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Hello student to the course for foundation of classical electrodynamics. Under module 4 today 

we have lecture number 62, where we discuss self and mutual inductance. 
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So, we have class number 62 today and in today's class we will be going to discuss the self and 

mutual inductance. But before that let us quickly discuss what we had so far. So, if we have a 

current loop like this and if we throw a bar magnet, then there will be the change of flux and 

this change of flux give rise to a current here. And this current will be such that it will go to 

oppose the motion of this bar magnet. 

 

So, in this case the current should be such that, so, the magnetic field here in this direction due 

to the magnet. And the magnetic field due to the current should be in the opposite direction. 

So, that means I should have a current flow in this direction. So, they will be opposite, so, that 

you need to do some work. This is the Faraday’s law last day we discussed. So, then the EMF 

will be going to generate and this EMF is called the electromotive force. 
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So, this electromotive force if I now calculate that this, the general description of this force is 

this it basically generates something called EMF in short. So, 
𝐹 • d𝑙 

𝑞
. So, that means this is the 

amount of work per unit charge on the test charge that is carried around the circuit. So, around 

the circuit the force that basically the work done to move the test charge around the circuit is 

eventually and for per unit charge of that is eventually, the amount of the electromagnetic force 

and that is the way one can write. 
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Now if the circuit is closed. So, the expression one can write is this, there should be a closed 

integral and I should have the same expression 
𝐹 • d𝑙 

𝑞
, by the way, here 𝐹⃗ is the force 

experienced by the charge. So, this q multiplied by (𝐸⃗⃗ + 𝑣⃗ × 𝐵⃗⃗) that is the force on the charge 

q. Now if I want to find out what should be the EMF for the circuit, which is moving in? 
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So, suppose I am having a circuit. So, that circuit is moving in an external electric field. So, 

these are the external electric fields. So, let me so in this external electric field it is moving. 
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Then we should write here, that the rigid wire loop c moving in a magnetic field, which is not 

uniform, which is steady, but not uniform, which is not depend on time but maybe a function 

of 𝑟. So, it is moving. So, the question is what will be the EMF? So, one expression that I just 

derive, so, that I will be going to exploit here. 
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So, EMF should be ∮
𝐹 • d𝑙  

𝑞
, 𝐸⃗⃗ is not here. So, 

𝐹 

𝑞
 I should write as (𝑣⃗  × 𝐵⃗⃗) • d𝑙. And then close 

line integral, so, that I can write in another way that ∮ 𝐵⃗⃗  • (d𝑙  × 𝑣⃗). This is another expression 

to find out what is the EMF of this system. So, one application of this expression whatever, the 

expression I wrote is called the Faraday disk generator. 
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So, let me quickly discuss the principle of that. So, it is called Faraday disk generator. And here 

what we have? We have a disk like this. This is made of a conductor. And suppose it is rotating 

with a certain angular velocity ω okay. So, this is that, So, EMF that will going to generate here 

by the way I derived last day. In the last page that 𝐸⃗⃗ is ∫ 𝐵⃗⃗  • (𝑑𝑙  × 𝑣⃗). So, now d𝑙 × 𝑣⃗, so, if 

I make a top view of the system, then what we have is this is top view. 

 



By the way, so it is rotating but I forgot to mention that it is in uniform it is rotating in some 

external magnetic field. So, magnetic field is already there. Obviously, the magnetic field 

should be there. And in the environment of this magnetic field this stuff is rotating. Now since, 

the magnetic field is there and it is a conducting material. So, it will go to the free electrons 

there will be going to experience some kind of force. 
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And that force makes this free electron the separation of this charge. So, if I make a top view 

you can see that so suppose, I have a small section here of the disk. And from here to here say 

it is r and this portion is dr. The velocity will be along this direction and magnetic field is 

perpendicular to the plane 𝐵⃗⃗. So, now you can see that the 𝑣⃗ × 𝐵⃗⃗. So, what is the force? The 

force here is 𝑣⃗ × 𝐵⃗⃗. 

 

And due to this force there will be separation of the charge. In the ring area and in the central 

area, so, there will be separation and that leads to the EMF. So, we need to calculate the EMF 

anyway we already have the expression of this EMF. So, from here we can readily calculate 

here d𝑙 is nothing but this d𝑟. So, I can simply have and they are perpendicular to each other. 

So, I can simply have and 𝐵⃗⃗ is also perpendicular to the disk. 

 

So, this expression simply gives us ∫ 𝐵𝜔𝑟 𝑑𝑟. ω is an angular speed and I can replace this v to 

ω r and since this dl is equivalent to dr. So, I can simply replace this expression in this way. 

And if I integrate the value is 
1

2
 ω B and then a2 because, I need to integrate this stuff from 0 to 



a. If a is a full radius. So, let me draw the system once again I have this conducting disk and it 

is rotating along its axis and the external magnetic field is there. 

 

So, it is rotating in the environment of external magnetic field 𝐵⃗⃗ and this is rotating like this 

way with angular frequency ω. Now what happened that it will already there is a separation of 

the charge and that leads to EMF. So, if I just have the circuit here if I complete the circuit if I 

join this part and this part, if I complete the circuit then there should be a flow of current. 

 

And this current if I say I, then I will be simply whatever the EMF we have that is 
1

2
 ω B a2 and 

divided by the resistance R. So, this is the amount of current so if I increase the amount of 

current. Then what happened that I can increase the radius of this disk, which is a, say this is 

the area or I can increase the amount of the rotation. And under that environment, what we do? 

That we can able to generate some current. 

 

So, this kind of system is called the Faraday disk generator. So, I just exploit the expression of 

EMF that I discuss and then exploiting that I can have the expression of the current. So, now 

let us move to today’s topic, which is the self and mutual inductance. And we are going to 

calculate few things out of that. So, let us try to understand fact, what is the meaning of that. 
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So, next we will discuss about the self inductance. What is self inductance? So, if I have a wire, 

where the current is flowing because, of the flow of the current, what happened it will produce 

some kind of magnetic field and that magnetic field will be going to cross it is this area. Because 



of the current that is flowing in this loop itself. So, this is the B we are having. Because of the 

flow of the current of the loop it will be going to generate some magnetic field and that 

magnetic field itself will be going to cross this. So, that means this current will going to link 

some kind of flux. 
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So, that the flux linked with the loop, the amount of flux that is linked with the loop is simply 

proportional to the amount of current. So, if I write this flux is ɸB. So, ɸB will be simply 

proportional to the amount of current that is flowing in the wire. And if I put the proportionality 

constant then ɸB is equal to the proportionality constant multiplied by I. This proportionality 

constant L is called the self inductance. This is called the self inductance. 
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So, here the quantity L is called the self inductance. So, what is self inductance? The total flux 

linked with the unit current flow. The total flux ɸB linked with the unit current flow. So, L is 

eventually 
ɸ𝐵

𝐼
. So, the total flux linked by unit current flow is defined as L, the self inductance. 

Now if I calculate this. So, we know that this EMF is 
𝜕ɸ𝐵

𝜕𝑡
. 

 

So, that quantity for self current is −
𝑑

𝑑𝑡
 (LI) and we simply have −𝐿

𝑑𝐼

𝑑𝑡
. Now this is the way we 

define now we can calculate what is the self inductance for a solenoid? This is the standard 

problem. So, what is then maybe we can have some idea. 
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So, now we calculate the self inductance of a solenoid. So, for solenoid, so we know that what 

is quickly if I draw the figure here. 
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So we have the current loop, the current loop like this. So, the magnetic field that is produced 

in this core region this magnetic field that is produced the magnitude of that is μ0 n I or if I 

write in the with the total number of turns then it should be μ0 total number of turn multiplied 

by I divided by the total distance l. l is a total length of the so this is the length of the solenoid. 

 

So, what is the amount of flux linked with this magnetic field? So, the magnetic flux that is 

linked is simply the B multiplied by the area. And the area is NA. A is the area of the single 

loop and N is a total number of loop. So, it should be N multiplied by A. So, that gives rise to 

μ0 then N2 A and then 
𝐼

𝑙
. Now the mutual inductance if I want to calculate for this, then l will 

be simply 
ɸ𝐵

𝐼
. 

 

So, this quantity is simply 
𝜇0𝑁2 𝐴

𝑙
. So, A is again I can write in 𝜋 say R2, if R is the radius of this 

solenoid in some cases. So, I can write it is μ0 N2 I have a 𝜋 here divided by l and R2. So, in 

many labs these experiments are there. So, the student need to calculate what is the dependence, 

what is the dependence of the self inductance with the parameter of the given solenoid that like 

the l is given. Suppose the value of the l is given and the area they can calculate. 

 

This is the area, area is say A and total number of turn is N. So, this is the way it can depend. 

So, it inversely proportional to the length that means, if the length is short then the self 

inductance should be high. It is proportional to the value of the square of the number of turns 

in number term increase then it will going to increase and it is also square the radius. Another 



thing we have silts we have self inductance it is quite common that we should also have 

something called mutual inductance. 
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So, unlike one circuit here we have 2 closed loop one is say here, another is say here. So, now 

what happened that for this loop I can have a current flow I1. So, this is loop c1 say and another 

loop says c2. So, I am having a current flow. So, I need to draw this loop properly and because 

of the flow current flow I1. Because of the flow of the current we have a magnetic field that is 

produced. And this magnetic field will be going to cut the other wire or the closed loop like 

this. 

 



So, it will going to cut, but the magnetic field that is produced by the other loop, so, ɸ2 is a 

flux. So, if I now define, the amount of flux that is here is ɸ2. This is the flux through loop c2. 

Due to the current I1 in loop c1 that is. So, ɸ2 again will be proportional to I1 and that gives rise 

to proportionality constant. And I can write that ɸ2 = M21 I1. In the similar way, I can have ɸ1 

= M12 I2, that is the amount of suppose I am now the current is flowing in c2 and because of 

that some flux will be there in c1. 

 

And that flux if I write ɸ1 that should be proportional to I2 and I the proportionality constant 

should be M12 in this case. Now this M21 or M12 this is the constant quantity and this is called 

the mutual inductance. 
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So, the E2 that is generated now in loop 2 is −
𝑑ɸ2

𝑑𝑡
 that is -M21 

𝑑𝐼1

𝑑𝑡
. And E1, that is the EMF 

generated in loop 1 that is due to the current I2. So, I can have this is equal to -M12 
𝑑𝐼2

𝑑𝑡
. So, after 

having the rough idea of mutual inductance now we are going to calculate something, which is 

called the Neumann's formula. That how they are related and under what condition and we 

show some interesting thing there. 
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So, next what we do is calculate the mutual inductance again, but in a different way. And the 

formula is called the Neumann’s formula. What was that? Suppose we have two arbitrary loop 

one is like this and another is maybe I can do some different colour another. So, these are two 

arbitrary loops. And the current that is flowing in this is I1 and this is called this is loop 1 and 

this is loop 2. Current is flowing here in one. 

 

And it produces some magnetic field and that magnetic field the field line may be like this. It 

will be going to cross here this. I am going to cut the loop 1. The amount of magnetic field that 

is producing is say B1 magnitude. So, now we know what is B1 because, the current flow is this 

loop and at some distance what is the B1 that we know. So, let me first the systematically draw 

these things. So, I had a loop here. 

 

So, this is my coordinate system. And suppose I had the loop here, this is my loop 1 and my 

loop 2 something is like this is sitting here. So, these are the 2 loops. So, this is the coordinate 

system. So, the small section here if I draw say from here to here and that length from here to 

here is say r1 and this is this length I called dl1. And this is another section, which we call say 

different. So, this section is say dl2. And the coordinate of dl2 say r2. 

 

And the distance between d1 and dl this length is our notation this Л. Where Л⃗⃗⃗ is 𝑟2 - 𝑟1 that is 

the system we are having. Now I know what is my 𝐵⃗⃗1? Let us write straight way 𝐵⃗⃗1 is 
𝜇0 𝐼1

4𝜋
 

integration close loop. So, I have ∮
𝑑𝑙1 ×  Л̂

Л2 . This is the magnetic field due to loop 1 at some point 

and this some point is here. 
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So, magnetic flux at loop 2 is how much? 
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It is ɸ2 equal to ∫ 𝐵⃗⃗1  •  𝑑𝑠⃗2 and that quantity we know is M21 I1. So, what is the surface 

∫ 𝐵⃗⃗1  •  𝑑𝑠⃗2 that I can write in terms of the vector potential 𝐴⃗. And let us write in this way dot 

d𝑠⃗2 that quantity is simply close line integral, because I am using this close line integral 𝐴⃗1 

Stoke’s theorem d𝑙2. Again I have 𝐴⃗1 is 
𝜇0 𝐼1

4𝜋
 that we also calculated. This is a close line, so, 

∮
𝑑𝑙1

Л
. 
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So, I can have like s 𝐵⃗⃗1  •  𝑑𝑠⃗2, which is M21 I1 is 
𝜇0𝐼1

4𝜋
 and then we have a close integral and 

then a I just simply put, which is like ∮
𝑑𝑙1

Л
•   𝑑𝑙2. So, this quantity I simply write 

𝜇0 𝐼1

4𝜋
 and then 

I have this ∮ ∮
𝑑𝑙1  •  𝑑𝑙 2 

Л
. So, from here if I compare left-hand side and right-hand side we have 

an interesting expression M21 = 
𝜇0

4𝜋
 and ∮ ∮

𝑑𝑙1  •  𝑑𝑙 2 

Л
. Mind it, Л⃗⃗⃗ is 𝑟2 - 𝑟1. 
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Now if I calculate M, so this is the Neumann's formula. How to calculate this M21, so, this 

expression is eventually called Neumann's formula or Neumann formula. 
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Now few interpretation I can make 1 M21 depends on the shape, size and the relative position 

because, you can see the relative position r is sitting. So, how the 2 loops are distributed and 

how what is the relative difference relative distance between these 2 loops are important to 

calculate M21. So, M21 and the relative position of the 2 loops depends on shape, size and the 

relative position of c1 and c2. c1 and c2 are 2 loops. 

 

Say this is say c1 and this is c2. And another thing also that M21 should be equal to M12 because, 

if you just replace these in this expression if you just replace 1 2 to 2 1 right-hand side will not 

going to change. So, M21 = M12, that eventually tells that whatever the shape and position of 

the loop. The flux through loop 2 due to the current I in loop 1 is same as the flux through the 

loop 1 due to the same current passing through loop 2. 

 

So, what happened that if I have a current flowing here. So, whatever it is producing whatever 

the field 𝐵⃗⃗ in the similar way if you have the current the same current that is flowing here I, 

whatever the field produce both the cases. The value of the corresponding mutual inductance 

should be same. So, that we find from this expression. Now after having these we will try to 

find another important thing that we will do today itself. 
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And that is the energy; the next thing that we discussed today is the energy in magnetic field. 

What is the energy magnetic field, how to calculate the energy in the magnetic field? So, we 

will do in this way. 
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We one can calculate by you know analyzing the energy balance for an isolated inductor; one 

can deduce the energy content of the magnetic field. What kind of energy balance we will going 

to discuss. So, if you look carefully, the power that must be supplied to maintain a current say 

I in an inductor while, the current is changing against the back EMF. So, some amount of power 

must be supplied to maintain the flow of the current because, there will be a back EMF because, 

we have isolated inductor. 
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And this back EMF simply E = -L 
𝑑𝐼

𝑑𝑡
. And the amount of power that we need to work with is 

this power the rate of change of work done and that is equal to the current with a negative sign 

obviously and the EMF, that quantity because, EMF is this is I L 
𝑑𝐼

𝑑𝑡
 because, EMF is this 

quantity. So, this amount of power in order to balance that, so, the flow of the current in an 

inductor. 
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So, you can see that w can come out to be from here w amount of work done is simply 
1

2
 of if I 

integrate this side with respect to t. Then it is 
1

2
 LI2. So, this is the amount of energy that is 

eventually stored in the inductor. So, I should write, this is the amount of energy stored in the 

inductor. Now I have LI is equal to the flux ɸB and that quantity I write in terms of 𝐵⃗⃗ like 𝐵⃗⃗ • 

d𝑠⃗. 



 

And again 𝐵⃗⃗ • d𝑠⃗ I can write in terms of the vector potential 𝐴⃗ like (∇⃗⃗⃗ × 𝐴⃗) • d𝑠⃗. And this flux 

eventually I can write in terms of 𝐴⃗ like 𝐴⃗ • d𝑙. So, this we have done earlier how to calculate 

the magnetic flux in terms of vector potential. This calculation we did it. So, this steps. 
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So, w the work done should be 
1

2
 I can write it like I into LI because, LI I already calculated. 

So, it should be 
1

2
 I and LI I write ∮ 𝐴⃗  •  d𝑙. So, this quantity I can put this I inside and I can 

write it that ∮ 𝐴⃗  •  𝐼 make it vector and d𝑙 because, the vector in the same direction that of I 

and L. So, the generation this is the expression of the work. 

 

So, I can make it in terms of the volume current and in terms of volume current I can have this 

expression simply half of integral. Now the integral will be the volume integral and that is 𝐴⃗  •

 𝐽⃗, this I just make it in volume current and dv. It is line current I can just simply make it volume 

current. 
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And now I will be going to exploit the expression ∇⃗⃗⃗ × 𝐵⃗⃗ is μ0 𝐽. So, w the work store is 
1

2𝜇0
 just 

replace this there in place of 𝐽 and I should have something like 𝐴⃗ • (∇⃗⃗⃗ × 𝐵⃗⃗) then dv. 
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Now I exploit the vector identity this kind of treatment we have done several time in many 

calculation in electrostatic and magnetostatic. So, this is a usual practice now to exploit, this 

vector expressions and from that like we can find something extra something, which is having 

some physical meaning. So, I can use this 𝐴⃗ • (∇⃗⃗⃗ × 𝐵⃗⃗) here. We have this term here 𝐴⃗ • (∇⃗⃗⃗ × 

𝐵⃗⃗). 

 



So, I replace it here and that basically gives me w = 
1

2𝜇0
. One term I am having is 𝐵⃗⃗ • (∇⃗⃗⃗ × 𝐴⃗). 

So, ∇⃗⃗⃗ × 𝐴⃗ is itself 𝐵⃗⃗. So, I am having a term like volume ∫ 𝐵2 dv and another term is −
1

2𝜇0
 and 

then I have this ∇⃗⃗⃗ • (A⃗⃗⃗ × 𝐵⃗⃗), A⃗⃗⃗ × 𝐵⃗⃗ interesting term over dv. 
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Now this ∇⃗⃗⃗ • (A⃗⃗⃗ × 𝐵⃗⃗) I can write in terms of so let me write the first part, this is fine. And the 

next part, I can write 
1

𝜇0
 and the closed surface integral. And then I should have A⃗⃗⃗ × 𝐵⃗⃗ over the 

surface. Now here you can see this is the closed surface integral. So, I can take my surface 

according to my convenience and this quantity A⃗⃗⃗ × 𝐵⃗⃗ both are having the dependency r. One is 

1

𝑟
 and one is 

1

𝑟2 . 

 

So, that means this quantity is going to vanish if the surface is very large. So, this integration 

should vanish as A and B both goes to 0, when r tends to infinity. For very large surface this 

will vanish. So, eventually the amount of energy that is stored in this system should be or in 

other way the energy of the magnetic field is simply this quantity. 

 

This is a very important expression we will go to exploit this expression again, when we deal 

with electromagnetic theory and electromagnetic energy density. Well, so, I do not have much 

time today. So, let me conclude here. Thank you very much for attention and see you in the 

next class. 


