  • �⃗�  = 
𝜌

𝜖0
 that was our equation. But, this equation I am going to 

modify here because, ρ I need to write in terms of ρf and ρb, which I write minus of divergence 

of the polarization. And this equation now become ϵ0 �⃗�  considering this is and plus �⃗� . I just 

put this side, under this divergence operator and we have ρf. 

 

This quantity we know that we define this quantity as our �⃗⃗�  displacement vectors. Eventually 

we have �⃗⃗�  = ρf, where my �⃗⃗�  is considered to be ϵ0 �⃗�  + �⃗� . This is the way we define the ρf. So, 

also the other equation because, these two equations we need to consider where we have the 

source term. So, this is the equation 1 where, we had the source term ρ. And equation 4 also is 

equation where we had the source term. 
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So, in principle we need to modify that well and that equation is ∇⃗⃗  × �⃗�  = μ0 𝐽 , that is the 

Amperes law. And now we will modify that μ0 𝐽  can be divided into 3 parts 𝐽 f + 
𝜕�⃗� 

𝜕𝑡
 + ∇⃗⃗  × �⃗⃗�  

that is the 3 part we had. And also I had let me add this because, this additional term is there in 

Maxwell’s equation and that is the modification by Maxwell’s himself and that is this term μ0 

ϵ0 
𝜕�⃗� 

𝜕𝑡
. 

 

Let us add this term as well for the completeness. Now I rearrange, so, I have ∇⃗⃗  × �⃗�  I just divide 

everything with μ0. So, μ0 and then I put this curl this side. So, I am having −�⃗⃗�  that quantity 

is equal to 𝐽 f this is simply the free current density plus I have 
𝜕

𝜕𝑡
 of ϵ0 �⃗�  that is already there 

plus �⃗� . 
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Again I have here this quantity, which is nothing but �⃗⃗� . So, eventually we can write this as �⃗⃗�  

and we have our modified equation and that equation I am writing here is the ∇⃗⃗  × �⃗⃗�  is equal to 

𝐽 f + 
𝜕�⃗⃗� 

𝜕𝑡
. So, this is the equation that one should follow. So, this is a modified version of the 

Maxwell’s equation in material where the characteristics of the material can be entered through 

this value of �⃗⃗� , which is ϵ0 �⃗�  plus the polarization �⃗� . 

 

This is the characteristics of the material. And �⃗⃗�  is 
�⃗� 

𝜇0
 minus the magnetization. So, the 

polarization and magnetization are now involved, which is strictly the property of the material. 

And that property when you include in the Maxwell’s equation, then the equation is modified. 

And these 2 equations, which is having the source term is only going to be modified because 

the contribution will be in the source term. 

 

And we will have 2 new equations, other 2 equations will remain same that is the ∇⃗⃗  • �⃗�  = 0. 

And the ∇⃗⃗  × �⃗�  = 
𝜕�⃗⃗� 

𝜕𝑡
. So, in today's class so what we did is we discussed the Maxwell’s equation 

in a material. Before that, we also calculate the boundary condition of the magnetic field �⃗� , 

which we did in the earlier classes. But anyway, so, that information will be going to use in the 

next part of the topic, when we discuss about the Maxwell’s wave equation in matter. So, with 

that note I like to conclude today's class. See you in the next class and thank you for your 

attention. 


