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Maxwell’s Wave Equation (Contd.) 

 

Hello student to the foundation of classical electrodynamics course. So, under module 4 today 

we have lecture 68. And today we will be going to continue our discussion on Maxwell's wave 

equation, class number 68. 
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So, in the last class let me recap quickly. So, we had the Maxwell's 4 equations in free space 

and that 4 equations were this 
𝜕𝐵⃗ 

𝜕𝑡
 and then ∇⃗⃗  × B⃗⃗  was μ0 ϵ0 

𝜕𝐸⃗ 

𝜕𝑡
. So, this was Maxwell's equation 

in free space. So, in free space means, there is no source term. So, ρ = 0 and J  = 0. These 2 are 

the condition. 
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Now from that exploiting this curl equation this equation taking the curl both sides, I am not 

going to do the entire process 2, 3 steps and there we discussed last day. So, taking and using 

the condition that ∇⃗⃗  • E⃗⃗  = 0, we had this wave equation. 
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The wave equation was in the form like this, 
1

𝑐2 where c was 
1

√𝜇0𝜖0
 that is the expression we 

had. And then after that what we get is the solution. We find a solution for that, solution of this 

wave equation was something like this in this form. This is called the plane wave solution. 

Why it is called plane wave solution? We will discuss. So, also we can discuss. 

(Refer Slide Time: 04:25) 



 

So, here whatever the phase we are having, so, it is eventually an equation like E⃗⃗ 0 ei, a phase is 

there, which is a function of r  and t. So, the phase here is like k⃗  • r  - ωt. Now for a fixed time 

or if I take a particular instant of time. Then the equation for the constant phase, if this is 

constant for a given time. 
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The locus of this constant phase the equation of this constant phase simply gives us k⃗  • r  equal 

to some constant. Because, when ωt is given, that means, ωt is a constant. And I am saying that 

ɸ is constant, that means, k⃗  • r  this expression should be constant. So, I am trying to find out 

the point where, all the phase value is constant. So, in that case I should have this is the equation 

to get all the phase constant. 

 



Now if I consider this equation, say this constant is some value d. So, this equation simply kx 

x + ky y + kz z is equal to this constant d. And I can write this in this particular form 
𝑥

𝑎
 + 

𝑦

𝑏
 + 

𝑧

𝑐
 

= 1 where, a is equal to say 
𝑑

𝑘𝑥
, b = 

𝑑

𝑘𝑦
 and c is 

𝑑

𝑘𝑧
. So, this is the way a, b, c are there. So, this is 

the equation of a plane. So, which suggests that when this wave is propagating for then the 

phase font is making a plane and that is why it is called a plane wave. 
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Now we will try to understand one important thing and that is the relative direction of 𝑘⃗ , 𝐸⃗  and 

𝐵⃗ . So, there are 3 vectors are associated if you look carefully. There is a 𝑘⃗  propagation constant 

and inside the 𝐵⃗  also we have because, if you solve the wave equation for 𝐵⃗  you will be going 

to get the similar solution. And also 𝐸⃗ 0 and one should have a solution for 𝐵⃗ . 

 

Let me write it is like 𝐵⃗  = 𝐵⃗ 0 𝑒𝑖(𝑘⃗  • 𝑟 −𝜔𝑡) . It will have also the same velocity that of 𝐸⃗ . But the 

direction of the 𝐵⃗ 0 and the direction of the 𝐸⃗ 0 they are not same. So, that is why we need to 

find it out. So, how you get that? So, we will be going to exploit. So, let me write down once 

again. 
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So, my 𝐸⃗  the solution is 𝐸⃗ 0 𝑒𝑖(𝑘⃗  • 𝑟 −𝜔𝑡)  and my 𝐵⃗  is 𝐵⃗ 0 𝑒𝑖(𝑘⃗  • 𝑟 −𝜔𝑡) . Now if you have this solution 

one very important thing, you can find out by yourself. That if I do this operation over this 

plane wave this operation divergence, then it should be equivalent to 𝑘⃗  •  𝐸⃗ , if the solution in 

this plane waveform. So, this is an exercise if you can check it last day also I mentioned that 

and I derive it but, you can check it what happened here. 

 

In the similar way if I do the ∇⃗⃗  × E⃗⃗  then that should be equal to 𝑘⃗  × E⃗⃗  that is that means, it is 

also true for B⃗⃗  as well. So, because B⃗⃗  is in the same way, so, that means if I do this operation 

over B⃗⃗ , so this operation is eventually tells me that it will be like 𝑘⃗  •  𝐵⃗ . And if I do the ∇⃗⃗  × B⃗⃗  

if the B⃗⃗  is in this plane wave form, then it should be 𝑘⃗  × B⃗⃗ . You can prove that, by simple using 

the vector algebra, which we learn. 
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So, what we get is this operator is equivalent to 𝑘⃗  •. So, that is one and another thing is this 

curl operator if it is operating over some function having the plane waveform like here it is 

valid only for this kind of solution. So, then this can be replaced by 𝑘⃗  × these things. So, this 

operator can be replaced in this way some sort of Fourier transform thing is involved. 

 

So, this is a space operator and we can simply make it an inferior plane we are just simply 

making a dot and cross by just changing this operator. But, you should note this is very handy 

thing. Now let us go back. 
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What is the equation we had? We had ∇⃗⃗  • E⃗⃗  = 0. You should note that my solution is already 

known. And this solution is like 𝑒𝑖(𝑘⃗  • 𝑟 −𝜔𝑡) that is there and B⃗⃗  is B⃗⃗ 0 𝑒𝑖(𝑘⃗  • 𝑟 −𝜔𝑡) . So, if this is 0, 



so I can write. Let me write down all the 4 equations first. ∇⃗⃗  • B⃗⃗  is 0, ∇⃗⃗  × E⃗⃗  is −
𝜕𝐵⃗ 

𝜕𝑡
 and ∇⃗⃗  × B⃗⃗  

is μ0 ϵ0 
𝜕𝐸⃗ 

𝜕𝑡
. Now we had this, parallely I like to also mention here, that we have another, so, 

another operator. 

 

So, one operator here is this. If I note so one operator is this, which we know how to handle 

with curl and divergence this is the operator, which is operating over that. And another is called 

operator that is operating. So, these 2 kinds of operator are there and we know what is the 

recipe. But also there is operator sitting here, which is 
𝜕

𝜕𝑡
. So, what should be this form of this 

operator because, I have the full form explicit form. 
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So, here you should also note that. I am writing here 
𝜕

𝜕𝑡
 this operator should be equivalent to. I 

missed i here because, whenever you have this operator. So, it should be equivalent to there is 

a mistake. Let me so it should be because, there is i involved here so it should be associated 

with one i. So, it should be i of these things. So, now what is 
𝜕

𝜕𝑡
? 

𝜕

𝜕𝑡
 this operator, now will be 

replaced by simply - iω. 

 

So, that is the replacement for 
𝜕

𝜕𝑡
 operator. So, these 3 things you should know and exploiting 

these 3 informations let us now find out what we get from 1, 2, 3 all these 4. So, I have 1 

equation here, 2 equations, 3 and 4. So, let us check what we get. 
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So, from equation 1, we have ∇⃗⃗  • E⃗⃗  = 0 this simply means, i k⃗  • E⃗⃗  = 0 or simply k⃗  • E⃗⃗  is 0. It 

simply says that the k⃗  is perpendicular to E⃗⃗ . That means the propagation vector should 

perpendicular to the electric field. Now let us do let us exploit equation 3. So, that is one 

information I get. So, my goal is to find out the relative direction between the E⃗⃗ , B⃗⃗  and k⃗ . So, I 

find one information that k⃗  should be perpendicular to E⃗⃗ . 
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Now also we had picked from equation 2, we had ∇⃗⃗  • B⃗⃗  = 0, which leads to the expression i k⃗  

• B⃗⃗  = 0 or simply I can have k⃗  • B⃗⃗  = 0. 
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So, again I can write that k⃗  is perpendicular to B⃗⃗  as well. So, that is the second information I 

get. So, eventually I find that k⃗  is mutually perpendicular to both E⃗⃗  and B⃗⃗ . So, k⃗  is perpendicular 

to both E⃗⃗  and B⃗⃗ . So, now what is the relative? So, I know E⃗⃗  is perpendicular to both B⃗⃗  and E⃗⃗  

but, what is the relative direction between E⃗⃗  and B⃗⃗  to find that, I need to exploit equation 3. 
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So, from equation 3 what we have. We have ∇⃗⃗  × E⃗⃗  is −
𝜕𝐵⃗ 

𝜕𝑡
. So, ∇⃗⃗  × E⃗⃗  I can write as I cross 

because, curl I can replace. So, these is equivalent to ik⃗  and 
𝜕

𝜕𝑡
 is equivalent to -iω. So, I can 

replace it and I can have that i k⃗  × E⃗⃗  = i of 1 minus sign is already there ωB⃗⃗  or k⃗  × E⃗⃗  = ωB⃗⃗ . 

Now k⃗  is perpendicular to E⃗⃗  and B⃗⃗  both. And now I can find that k⃗  × E⃗⃗  = B⃗⃗ . 
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So, that means the B⃗⃗  is perpendicular to the plane containing the vector k⃗  and E⃗⃗ . So, in other 

word B⃗⃗  is perpendicular to both k⃗  and E⃗⃗ . So, that means E⃗⃗ , B⃗⃗ , k⃗  they are mutually perpendicular. 

k⃗  is perpendicular to B⃗⃗ , k⃗  is perpendicular to E⃗⃗ , B⃗⃗  is perpendicular to E⃗⃗ . So, they are mutually 

perpendicular. 
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So, that means if I draw it should be like electric field if it is vibrating here like this magnetic 

field should be perpendicular vibrating here, k⃗  the propagation distance should be propagation 

vector should be this. Not only that, so I should have also the magnitude of B⃗⃗ , so if I find the 

|𝐵⃗ | it should be simply 
|𝑘⃗ |

𝜔
 |𝐸⃗ |. 

 



Now 
|𝑘⃗ |

𝜔
 is simply 

1

𝑐
. So, the |𝐵⃗ | is whatever the magnitude you have for electric field divided 

by c. So, you can see that in electromagnetic wave the |𝐵⃗ | is very, very small compared to |𝐸⃗ |. 
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Now so if I plot quickly. So, how these things, so, in this 3 dimensional plot, this is a plot you 

always find that how the electric field and magnetic field propagates. So, there is a variation of 

the electric field like this. There should be a variation of the magnetic field like, this in 

perpendicular plane. So, this is the electric field, which is vibrating along this. And this is the 

magnetic field that is vibrating perpendicular to that. 

 

And they are propagating along this direction. So, this is in opposite direction here. So, this is 

in this direction. And they are propagating along the direction of k⃗ , which is z  in this case. So, 

this is the way the electromagnetic wave is propagating. And this figure is let me erase this part 

because, let us confined up to this because, my drawing is not good here. So, E⃗⃗  is in one plane, 

B⃗⃗  is in the perpendicular plane and k⃗  is perpendicular to both E⃗⃗  and B⃗⃗ . 

 

And this is the way the electromagnetic wave should propagate. So, this is the electric field 

vector, this is the magnetic field vector, which is polarized along this perpendicular direction. 

This is the magnetic field vector in this plane, the electric field vector perpendicular. So, this 

is the way it should propagate roughly this is the figure for the electromagnetic wave that is 

propagating. 
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Now, next we discuss about the energy density. So, when the electromagnetic wave is 

propagating, we should have some energy density. So, energy density of EM wave, 

electromagnetic wave. 
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So, already we have the energy of and from electrostatic and magnetostatic. The energy of 

electrostatic field is simply 
1

2
 ϵ0 ∫𝐸2 𝑑𝑣 we calculated that. And also the energy for magnetic 

field is 
1

2
 μ0 ∫ 𝐵2 𝑑𝑣. So, the total energy stored. So, this is the total energy. So, total energy 

stored in EM electromagnetic field per unit volume, which is energy density, that is simply u 

= 
1

2
 (ϵ0 E2 + 

𝐵2

𝜇0
). 

 



This is the amount of energy density that is stored there. Now let us quickly calculate a very 

important quantity in respect to that and that is the pointing vector. 
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So, by definition the pointing vector. So, let me first define, then I am going to explain it is 

defined at S⃗  by definition it is E⃗⃗  × H⃗⃗ . And if I write in terms of E⃗⃗  and B⃗⃗  it should be 
1

𝜇0
 E⃗⃗  × B⃗⃗ . 

So, what is this E⃗⃗  × B⃗⃗ ? 
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So, S⃗  is simply equivalent to energy per unit area per unit time. So, eventually it is 
𝐸𝑛𝑒𝑟𝑔𝑦

𝑡𝑖𝑚𝑒 ×𝑎𝑟𝑒𝑎
. 

And that means 
𝑃𝑜𝑤𝑒𝑟

𝑎𝑟𝑒𝑎
 and that is eventually the intensity. So, it basically measures the intensity 

of the electromagnetic wave that is propagating. So, now we are going to calculate it is value, 



that if we know the electric field, then what should be the value. So, it is very straightforward 

calculation. 
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So, we already have this expression k⃗  × E⃗⃗  = ωB⃗⃗ , this expression we just find. So, B⃗⃗  is 
1

𝜔
 and 

then k⃗  × E⃗⃗ . Now if I put this value of B⃗⃗  in the expression of the S⃗ , then let us see what we get. 
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If S⃗  is 
1

𝜇0
 E⃗⃗  × B⃗⃗  that we know. And in place of B⃗⃗  now I am going to put this. So, 

1

𝜇0
 E⃗⃗  × in place 

of B⃗⃗  I just put 
1

𝜔
 (k⃗  × E⃗⃗ ). 
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So, I should have 
1

𝜇0𝜔
 and then we have E⃗⃗  × (k⃗  × E⃗⃗ ). And we know that what is A⃗⃗  × B⃗⃗  × it is 

like a A⃗⃗  × B⃗⃗  × C⃗ . So, I just expand this portion E⃗⃗  × (k⃗  × E⃗⃗ ) and it should give like k⃗  it is B⃗⃗  C⃗  A⃗⃗  

– C⃗  A⃗⃗  B⃗⃗  this is the formula. So, this B⃗⃗  C⃗  A⃗⃗ , which you should be E⃗⃗  • E⃗⃗  – C⃗  A⃗⃗  B⃗⃗  that means, C⃗  is 

E⃗⃗  and A⃗⃗ , B⃗⃗  is E⃗⃗  • k⃗ . Now we know that E⃗⃗  and k⃗  are perpendicular. 

 

So, this term should be 0 because, E⃗⃗  is perpendicular to k⃗ , that we already proved. So, my 

expression eventually is S⃗  = 
1

𝜇0𝜔
 and then E2 and then k⃗ . So, one thing that we find here that 

the pointing vector should be in the direction of the propagation that is in the k⃗  in free space. 
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So, k⃗  if I want to find out the magnitude it should be 
𝜔

𝑐
. So, I can simply write it at 

1

𝜔
 will be 

going to cancel out when I put the |𝑘⃗ | μ0 c E2 and then 𝑘̂. 
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So, the |𝑆 | the pointing vector magnitude if I want to find out what is the intensity only the |𝑘⃗ | 

shows that how the energy is flowing. What is the direction of the flow of the energy and that 

is in k⃗ . That is why the k⃗  comes here but, when you calculate the intensity it should be the 

magnitude and you have 
1

𝜇0𝑐
 and then simply E2. Also it can be written in terms of say c ϵ0 E2 

but, just replacing μ0 in terms of ϵ0 and c. 

 

This is this is another way to now. The point is because, c2 I should note it here, c2 is 
1

𝜇0𝜖0
. Now 

my E⃗⃗  is E⃗⃗ 0 cos (k⃗  • r  – ωt). So, E2 is a E⃗⃗ 2 is simply E0
2 and then cos2 (k⃗  • r  – ωt). So, now it 

varies with respect to time in this cos square form. So, if I when I put this so then it will it will 

vary with respect to time in this form cos square form. So, I need to take the average, we know 

that when there is a time varying thing. 
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So, normally we take the average, so, this average if I take. Then it should be simply 
1

𝜇0𝑐
 and 

then the 〈𝐸2〉, which is a function of time. Now the time average if I take for this cos square 

function we know that we get half. So, the value should be 
1

2𝜇0𝑐
 and it should be simply E2 or 

in other way it is 
1

2
 𝜖0𝑐 and then E0

2 that is basically the measurement of the intensity I. 

 

So, this is the relationship between the intensity and the amplitude of the electric field. So, this 

is the relationship you should note that. This is the relationship between amplitude E0 and 

intensity. And the direction of the E⃗⃗  is along k⃗ . So, that is the energy is propagating. 

(Refer Slide Time: 35:34) 

 

So, if this is the way we are having, so suppose the electric field is in this direction magnetic 

field is along this direction in electromagnetic wave but the energy that is flowing should be in 



the direction of 𝑘̂. So, energy is flowing in this direction. So, that is why the 𝑘̂ is there. So, 

energy is flowing along 𝑘̂. So, with this note I would like to conclude, because I do not have 

much time to cover the next topic. 

 

So, in the next class maybe I like to discuss something about the boundary condition of the 

magnetic field and then the boundary condition of the electromagnetic wave we will be going 

to discuss. If there is interface how the boundary condition will be there. And then after that 

maybe we will be going to discuss about the Maxwell's equations, wave equation in a material.  

 

Now we are dealing with the free space but then we are going to discuss about what happened 

to a material. So, with that note let me conclude today then. Thank you very much for your 

attention and see you in the next class. 


