# Foundations of Classical Electrodynamics Prof. Samudra Roy Department of Physics Indian Institute of Technology-Kharagpur

# Lecture-67 Lorentz Gauge, Maxwell's Wave Equation

Hello student to the course for foundation of the classical electro dynamics. Today we have module 4 and lecture 67. And in this lecture, we will discuss about the Lorentz gauge and then we will be going to discuss Maxwell's wave equation.

### (Refer Slide Time: 00:37)

| class NO - 67 |    |
|---------------|----|
|               |    |
|               | 10 |
| -1            |    |

So, we have class number 67. So, for whatever we have let me quickly remind that there are 4 Maxwell's equations and we wrote this Maxwell's equation as homogeneous and inhomogeneous form.

(Refer Slide Time: 01:05)

So, that was the first equation having the source term. So, this has to be a non-homogeneous equation. Second equation, which is  $\vec{\nabla} \cdot \vec{B}$  that is 0, third equation,  $\vec{\nabla} \times \vec{E} + \frac{\partial \vec{B}}{\partial t}$  that was 0. And fourth equation is  $\vec{\nabla} \times \vec{B} - \mu_0 \epsilon_0 \frac{\partial \vec{E}}{\partial t}$  that is  $\mu_0 \vec{J}(\vec{r}, t)$ . So, among these 4 equations, these 2 were homogeneous. And from this homogeneous equation we find the relationship like  $\vec{E} = -\vec{\nabla}\phi - \frac{\partial \vec{A}}{\partial t}$ .

So, I can extract this information in terms of a scalar and vector potential, just exploiting these two homogeneous equation and  $\vec{B}$  was  $\vec{\nabla} \times \vec{A}$ . And after that we put this information in 1 and 4 and putting this let me write down this equation, let us write it as 5 and 6.

The law law law law law decomposition  

$$\overrightarrow{\delta} \circ A = \overrightarrow{\delta} \circ \overrightarrow{\delta} \circ \overrightarrow{\delta} \circ \overrightarrow{\delta} \circ \overrightarrow{\delta} = \overrightarrow{\delta} \circ \overrightarrow{\delta} \circ \overrightarrow{\delta} \circ \overrightarrow{\delta} = \overrightarrow{\delta} \circ \overrightarrow{\delta} \circ \overrightarrow{\delta} \circ \overrightarrow{\delta} = \overrightarrow{\delta} \circ \overrightarrow{\delta} \circ \overrightarrow{\delta} \circ \overrightarrow{\delta} \circ \overrightarrow{\delta} = \overrightarrow{\delta} \circ \overrightarrow{\delta} \circ \overrightarrow{\delta} \circ \overrightarrow{\delta} \circ \overrightarrow{\delta} = \overrightarrow{\delta} \circ \overrightarrow{\delta} \circ \overrightarrow{\delta} \circ \overrightarrow{\delta} = \overrightarrow{\delta} \circ \overrightarrow{\delta} \circ \overrightarrow{\delta} \circ \overrightarrow{\delta} \circ \overrightarrow{\delta} = \overrightarrow{\delta} \circ \overrightarrow{\delta} \circ \overrightarrow{\delta} \circ \overrightarrow{\delta} = \overrightarrow{\delta} \circ \overrightarrow{\delta} \circ \overrightarrow{\delta} \circ \overrightarrow{\delta} = \overrightarrow{\delta} \circ \overrightarrow{\delta} \circ \overrightarrow{\delta} \circ \overrightarrow{\delta} \circ \overrightarrow{\delta} = \overrightarrow{\delta} \circ \overrightarrow{\delta} \circ \overrightarrow{\delta} \circ \overrightarrow{\delta} \circ \overrightarrow{\delta} = \overrightarrow{\delta} \circ \overrightarrow{\delta} \circ \overrightarrow{\delta} \circ \overrightarrow{\delta} \circ \overrightarrow{\delta} = \overrightarrow{\delta} \circ \overrightarrow{\delta} \circ \overrightarrow{\delta} \circ \overrightarrow{\delta} \circ \overrightarrow{\delta} = \overrightarrow{\delta} \circ \overrightarrow{\delta} \circ$$

And putting equation 5 and 6 in equation 1 and 4, which are non-homogeneous in nature, we get these 2 equations the following 2. We get  $\nabla^2 \phi + \frac{\partial}{\partial t} (\vec{\nabla} \cdot \vec{A}) = -\frac{\rho(\vec{r},t)}{\epsilon_0}$  and another equation is  $\vec{\nabla} [\vec{\nabla} \cdot \vec{A} + \frac{1}{c^2} \frac{\partial \phi}{\partial t}] - [\nabla^2 \vec{A} - \frac{1}{c^2} \frac{\partial^2 \vec{A}}{\partial t^2}] = \mu_0 \vec{J}(\vec{r}, t).$ 

(Refer Slide Time: 05:05)



So, after that, what we have? We had the Coulomb gauge. And the condition of the Coulomb gauge is  $\vec{\nabla} \cdot \vec{A}$  has to be 0 that is the constant we are using, after using the Coulomb gauge what we get? We get the first equation as this quantity is 0. We get the first equation as this. So, that means,  $\phi$  is now satisfying a simpler Poisson equation. And the next equation, which is not that simple, so, we had  $\nabla^2 \vec{A} - \frac{1}{c^2} \frac{\partial^2 \vec{A}}{\partial t^2}$  that quantity is equal to  $-\mu_0 \vec{J}$ .

This source has to be given because, this is a known quantity. Without that we cannot calculate the magnetic or electric field. And then we had a term like  $+\frac{1}{c^2}$  and then  $\frac{\partial}{\partial t}$  and then  $\vec{\nabla}\phi$ . So, whatever the  $\phi$  we have here, the solution after doing the Poisson equation I plug it here. So, that the right-hand side is known and you can calculate this also. So, from then we can calculate  $\vec{A}$ , which should be a function of  $\vec{r}$  and t.

So, this equation gives me the solution of  $\phi$ , that  $\phi$  I put here. And then I should have a wave equation with a source term and that wave equation I solve with the source term to get my  $\vec{A}$ . So, that is the recipe when we use the Coulomb gauge. Now in today's class we are going to discuss the Lorentz gauge. So, what is the advantage of the Lorentz gauge? Let us check. (Refer Slide Time: 07:52)

$$\nabla^{2} \overrightarrow{\phi} = 2 \quad \forall \overrightarrow{\phi} \neq \overrightarrow{\phi} = 2 \quad \forall \overrightarrow{\phi} \Rightarrow \overrightarrow{\phi} = 2 \quad \forall \overrightarrow{\phi} = 2 \quad \overrightarrow{\phi$$

Lorentz gauge: So, in Lorentz gauge, what we make is this instead of taking  $\vec{\nabla} \cdot \vec{A} = 0$ . We take  $\vec{\nabla} \cdot \vec{A} = -\frac{1}{c^2} \frac{\partial \Phi}{\partial t}$ , we just take it. Why we take this? Because, if you look carefully we have a disturbing term here. So, if this term is not there I am making a line here. So, I have a term here if this term is somehow 0, then my second equation will be much, much simpler.

So, in Lorentz gauge what we do, we just take  $\vec{A}$  in such a way, that  $\vec{A}$  and  $\phi$  in such a way because, we have a liberty to  $\vec{A}$  and  $\phi$  that this condition should satisfy. If that is the case, then what we are getting out of that, then these 2 equations whatever the equation I wrote here. So, maybe I can put a name here. So, maybe this is 5, 6 is there. So, 7, 8 these are my fundamental equations.

And now I am putting the gauge to simplify it. So, with this condition equation 7 and 8 become much simpler and that is this. So, we have say equation 9 now. After putting this condition to equation 7 what we get? We get this  $\vec{\nabla}\phi$  then we have  $+\frac{\partial}{\partial t}$ , we have  $\vec{\nabla} \cdot \vec{A}$  in place of  $\vec{\nabla} \cdot \vec{A}$  I should write at  $-\frac{1}{c^2}\frac{\partial \phi}{\partial t}$  that I wrote simply.

Rest of the term is simply  $-\frac{\rho(\vec{r},t)}{\epsilon_0}$ . Now you can see that this is having a very well-known form. And this well-known form is  $\nabla^2 \phi - \frac{1}{c^2} \frac{\partial^2 \phi}{\partial t^2}$ . This is nothing but the wave equation with a source term,  $-\frac{\rho(\vec{r},t)}{\epsilon_0}$ . Let us put equation 9, this one. So, this is the equation we are getting after exploiting the Coulomb gauge. And now I will do the same thing for other. And for other equation it is straight forward because, this term will completely zero.

#### (Refer Slide Time: 11:42)



And we have equation 10, which is for the vector potential  $\vec{A}$ . And the equation is again something like  $\vec{A} - \frac{1}{c^2} \frac{\partial^2 \vec{A}}{\partial t^2} = -\mu_0 \vec{J}(\vec{r}, t)$ . So, both the equations are satisfying. So, now both the equations, which equation, equation 9 and equation 10 that is equation for both the equation, equation for  $\phi$  and  $\vec{A}$  in other word because, in equation 9 we have only  $\phi$ , in equation 10 we only have  $\vec{A}$ , satisfy the wave equation with a source term.

And we have the method to solve the wave equation with a source term. Now like the before, so, this Lorentz gauge condition I need to fix it because, I consider that  $(\vec{\nabla} \cdot \vec{A}) - \frac{1}{c^2} \frac{\partial \Phi}{\partial t}$  but for given  $\vec{A}$  and  $\phi$  this condition may not be true. This condition may not satisfy. So, then what we do? We need to fix that like we did in the Coulomb gauge.

### (Refer Slide Time: 14:05)



So, now suppose for a given  $\phi$  and  $\vec{A}$  because, this is given and for that there is a possibility that this is not satisfied. That is  $\vec{\nabla} \cdot \vec{A} - \frac{1}{c^2} \frac{\partial \phi}{\partial t}$ . Maybe I am making a mistake here no no it is fine there is a negative sign. So, this quantity is may not be equal to 0 that means, given  $\phi$  and  $\vec{A}$  does not satisfy the Coulomb gauge. But we can make them satisfy with the proper choice of  $\vec{A}$  and  $\phi$  the liberty that we have. So, that we are going to exploit.

(Refer Slide Time: 15:11)



So, if that is the case, if it is not 0 it should have some value. So, let me write this value. So, suppose this is not equal to 0 and that is why I can write that, this is not equal to 0. So, it should be equal to something and this something is say g, which is a function of  $\vec{r}$  and t. It has to be a scalar quantity because, left-hand side is a scalar divergence and this is scalar quantity. So, right-hand side should be a scalar field.

(Refer Slide Time: 15:46)



Now our aim is to find  $\vec{A}$ ' and  $\phi$ ',  $\vec{A}$ ' and  $\phi$ ' such that this Lorentz gauge condition satisfied. So, this is nothing but the condition of the Lorentz gauge. So, our aim is to find out a set of  $\vec{A}$ ' and  $\phi$ ' such that this condition satisfied. So, how to do that? Let us check. So, that is our aim. (**Refer Slide Time: 16:38**)



Now we know that  $\vec{A}$  can always be written like given  $\vec{A}$  plus the gauge function this  $\chi$  is our gauge function. And  $\phi$ ' I can write as  $\phi - \frac{\partial \chi}{\partial t}$ ,  $\chi$  should be a function of  $\vec{r}$  and t. This is  $\vec{r}$  and t. We just need to fix this function we need to know what function this is. If I put a suitable function then I can have my  $\vec{A}$  and  $\phi$ ' such that it follows the Lorentz gauge.

It satisfy the Lorentz gauge and my equation becomes simpler. Now next is if I make a  $\vec{\nabla} \cdot \vec{A}$  right-hand side it should be  $\vec{\nabla} \cdot \vec{A}$  plus Laplacian of this function. And left-hand side what we do I multiplied  $\frac{1}{c^2}$  and make a time  $\vec{\nabla}\phi$ ' and right-hand side it is simply  $\frac{1}{c^2}\frac{\partial\phi}{\partial t} - \frac{1}{c^2}d^2\chi$ , which is a function of  $\vec{r}$  and t. This now I simply add both the side because left-hand side I want something.

(Refer Slide Time: 18:41)



So, if I add then the left-hand side becomes  $\vec{\nabla} \cdot \vec{A}' + \frac{1}{c^2} \frac{d}{dt}$  that and this term is  $\vec{\nabla} \cdot \vec{A} + \frac{1}{c^2} \frac{\partial \Phi}{\partial t}$ . This quantity plus I have  $\vec{r}$ ,  $t - \frac{1}{c^2} \frac{\partial^2 \chi(\vec{r},t)}{\partial t}$ . Now we make this quantity equal to 0. So, that means, so this has to be 0 because, this is our so we want this to be 0. So, this quantity has to be equal to 0. And what value we have here, this is the given value this is not equal to 0 and this value is suppose I mention here, this is equal to something called g.

So, I now have this value as g. So, if that is the case then I can have the equation and that equation simply tells me that gradient Laplacian of this scalar field  $\chi -\frac{1}{c^2} \frac{\partial^2 \chi(\vec{r},t)}{\partial t} = -g(\vec{r}, t)$ . So, that means if I choose my  $\chi$  in such a way that satisfies this equation, which is again a wave equation having a source term. Then eventually I can form my  $\vec{A}'$  and  $\phi'$  exploiting this expression such that it satisfies the Coulomb gauge condition.

So, step by step I derive everything. So, this basically tells us, that if I put certain constant certain gauge like Coulomb gauge or Lorentz gauge. Then my equation becomes simpler. So, at the end of the day what equation we are getting here, we are getting equation 9 and 10 to

solve. And once you solve because  $\rho$  and  $\vec{J}$  is given. If  $\rho$  and  $\vec{J}$  is given we can solve equation 9 and 10 and we can get  $\phi$  and  $\vec{A}$ . As soon as we get  $\phi$  and  $\vec{A}$ , we know what is the value of electric field and magnetic field because, they have a relation.

Now how I get equation 9 and 10 exploiting the Coulomb gauge. And how I exploit the Coulomb gauge, if the condition  $\vec{\nabla} \cdot \vec{A} + \frac{1}{c^2} \frac{\partial \phi}{\partial t}$  is not equal to 0. Suppose it is a g, then I exploit the relation  $\vec{A}$ ' and  $\phi$ '. Considering the fact that  $\vec{A}$ ',  $\phi$ ' will produce the same  $\vec{E}$  and  $\vec{B}$ . So, since  $\vec{A}$ ',  $\phi$ ' are producing same electric field and same magnetic field instead of using  $\vec{A}$  and  $\phi$ .

Now I will be going to use my new  $\vec{A}$ ' and  $\phi$ '. This new  $\vec{A}$ ' and  $\phi$ ' can be constructed from the given  $\vec{A}$  and  $\phi$  and also an arbitrary function  $\chi$ , which I can fix, which I can put it is my choice. Now I choose my  $\chi$  in such a way that it satisfy the Lorentz gauge condition to make the equation very simple. And we find that the  $\chi$  I choose in such a way that it satisfy this equation.

This is again a wave equation with source term. So, we need to solve this equation to find my  $\chi$ . So, this is my hand, so, what I will fix. So, basically we need to solve this is a wave equation with a source term. And this source term is again given because, when  $\vec{A}$  and  $\phi$  is given, then I can find that the  $\vec{\nabla} \cdot \vec{A} + \frac{1}{c^2} \frac{\partial \phi}{\partial t}$  that basically g. So, I know that. This is not equal to 0 that is the initial condition.

So, that initial condition I am going to exploit here to find out my  $\chi$ . So, this is roughly the discussion of the Coulomb gauge just primitive discussion. So, that you can have an idea what is the meaning of Coulomb gauge, what is the meaning of Lorentz gauge? So, this is Lorentz gauge, by the way. So, then you understand that how exploiting the Coulomb and Lorentz gauge.

You can simplify the equation in terms of the vector potential and scalar potential. And then you use this vector potential and scalar potential to find out your final equations. So, the Maxwell's 4 equation, which deal with the value of electric field and magnetic field. The information is gradually, we extracted this information from in the form of  $\vec{A}$  and  $\phi$  and eventually we solve this  $\vec{A}$  and  $\phi$ .

So, now after that we will do a very important thing and that is called the Maxwell's wave equation. So, now we had an idea about the wave equation because, wave equation we had a special separate lecture. So, we will be going to find out how the Maxwell's 4 equation leads to the wave equation. So, let me write down here first.

### (Refer Slide Time: 25:41)

| O/IGust | <mark>। २ -                                  </mark> | A C B Sectore (1) |                                                                        |  |
|---------|------------------------------------------------------|-------------------|------------------------------------------------------------------------|--|
| ٥       | Max well's                                           | nave equition     | (in free space)<br>$\int \int dt $ |  |
|         |                                                      |                   | F                                                                      |  |

So, the next topic is Maxwell's wave equation, say in free space let us start with in free space. So, in free space means eventually, without any source term that means,  $\rho = 0$  and  $\vec{J}$  is always also equal to 0. So, if I write down the Maxwell's equation under this condition the equation become very simple.

# (Refer Slide Time: 26:57)

| $\begin{array}{c}   \mathbf{x} \mathbf{x} \mathbf{y} \mathbf{y} \mathbf{z} \mathbf{z} \mathbf{z} \mathbf{z} \mathbf{z} \mathbf{z} \mathbf{z} z$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | a merial control of the second s |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ \vec{v} _{\vec{v}} =  \vec{v} + \vec{v} + \vec{v} < \vec{v} < \vec{v} < \vec{v} \\  \vec{v} \cdot \vec{E} = 0 \\  \vec{v} \cdot \vec{E} = -\frac{2\vec{E}}{2t} \\  \vec{v} \times \vec{E} = -\frac{2\vec{E}}{2t} \\  \vec{v} \times \vec{E} = -\frac{2\vec{E}}{2t} \\  \vec{v} \times \vec{E} = -\frac{2}{2t} \\  \vec{v} \times \vec{E} = -\frac{2}{2t} \\  \vec{v} \times \vec{E} = -\frac{2}{2t} \\  \vec{v} \times \vec{E} \rangle = -\frac{2}{2t} \\  \vec{v} \times \vec{E} \rangle \\  \vec{v} \times \vec{E} \rangle = -\frac{2}{2t} \\  \vec{v} \times \vec{E} \rangle \\  \vec{v} \times \vec{E} \rangle = -\frac{2}{2t} \\  \vec{v} \times \vec{E} \rangle \\  \vec{v} \times \vec{E} \rangle = -\frac{2}{2t} \\  \vec{v} \times \vec{E} \rangle \\  \vec{v} \times \vec{E} \rangle \\  \vec{v} \times \vec{E} \rangle = -\frac{2}{2t} \\  \vec{v} \times \vec{E} \rangle \\  \vec{v} \times \vec{E} \rangle \\  \vec{v} \times \vec{E} \rangle = -\frac{2}{2t} \\  \vec{v} \times \vec{E} \rangle \\  \vec{v} \times \vec{E} \rangle \\  \vec{v} \times \vec{E} \rangle = -\frac{2}{2t} \\  \vec{v} \times \vec{E} \rangle = -\frac{2}{2t} \\  \vec{v} \times \vec{E} \rangle $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | to Bit Der Seine Don Beine Bib                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\begin{array}{c} 1 \neq \mathbf{I} \otimes \mathbf{I} $ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $I  \nabla \cdot \vec{E} = 0 \qquad \text{with out any Source term.}$ $I  \nabla \cdot \vec{B} = 0 \qquad P = 0$ $J  \nabla \cdot \vec{B} = -\frac{2\vec{B}}{2t}$ $A  \nabla \times \vec{B} = -\frac{2\vec{B}}{2t}$ $A  \nabla \times \vec{B} = -\frac{2}{3t} \begin{pmatrix} P = 0 \\ \vec{J} = 0 \end{pmatrix}$ $A  \nabla \times \vec{B} = -\frac{2}{3t} \begin{pmatrix} P = 0 \\ \vec{J} = 0 \end{pmatrix}$ $A  \nabla \times \vec{B} = -\frac{2}{3t} \begin{pmatrix} \nabla \times \vec{B} \end{pmatrix}$ $-\nabla^{2} \vec{E} + \vec{\nabla} (\vec{\nabla} \cdot \vec{E}) = -\frac{2}{3t} \begin{pmatrix} \nabla \times \vec{B} \end{pmatrix}$ $-\nabla^{2} \vec{E} + \vec{\nabla} (\vec{\nabla} \cdot \vec{E}) = -\frac{2}{3t} \begin{pmatrix} A_{0} \in_{0} \frac{2\vec{E}}{3t} \end{pmatrix}$ $A  A  A  A  A  A  A  A  A  A $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $2  \overline{\nabla} \cdot \overline{8} = 0 \qquad \overrightarrow{p} = 0$ $3  \overline{\nabla} \times \overline{8} = -\frac{2\overline{8}}{3t}$ $4  \overline{\nabla} \times \overline{8} = -\frac{2}{8} \overline{6} = \frac{2}{3t}$ $4  \overline{\nabla} \times \overline{8} = -\frac{2}{8} \overline{6} = \frac{2}{3t}$ From agive (3) whe can have $\overline{\nabla} \times (\overline{\nabla} \times \overline{8}) = -\frac{2}{3t} (\overline{\nabla} \times \overline{8})$ $-\nabla^{2} \overline{8} + \overline{\nabla} (\overline{\nabla} \cdot \overline{8}) = -\frac{2}{3t} (-\frac{2}{3t} (-\frac{2}{3t}))$ $\int 0$ $\int 0$ $\nabla^{2} \psi(\overline{7}, t) = \frac{1}{2} \frac{2^{2} \psi(\overline{7}, t)}{2t}$ Extension on the set of t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 J.E 0 with out any source term                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2 $\overline{\nabla} \cdot \overline{8} = 0$<br>3 $\overline{\nabla} \times \overline{E} = -\frac{a}{a} \overline{8}$<br>4 $\overline{\nabla} \times \overline{8} = /6 c_0 \frac{a}{a} \overline{E}$<br>5 $\overline{\nabla} \times \overline{8} = /6 c_0 \frac{a}{a} \overline{E}$<br>From agy (3) we can have<br>$\overline{\nabla} \times (\overline{\nabla} \times \overline{E}) = -\frac{a}{at} (\overline{\nabla} \times \overline{8})$<br>$-\nabla^2 \overline{E} + \overline{\nabla} (\overline{\nabla} \cdot \overline{E}) = -\frac{a}{at} (\Lambda_0 c_0 \frac{a}{a} \overline{E})$<br>$\int \int \int \int \int \int \partial \overline{P} (\overline{T}, t) = \int \frac{a}{at} \frac{a^2 \pi e}{(\overline{T}, t)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2 $\nabla \cdot \vec{B} = 0$<br>3 $\nabla \times \vec{E} = -\frac{a\vec{E}}{at}$<br>4 $\nabla \times \vec{s} = A_{0}\vec{e}_{0} \cdot \frac{a\vec{E}}{at}$<br>From apply (3) we can have<br>$\nabla \times (\nabla \times \vec{E}) = -\frac{2}{at} (\nabla \times \vec{e})$<br>$-\nabla^{2}\vec{E} + \nabla (\nabla \cdot \vec{E}) = -\frac{2}{at} (A_{0}\vec{e}_{0} \cdot \frac{a\vec{E}}{at})$<br>$\int drucce more apply \nabla^{2} \psi(\vec{r}, t) = \frac{1}{at^{2}} \frac{2^{2}\psi(\vec{r}, t)}{at^{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P=0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3 $\vec{\nabla} \times \vec{E} = -\frac{2\vec{E}}{2t}$<br>4 $\vec{\nabla} \times \vec{S} = /46_0 \frac{2\vec{E}}{2t}$<br>From age (3) rise can have<br>$\vec{\nabla} \times (\vec{\nabla} \times \vec{E}) = -\frac{2}{2t} (\vec{\nabla} \times \vec{S})$<br>$-\nabla^2 \vec{E} + \vec{\nabla} (\vec{\nabla} \cdot \vec{E}) = -\frac{2}{2t} (/46_0 \frac{2\vec{E}}{2t})$<br>but we more age<br>$\vec{\nabla}^2 \vec{\mu} (\vec{T}, t) = \frac{1}{2t} \frac{2^2 \sqrt{(\vec{T}, t)}}{2t^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 7 • 8 = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3 $\overline{\nabla} \times \overline{E} = -\frac{\partial \overline{E}}{\partial t}$<br>4 $\overline{\nabla} \times \overline{S} = /c \overline{c}_0 \frac{\partial \overline{E}}{\partial t}$<br>From agy (3) we can have<br>$\overline{\nabla} \times (\overline{\nabla} \times \overline{E}) = -\frac{\partial}{\partial t} (\overline{\nabla} \times \overline{S})$<br>$-\nabla^2 \overline{E} + \overline{\nabla} (\overline{\nabla} \cdot \overline{E}) = -\frac{\partial}{\partial t} (\Lambda_0 \overline{c}_0 \frac{\partial \overline{E}}{\partial t})$<br>$\downarrow$<br>$\downarrow$<br>$\downarrow$<br>$\downarrow$<br>$\downarrow$<br>$\downarrow$<br>$\downarrow$<br>$\downarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | J = O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $ \begin{array}{c} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v} v$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\nabla x \vec{E} = -\frac{\partial B}{\partial x}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 4 $\vec{\nabla} \times \vec{\delta} = f(\vec{e}, \delta) = \vec{E}$<br>From apply (3) we can have<br>$\vec{\nabla} \times (\vec{\nabla} \times \vec{E}) = -\frac{2}{2t} (\vec{\nabla} \times \vec{E})$<br>$-\nabla^2 \vec{E} + \vec{\nabla} (\vec{\nabla} \cdot \vec{E}) = -\frac{2}{2t} (\Lambda_0 \vec{e}_0 = \vec{E})$<br>$\downarrow$<br>$\downarrow$<br>$\downarrow$<br>$\downarrow$<br>$\downarrow$<br>$\downarrow$<br>$\downarrow$<br>$\downarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4 $\overline{\nabla} \times \overline{8} = 466 \frac{3E}{3t}$<br>From apply (3) we can have<br>$\overline{\nabla} \times (\overline{\nabla} \times \overline{E}) = -\frac{3}{3t} (\overline{\nabla} \times \overline{8})$<br>$-\nabla^2 \overline{E} + \overline{\nabla} (\overline{\nabla} \cdot \overline{E}) = -\frac{2}{3t} (466 \frac{3\overline{E}}{3t})$<br>but we write $\frac{3}{2}$<br>$\nabla^2 \psi(\overline{r}, t) = \frac{1}{2} \frac{3^2 \psi(\overline{r}, t)}{3t^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| From apply (3) we can have<br>$\vec{\nabla} \times (\vec{\nabla} \times \vec{E}) = -\frac{2}{2t} (\vec{\nabla} \times \vec{E})$ $-\nabla^{2} \vec{E} + \vec{\nabla} (\vec{\nabla} \cdot \vec{E}) = -\frac{2}{2t} (\Lambda_{0} \in_{0} \frac{2\vec{E}}{2t})$ $\downarrow$ $Q^{2} \vec{p} (\vec{T}, t) = \frac{1}{2t} \frac{2^{2} q^{2} (\vec{T}, t)}{2t}$ For one and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4 V×8 = 4600E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| From age (3) we can have<br>$\vec{\nabla} \times (\vec{\nabla} \times \vec{E}) = -\frac{2}{2t} (\vec{\nabla} \times \vec{E})$<br>$-\nabla^2 \vec{E} + \vec{\nabla} (\vec{\nabla} \cdot \vec{E}) = -\frac{2}{2t} (A_0 \in_0 \frac{2\vec{E}}{2t})$<br>$\downarrow$<br>O<br>$\nabla^2 \vec{V} (\vec{T}, t) = \frac{1}{2t} \frac{2^2 e^{it} (\vec{T}, t)}{2t}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ət                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| From equ (3) we can have<br>$\vec{\nabla} \times (\vec{\nabla} \times \vec{E}) = -\frac{2}{2t} (\vec{\nabla} \times \vec{E})$<br>$-\nabla^2 \vec{E} + \vec{\nabla} (\vec{\nabla} \cdot \vec{E}) = -\frac{2}{2t} (A_0 \in_0 \frac{2\vec{E}}{2t})$<br>$\downarrow$<br>O<br>$\nabla^2 \vec{V} (\vec{T}, t) = \frac{1}{2t} \frac{2^2 \sqrt{(\vec{T}, t)}}{2t^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| From apply (3) for $\vec{v} \times \vec{E}$ ) = $-\frac{\partial}{\partial t} (\vec{v} \times \vec{B})$<br>$-\nabla^2 \vec{E} + \vec{v} (\vec{v} \cdot \vec{E}) = -\frac{\partial}{\partial t} (\pi \cdot \vec{e}_0 \frac{\partial \vec{E}}{\partial t})$<br>$\int \int \int \partial \vec{v} \cdot \vec{v} \cdot \vec{E} = -\frac{\partial}{\partial t} (\pi \cdot \vec{e}_0 \frac{\partial \vec{E}}{\partial t})$<br>$\int \int \partial \vec{v} \cdot \vec{v} \cdot \vec{e} = -\frac{\partial}{\partial t} (\pi \cdot \vec{e}_0 \frac{\partial \vec{E}}{\partial t})$<br>$\int \partial \vec{v} \cdot \vec{v} \cdot \vec{e} = -\frac{\partial}{\partial t} (\pi \cdot \vec{e}_0 \frac{\partial \vec{E}}{\partial t})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | a we can have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\vec{\nabla} \times (\vec{\nabla} \times \vec{E}) = -\frac{2}{2t} (\vec{\nabla} \times \vec{E})$ $= -\frac{2}{2t} (\vec{\nabla} \times \vec{E}) = -\frac{2}{2t} (A_0 \in_0 \frac{2\vec{E}}{2t})$ $\downarrow$ $(a_1, a_1, a_2, a_3, a_4, a_7, a_9)$ $\vec{\nabla} \times \vec{E} = -\frac{2}{2t} (A_0 \in_0 \frac{2\vec{E}}{2t})$ $\downarrow$ $\vec{\nabla} \times \vec{E} = -\frac{2}{2t} (A_0 \in_0 \frac{2\vec{E}}{2t})$ $\downarrow$ $\vec{\nabla} \times \vec{E} = -\frac{2}{2t} (A_0 \in_0 \frac{2\vec{E}}{2t})$ $\downarrow$ $\vec{\nabla} \times \vec{E} = -\frac{2}{2t} (A_0 \in_0 \frac{2\vec{E}}{2t})$ $\downarrow$ $\vec{\nabla} \times \vec{E} = -\frac{2}{2t} (A_0 \in_0 \frac{2\vec{E}}{2t})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | now age (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\nabla \times (\overline{\nabla} \times \overline{E}) = -\frac{\partial}{\partial t} (\nabla \times \overline{E})$ $-\nabla^{2} \overline{E} + \overline{\nabla} (\overline{\nabla} \cdot \overline{E}) = -\frac{\partial}{\partial t} (A_{0} \in_{0} \frac{\partial \overline{E}}{\partial t})$ $\downarrow$ $O$ $\nabla^{3} \psi (\overline{\tau}, t) = \frac{1}{\sqrt{2}} \frac{\partial^{2} \psi (\overline{\tau}, t)}{\partial t^{2}}$ Extension with the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\nabla^{2}\vec{E} + \vec{\nabla}(\vec{v}\cdot\vec{E}) = -\frac{2}{2t}\left(A_{0}\epsilon_{0}\frac{2\vec{E}}{2t}\right)$ $\int \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\nabla \sqrt{(\nabla \times \vec{E})} = - \vec{e} (\nabla \times \vec{B})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $-\nabla^{2}\vec{E} + \vec{\nabla}(\vec{\nabla}\cdot\vec{E}) = -\frac{2}{24}\left(A_{0}\epsilon_{0}\frac{2\vec{E}}{24}\right)$ $\int \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | at at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $-\nabla^{2}\vec{E} + \vec{\nabla}(\vec{\nabla}\cdot\vec{E}) = -\frac{2}{24}\left(A_{0}\epsilon_{0}\frac{2\vec{E}}{24}\right)$ $\downarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\nabla^{2}\vec{E} + \nabla (\nabla \cdot \vec{E}) = -\frac{2}{24} \left(A_{0} \in_{0} \frac{2}{24}\right)$ $(answe solve only the solution of the soluti$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\begin{array}{c} \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\nabla^2 E + \nabla (\nabla \cdot E) = - \frac{1}{24} (h_0 \epsilon_0 \frac{1}{24})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Easing and $\sqrt{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | at the stri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\nabla^{2} \psi(\vec{\tau}, t) = \frac{1}{\sqrt{2}} \frac{3^{2} \psi(\vec{\tau}, t)}{3t^{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\nabla^{2} \psi(\vec{\tau}, t) = \frac{1}{\sqrt{2}} \frac{3^{2} \psi(\vec{\tau}, t)}{3t^{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Guerre nonce segle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\nabla^2 \gamma'(\vec{r},t) = \frac{1}{\sqrt{2}} \frac{3^2 \gamma'(\vec{r},t)}{3t^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Edit own with 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7 4 (7, +) - 1 3 4 (7, +)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Cot way says +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | a Edit over sent +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

And this will be the form,  $\vec{\nabla} \cdot \vec{E}$  should be equal to 0,  $\vec{\nabla} \cdot \vec{B}$  will be equal to 0,  $\vec{\nabla} \times \vec{E}$  will be  $-\frac{\partial \vec{B}}{\partial t}$ , this is part of the simplest form of the Maxwell's equation without any source term and  $\vec{\nabla} \times \vec{B} = \mu_0 \epsilon_0 \frac{\partial \vec{E}}{\partial t}$ . So, in principle they are all the 4 equations are homogeneous equations. Now we will be going to exploit this equation. So, this is equation 1, this is equation 2, this is equation 3 and 4.

So, from equation 3, we can have so, what we do from equation 3 if we take the curl of both side. So, far we are dealing with the divergence of both side and check that the left-hand side and right-hand side is consistent or not but, now what we do that we take the curl on both the side. So, if I do that  $\vec{\nabla} \times (\vec{\nabla} \times \vec{E}) = -\frac{\partial}{\partial t} (\vec{\nabla} \times \vec{B})$ . Now  $\vec{\nabla} \times (\vec{\nabla} \times \vec{E})$  again this is a famous identity that is minus  $\nabla^2 \vec{E} + \vec{\nabla} (\vec{\nabla} \cdot \vec{E})$ .

This identity we use several times. So, you should remember this identity. Then  $-\frac{\partial}{\partial t}$  and in the right-hand side, we have  $\vec{\nabla} \times \vec{B}$  and  $\vec{\nabla} \times \vec{B}$  in exploiting the equation 4 I can simply write it is  $\mu_0 \epsilon_0 \frac{\partial \vec{E}}{\partial t}$ . Now in free space, this quantity is 0. This quantity is 0 because, there is no source term in the free space and  $\vec{\nabla} \cdot \vec{E}$  should be 0.



If we make this term equal to 0, the rest of the term is like  $-\vec{\nabla} \cdot \vec{E} = -\mu_0 \epsilon_0 \frac{\partial^2 \vec{E}}{\partial t^2}$ . So, I can make it plus both the side. So, this equation exactly is like a wave equation. So, let me write down

the wave equation this side. So, the general wave equation was  $\nabla^2 \Psi$  as a function of  $\vec{r}$  and t = 1 divided by velocity square  $\frac{1}{\nu^2}$  and then  $\frac{\partial^2 \Psi(\vec{r},t)}{\partial t^2}$ .

That was the equation wave equation we discussed earlier where, v was the velocity. So, now if I look carefully these 2 equations then we can see that  $\vec{E}$  is also following. So, let us remove this from both the side. So,  $\vec{E}$  is satisfying the wave equation. Under the condition, that this can be written in terms of the velocity, so how I write this in terms of velocity. So, I can simply write  $\vec{E} - \frac{1}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = 0$ , when c is nothing but  $\frac{1}{\sqrt{\mu_0 \epsilon_0}}$ .

So, during the calculation when Maxwell's did this calculation he find that  $\mu_0 \epsilon_0$  is sitting in the place of  $\frac{1}{c^2}$ . And he calculated  $\mu_0 \epsilon_0$  and he find that this value is very close to the velocity of light c and then realized that light is nothing but an electromagnetic wave. That was the revolutionary findings, so here we are doing the same thing. Now if you do the same thing for  $\vec{B}$  like, this is a homework. So, please try to do the same thing for  $\vec{B}$ .

I exploit equation 3 by taking a  $\vec{\nabla} \times \vec{E}$  and you can do the same thing by taking the curl of. So, try to do this and you will find that you will be going to get the same result for  $\vec{B}$  as well with the same velocity. So, if you do what we get. So, using equation 4 and you will get the similar expression like you get for  $\vec{E}$ . That is homework for you, you just check it. Now let us consider that what should be the solution that we are going to consider quickly.

(Refer Slide Time: 33:55)

So, it is called the plane wave solution very special kind of solution because, we know that the wave equation has a specific kind of solution. So, let me write down here also. So, when we have this equation and we mentioned that the solution should have a specific form. And the specific form if I write it should be like  $\Psi_0$  and say  $e_i$ . So, something like  $\vec{k}$  and  $\vec{k} \cdot \vec{r}$  - like v t it is like az - vt kind of form.

So, one should expect this kind of form for plus, minus. This is the general form because the general solution if you remember it should be this is a plane wave solution. But the general solution in 1 dimension if you remember it was z plus minus vt that was the form of the solution of the wave equation. When g was the function. So, in 1 dimension that was the equation and we find that this was the equation and we find that if this equation then it is the solution.

So, here we will be going to get a plane wave solution. And this plane wave solution of the Maxwell's wave equation is of the form like  $\vec{E} = \vec{E}_0 e^{i(\vec{k} \cdot \vec{r} - \omega t)}$  that is the solution. When  $k = \frac{\omega}{c}$ . So, under this condition if you plug this solution here, plug this expression  $\vec{E}$  to this equation here, you will be going to see that this is basically the solution of that.

So, we can check it quickly. So, what is  $\nabla^2 \vec{E}$  because, I need to first calculate this quantity. So, this is if I do that in cartesian coordinate, so, it is  $d^2x + d^2y + d^2z$  and it should be operated on  $\vec{E}$ . And  $\vec{E}$  is  $\vec{E}_0$  I should put a vector here, vector then exponential i and here we have  $k_x x + k_y y + k_z z$  I just expand the  $\vec{k}$ . So, my  $\vec{k}$  here is  $k_x \hat{x} + k_y \hat{y} + k_z \hat{z}$ .

And my  $\vec{r}$  is  $\hat{x}$ ,  $\hat{y}$  and  $\hat{z}$ , so, then - $\omega$ t bracket close. And if I operate these things then what we get is this one. So, this will be going to operate twice and every time it operates, so, ik will come out. In this case, when we operate over operated by  $\partial_y$ . So, ik<sub>y</sub> will come out and so on. So, eventually we have this, we have  $k_x^2 + k_y^2 + k_z^2$  and rest of the term will remain same.

So, I just simply write my is  $\vec{E}_0 e^{i(\vec{k} \cdot \vec{r} - \omega t)}$ . So, this is simply  $-k^2 \vec{E}$ . This is the left-hand side, what about the right-hand side? The right-hand side I can write here, the right-hand side is  $\frac{1}{c^2}$ .  $\frac{\partial^2}{\partial t^2}$ . So, if I write  $\frac{1}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2}$ , so it should be simply  $-\frac{\omega^2}{c^2}$  and this  $\vec{E}$ . And we already mentioned that k should be equal to  $\frac{\omega}{c}$  for which the solution is there. So, we can see that the left-hand side is equal to right-hand side. So, that means this is a solution for Maxwell's wave equation, I am going to use this solution, this is a special property. Why we called a plane wave we may discuss in the next class. So, I do not have much time to today to discuss further. So, I like to stop here. So, in the next class maybe we will be going to find out more about the solution and the relative direction between the  $\vec{E}$  and  $\vec{B}$  because  $\vec{B}$  will also follow the same equation.

So, the solution of the  $\vec{B}$  will also be a plane wave solution. And then we will discuss that how to find out the relative direction of  $\vec{E}$ ,  $\vec{B}$  the value etcetera by just exploiting the Maxwell's other equation, which is the Gauss's law and others law. So, with that note I like to conclude. Thank you for your attention and see you in the next class.