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Lorentz Gauge, Maxwell’s Wave Equation 

 

Hello student to the course for foundation of the classical electro dynamics. Today we have 

module 4 and lecture 67. And in this lecture, we will discuss about the Lorentz gauge and then 

we will be going to discuss Maxwell’s wave equation. 
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So, we have class number 67. So, for whatever we have let me quickly remind that there are 4 

Maxwell’s equations and we wrote this Maxwell’s equation as homogeneous and 

inhomogeneous form. 
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So, that was the first equation having the source term. So, this has to be a non-homogeneous 

equation. Second equation, which is ∇⃗⃗  • B⃗⃗  that is 0, third equation, ∇⃗⃗  × E⃗⃗  + 
𝜕�⃗� 

𝜕𝑡
 that was 0. And 

fourth equation is ∇⃗⃗  × B⃗⃗  - μ0 ϵ0 
𝜕�⃗� 

𝜕𝑡
 that is μ0 J (r , t). So, among these 4 equations, these 2 were 

homogeneous. And from this homogeneous equation we find the relationship like E⃗⃗  = −∇⃗⃗ ɸ 

−
𝜕𝐴 

𝜕𝑡
. 

 

So, I can extract this information in terms of a scalar and vector potential, just exploiting these 

two homogeneous equation and B⃗⃗  was ∇⃗⃗  × A⃗⃗ . And after that we put this information in 1 and 4 

and putting this let me write down this equation, let us write it as 5 and 6. 
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And putting equation 5 and 6 in equation 1 and 4, which are non-homogeneous in nature, we 

get these 2 equations the following 2. We get ∇2ɸ + 
𝜕

𝜕𝑡
 (∇⃗⃗  • A⃗⃗ ) = −

𝜌(𝑟 ,𝑡)

𝜖0
 and another equation 

is ∇⃗⃗  [∇⃗⃗  • A⃗⃗  + 
1

𝑐2 
𝜕ɸ

𝜕𝑡
] – [∇2A⃗⃗  - 

1

𝑐2 
𝜕2𝐴 

𝜕𝑡2
] = μ0 J (r , t). 
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So, after that, what we have? We had the Coulomb gauge. And the condition of the Coulomb 

gauge is ∇⃗⃗  • A⃗⃗  has to be 0 that is the constant we are using, after using the Coulomb gauge what 

we get? We get the first equation as this quantity is 0. We get the first equation as this. So, that 

means, ɸ is now satisfying a simpler Poisson equation. And the next equation, which is not that 

simple, so, we had ∇2𝐴  −
1

𝑐2  
𝜕2𝐴 

𝜕𝑡2
 that quantity is equal to - μ0 𝐽 . 

 

This source has to be given because, this is a known quantity. Without that we cannot calculate 

the magnetic or electric field. And then we had a term like + 
1

𝑐2 and then 
𝜕

𝜕𝑡
 and then ∇⃗⃗ ɸ. So, 

whatever the ɸ we have here, the solution after doing the Poisson equation I plug it here. So, 

that the right-hand side is known and you can calculate this also. So, from then we can calculate 

A⃗⃗ , which should be a function of r  and t. 

 

So, this equation gives me the solution of ɸ, that ɸ I put here. And then I should have a wave 

equation with a source term and that wave equation I solve with the source term to get my A⃗⃗ . 

So, that is the recipe when we use the Coulomb gauge. Now in today's class we are going to 

discuss the Lorentz gauge. So, what is the advantage of the Lorentz gauge? Let us check. 
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Lorentz gauge: So, in Lorentz gauge, what we make is this instead of taking ∇⃗⃗  • A⃗⃗  = 0. We take 

∇⃗⃗  • A⃗⃗  = −
1

𝑐2 
𝜕ɸ

𝜕𝑡
, we just take it. Why we take this? Because, if you look carefully we have a 

disturbing term here. So, if this term is not there I am making a line here. So, I have a term here 

if this term is somehow 0, then my second equation will be much, much simpler. 

 

So, in Lorentz gauge what we do, we just take A⃗⃗  in such a way, that A⃗⃗  and ɸ in such a way 

because, we have a liberty to A⃗⃗  and ɸ that this condition should satisfy. If that is the case, then 

what we are getting out of that, then these 2 equations whatever the equation I wrote here. So, 

maybe I can put a name here. So, maybe this is 5, 6 is there. So, 7, 8 these are my fundamental 

equations. 

 

And now I am putting the gauge to simplify it. So, with this condition equation 7 and 8 become 

much simpler and that is this. So, we have say equation 9 now. After putting this condition to 

equation 7 what we get? We get this ∇⃗⃗ ɸ then we have +
𝜕

𝜕𝑡
, we have ∇⃗⃗  • A⃗⃗  in place of ∇⃗⃗  • A⃗⃗  I 

should write at −
1

𝑐2 
𝜕ɸ

𝜕𝑡
 that I wrote simply. 

 

Rest of the term is simply −
𝜌(𝑟 ,𝑡)

𝜖0
. Now you can see that this is having a very well-known form. 

And this well-known form is ∇2ɸ −
1

𝑐2 
𝜕2ɸ

𝜕𝑡2
. This is nothing but the wave equation with a source 

term, −
𝜌(𝑟 ,𝑡)

𝜖0
. Let us put equation 9, this one. So, this is the equation we are getting after 



exploiting the Coulomb gauge. And now I will do the same thing for other. And for other 

equation it is straight forward because, this term will completely zero. 
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And we have equation 10, which is for the vector potential A⃗⃗ . And the equation is again 

something like A⃗⃗  −
1

𝑐2  
𝜕2A⃗⃗ 

𝜕𝑡2
 = - μ0 J (r , t). So, both the equations are satisfying. So, now both the 

equations, which equation, equation 9 and equation 10 that is equation for both the equation, 

equation for ɸ and A⃗⃗  in other word because, in equation 9 we have only ɸ, in equation 10 we 

only have A⃗⃗ , satisfy the wave equation with a source term. 

 

And we have the method to solve the wave equation with a source term. Now like the before, 

so, this Lorentz gauge condition I need to fix it because, I consider that (∇⃗⃗  • A⃗⃗ ) −
1

𝑐2 
𝜕ɸ

𝜕𝑡
 but for 

given A⃗⃗  and ɸ this condition may not be true. This condition may not satisfy. So, then what we 

do? We need to fix that like we did in the Coulomb gauge. 
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So, now suppose for a given ɸ and A⃗⃗  because, this is given and for that there is a possibility 

that this is not satisfied. That is ∇⃗⃗  • A⃗⃗  −
1

𝑐2  
𝜕ɸ

𝜕𝑡
. Maybe I am making a mistake here no no it is 

fine there is a negative sign. So, this quantity is may not be equal to 0 that means, given ɸ and 

A⃗⃗  does not satisfy the Coulomb gauge. But we can make them satisfy with the proper choice 

of A⃗⃗  and ɸ the liberty that we have. So, that we are going to exploit. 
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So, if that is the case, if it is not 0 it should have some value. So, let me write this value. So, 

suppose this is not equal to 0 and that is why I can write that, this is not equal to 0. So, it should 

be equal to something and this something is say g, which is a function of r  and t. It has to be a 

scalar quantity because, left-hand side is a scalar divergence and this is scalar quantity. So, 

right-hand side should be a scalar field. 
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Now our aim is to find A⃗⃗ ’ and ɸ’, A⃗⃗ ’ and ɸ’ such that this Lorentz gauge condition satisfied. 

So, this is nothing but the condition of the Lorentz gauge. So, our aim is to find out a set of A⃗⃗ ’ 

and ɸ’ such that this condition satisfied. So, how to do that? Let us check. So, that is our aim. 
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Now we know that A⃗⃗ ’ can always be written like given A⃗⃗  plus the gauge function this χ is our 

gauge function. And ɸ’ I can write as ɸ - 
𝜕𝜒

𝜕𝑡
, χ should be a function of r  and t. This is r  and t. 

We just need to fix this function we need to know what function this is. If I put a suitable 

function then I can have my A⃗⃗ ’ and ɸ’ such that it follows the Lorentz gauge. 

 



It satisfy the Lorentz gauge and my equation becomes simpler. Now next is if I make a ∇⃗⃗  • A⃗⃗ ’ 

right-hand side it should be ∇⃗⃗  • A⃗⃗  plus Laplacian of this function. And left-hand side what we 

do I multiplied 
1

𝑐2 and make a time ∇⃗⃗ ɸ’ and right-hand side it is simply 
1

𝑐2 
𝜕ɸ

𝜕𝑡
 - 

1

𝑐2 d2χ, which is 

a function of r  and t. This now I simply add both the side because left-hand side I want 

something. 
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So, if I add then the left-hand side becomes ∇⃗⃗  • A⃗⃗ ’ + 
1

𝑐2 
𝑑

𝑑𝑡
 that and this term is ∇⃗⃗  • A⃗⃗  + 

1

𝑐2 
𝜕ɸ

𝜕𝑡
. 

This quantity plus I have r , t −
1

𝑐2 
𝜕2𝜒 (r⃗ ,𝑡)

𝜕𝑡
. Now we make this quantity equal to 0. So, that 

means, so this has to be 0 because, this is our so we want this to be 0. So, this quantity has to 

be equal to 0. And what value we have here, this is the given value this is not equal to 0 and 

this value is suppose I mention here, this is equal to something called g. 

 

So, I now have this value as g. So, if that is the case then I can have the equation and that 

equation simply tells me that gradient Laplacian of this scalar field χ −
1

𝑐2  
𝜕2𝜒 (r⃗ ,𝑡)

𝜕𝑡
 = - g(r , t). 

So, that means if I choose my χ in such a way that satisfies this equation, which is again a wave 

equation having a source term. Then eventually I can form my A⃗⃗ ’ and ɸ’ exploiting this 

expression such that it satisfies the Coulomb gauge condition. 

 

So, step by step I derive everything. So, this basically tells us, that if I put certain constant 

certain gauge like Coulomb gauge or Lorentz gauge. Then my equation becomes simpler. So, 

at the end of the day what equation we are getting here, we are getting equation 9 and 10 to 



solve. And once you solve because ρ and J  is given. If ρ and J  is given we can solve equation 9 

and 10 and we can get ɸ and A⃗⃗ . As soon as we get ɸ and A⃗⃗ , we know what is the value of 

electric field and magnetic field because, they have a relation. 

 

Now how I get equation 9 and 10 exploiting the Coulomb gauge. And how I exploit the 

Coulomb gauge, if the condition ∇⃗⃗  • A⃗⃗  + 
1

𝑐2 
𝜕ɸ

𝜕𝑡
 is not equal to 0. Suppose it is a g, then I exploit 

the relation A⃗⃗ ’ and ɸ’. Considering the fact that A⃗⃗ ’, ɸ’ will produce the same E⃗⃗  and B⃗⃗ . So, since 

A⃗⃗ ’, ɸ’ are producing same electric field and same magnetic field instead of using A⃗⃗  and ɸ. 

 

Now I will be going to use my new A⃗⃗ ’ and ɸ’. This new A⃗⃗ ’ and ɸ’ can be constructed from the 

given A⃗⃗  and ɸ and also an arbitrary function χ, which I can fix, which I can put it is my choice. 

Now I choose my χ in such a way that it satisfy the Lorentz gauge condition to make the 

equation very simple. And we find that the χ I choose in such a way that it satisfy this equation. 

 

This is again a wave equation with source term. So, we need to solve this equation to find my 

χ. So, this is my hand, so, what I will fix. So, basically we need to solve this is a wave equation 

with a source term. And this source term is again given because, when A⃗⃗  and ɸ is given, then I 

can find that the ∇⃗⃗  • A⃗⃗  + 
1

𝑐2 
𝜕ɸ

𝜕𝑡
 that basically g. So, I know that. This is not equal to 0 that is the 

initial condition. 

 

So, that initial condition I am going to exploit here to find out my χ. So, this is roughly the 

discussion of the Coulomb gauge just primitive discussion. So, that you can have an idea what 

is the meaning of Coulomb gauge, what is the meaning of Lorentz gauge? So, this is Lorentz 

gauge, by the way. So, then you understand that how exploiting the Coulomb and Lorentz 

gauge. 

 

You can simplify the equation in terms of the vector potential and scalar potential. And then 

you use this vector potential and scalar potential to find out your final equations. So, the 

Maxwell’s 4 equation, which deal with the value of electric field and magnetic field. The 

information is gradually, we extracted this information from in the form of A⃗⃗  and ɸ and 

eventually we solve this A⃗⃗  and ɸ. 

 



So, now after that we will do a very important thing and that is called the Maxwell’s wave 

equation. So, now we had an idea about the wave equation because, wave equation we had a 

special separate lecture. So, we will be going to find out how the Maxwell’s 4 equation leads 

to the wave equation. So, let me write down here first. 
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So, the next topic is Maxwell’s wave equation, say in free space let us start with in free space . 

So, in free space means eventually, without any source term that means, ρ = 0 and J  is always 

also equal to 0. So, if I write down the Maxwell’s equation under this condition the equation 

become very simple. 
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And this will be the form, ∇⃗⃗  • E⃗⃗  should be equal to 0, ∇⃗⃗  • B⃗⃗  will be equal to 0, ∇⃗⃗  × E⃗⃗  will be 

−
𝜕B⃗⃗ 

𝜕𝑡
, this is part of the simplest form of the Maxwell’s equation without any source term and 

∇⃗⃗  × B⃗⃗  = μ0 ϵ0 
𝜕E⃗⃗ 

𝜕𝑡
. So, in principle they are all the 4 equations are homogeneous equations. Now 

we will be going to exploit this equation. So, this is equation 1, this is equation 2, this is 

equation 3 and 4. 

 

So, from equation 3, we can have so, what we do from equation 3 if we take the curl of both 

side. So, far we are dealing with the divergence of both side and check that the left-hand side 

and right-hand side is consistent or not but, now what we do that we take the curl on both the 

side. So, if I do that ∇⃗⃗  × (∇⃗⃗  × E⃗⃗ ) = −
𝜕

𝜕𝑡
 (∇⃗⃗  × B⃗⃗ ). Now ∇⃗⃗  × (∇⃗⃗  × E⃗⃗ ) again this is a famous identity 

that is minus ∇2E⃗⃗  + ∇⃗⃗ (∇⃗⃗  • E⃗⃗ ). 

 

This identity we use several times. So, you should remember this identity. Then −
𝜕

𝜕𝑡
 and in the 

right-hand side, we have ∇⃗⃗  × B⃗⃗  and ∇⃗⃗  × B⃗⃗  in exploiting the equation 4 I can simply write it is 

μ0 ϵ0 
𝜕E⃗⃗ 

𝜕𝑡
. Now in free space, this quantity is 0. This quantity is 0 because, there is no source 

term in the free space and ∇⃗⃗  • E⃗⃗  should be 0. 
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If we make this term equal to 0, the rest of the term is like −∇⃗⃗  • E⃗⃗  = -μ0 ϵ0 
𝜕2�⃗� 

𝜕𝑡2
. So, I can make 

it plus both the side. So, this equation exactly is like a wave equation. So, let me write down 



the wave equation this side. So, the general wave equation was ∇2Ψ as a function of r  and t = 

1 divided by velocity square 
1

𝑣2  and then 
𝜕2𝛹(𝑟 ,𝑡)

𝜕𝑡2
. 

 

That was the equation wave equation we discussed earlier where, v was the velocity. So, now 

if I look carefully these 2 equations then we can see that E⃗⃗  is also following. So, let us remove 

this from both the side. So, E⃗⃗  is satisfying the wave equation. Under the condition, that this can 

be written in terms of the velocity, so how I write this in terms of velocity. So, I can simply 

write E⃗⃗  −
1

𝑐2 
𝜕2�⃗� 

𝜕𝑡2
 = 0, when c is nothing but 

1

√𝜇0𝜖0
. 

 

So, during the calculation when Maxwell’s did this calculation he find that μ0 ϵ0 is sitting in 

the place of 
1

𝑐2. And he calculated μ0 ϵ0 and he find that this value is very close to the velocity 

of light c and then realized that light is nothing but an electromagnetic wave. That was the 

revolutionary findings, so here we are doing the same thing. Now if you do the same thing for 

B⃗⃗  like, this is a homework. So, please try to do the same thing for B⃗⃗ . 

 

I exploit equation 3 by taking a ∇⃗⃗  × E⃗⃗  and you can do the same thing by taking the curl of. So, 

try to do this and you will find that you will be going to get the same result for B⃗⃗  as well with 

the same velocity. So, if you do what we get. So, using equation 4 and you will get the similar 

expression like you get for E⃗⃗ . That is homework for you, you just check it. Now let us consider 

that what should be the solution that we are going to consider quickly. 
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So, it is called the plane wave solution very special kind of solution because, we know that the 

wave equation has a specific kind of solution. So, let me write down here also. So, when we 

have this equation and we mentioned that the solution should have a specific form. And the 

specific form if I write it should be like Ψ0 and say ei. So, something like k⃗  and k⃗  • r  - like v t 

it is like az - vt kind of form. 

 

So, one should expect this kind of form for plus, minus. This is the general form because the 

general solution if you remember it should be this is a plane wave solution. But the general 

solution in 1 dimension if you remember it was z plus minus vt that was the form of the solution 

of the wave equation. When g was the function. So, in 1 dimension that was the equation and 

we find that this was the equation and we find that if this equation then it is the solution. 

 

So, here we will be going to get a plane wave solution. And this plane wave solution of the 

Maxwell’s wave equation is of the form like E⃗⃗  = E⃗⃗ 0 𝑒𝑖(�⃗�  • 𝑟 −𝜔𝑡)  that is the solution. When k = 

𝜔

𝑐
. So, under this condition if you plug this solution here, plug this expression E⃗⃗  to this equation 

here, you will be going to see that this is basically the solution of that. 

 

So, we can check it quickly. So, what is ∇2E⃗⃗  because, I need to first calculate this quantity. So, 

this is if I do that in cartesian coordinate, so, it is d2x + d2y + d2z and it should be operated on 

E⃗⃗ . And E⃗⃗  is E⃗⃗ 0 I should put a vector here, vector then exponential i and here we have kx x + ky 

y + kz z I just expand the k⃗ . So, my k⃗  here is kx �̂� + ky �̂� + kz �̂�. 

 

And my r  is �̂�, �̂� and �̂�, so, then -ωt bracket close. And if I operate these things then what we 

get is this one. So, this will be going to operate twice and every time it operates, so, ik will 

come out. In this case, when we operate over operated by 𝜕y. So, iky will come out and so on. 

So, eventually we have this, we have kx
2 + ky

2 + kz
2 and rest of the term will remain same. 

 

So, I just simply write my is E⃗⃗ 0 𝑒𝑖(�⃗�  • 𝑟 −𝜔𝑡). So, this is simply – k2 E⃗⃗ . This is the left-hand side, 

what about the right-hand side? The right-hand side I can write here, the right-hand side is 
1

𝑐2 

𝜕2

𝜕𝑡2
. So, if I write 

1

𝑐2 
𝜕2 �⃗� 

𝜕𝑡2
, so it should be simply −

𝜔2

𝑐2  and this E⃗⃗ . And we already mentioned that 

k should be equal to 
𝜔

𝑐
 for which the solution is there. 



 

So, we can see that the left-hand side is equal to right-hand side. So, that means this is a solution 

for Maxwell’s wave equation, I am going to use this solution, this is a special property. Why 

we called a plane wave we may discuss in the next class. So, I do not have much time to today 

to discuss further. So, I like to stop here. So, in the next class maybe we will be going to find 

out more about the solution and the relative direction between the E⃗⃗  and B⃗⃗  because B⃗⃗  will also 

follow the same equation. 

 

So, the solution of the B⃗⃗  will also be a plane wave solution. And then we will discuss that how 

to find out the relative direction of E⃗⃗ , B⃗⃗  the value etcetera by just exploiting the Maxwell’s 

other equation, which is the Gauss's law and others law. So, with that note I like to conclude. 

Thank you for your attention and see you in the next class. 


