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Hello student to the foundation of classical electrodynamics course. So, today we will be going 

to start our module 4 that is the last module of this course. And today is lecture number 61 and 

in this lecture we will discuss about the electromagnetic induction. 
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So, we have class number 61 today. And today our topic is electromagnetic induction. So, this 

is the first time we mention the terminology electromagnetic. So, far we are discussing about 

the electrostatic and magnetostatic, but never mention anything about the electromagnetic. So, 

now in this section we will discuss everything in terms of electromagnetic taking the 

consideration of the electromagnetic theory. 
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So, the first step of these problems starts with this very well-known problem well-known 

phenomena rather. So, suppose I have a current loop and I have a bar magnet. So, this is my 

bar magnet N and S. And I am throwing the bar magnet through this loop. So, the bar magnet 

is moving along this direction and because of that what happened. If I push through this bar 

magnet then there will be a flux change, because the bar magnet should have some magnetic 

field line and that will be going to cross this closed loop, whatever the loop is there. 

 

So, we should have a field line, those will be going to cut this loop. Let us draw in this way. 

So, suppose this is the way they are going to cut this loop. So, there will be a change of the 

field line, there will be a change of the flux and it will be going to change with respect to time, 

because these things are in motion. So, that means if I write, so what happened? So, let us first 

discuss what happened then I will be going to write these things. 

 

So, because of the change of this field line there will be induced EMF. The EMF will be going 

to induce. And that EMF should be proportional to the rate of change of these field lines, so, in 

other way the magnetic flux. So, the rate of change of magnetic flux leads to the generation of 

some kind of EMF and one can expect some kind of current here, because of the EMF. So, the 

first thing the expression that should I write here. 

 

Is the generated EMF is proportional to −
𝑑ɸ𝐵

𝑑𝑡
, rate of change of flux it is proportional not only 

that there is a negative sign. So, one by one I should write. So, this is the expression. So, first 

thing I should write that some EMF will going to induce that give rise to some amount of 



current alongside this direction. So, the induced EMF is proportional to the rate of change of 

magnetic flux, which is ɸB here. 

 

The rate of change of magnetic flux that is the first observation we had. What about the second 

one the negative sign. The second thing is the direction of the induced EMF is such that it 

opposes the cause of its generation. So, I am throwing a magnet here and what happened, that 

some EMF will going to produce here. And we know that when we have an EMF some current 

will flow and this flowing current can produce its own magnetic field. 

 

And the magnetic field should be such that it will be going to oppose the motion of these bar 

magnet. Why it is that, because of the energy conservation. If that is not the case, then what 

happened? If we just throw and the EMF that is generate in such a way that the magnetic field 

that is produced due to the current, of this wire can help this magnet to pass through the system. 

 

Then we can have more and more flux change here and more and more EMF. So, that means 

we are gaining a much amount of energy without doing any work. So, that is the violation of 

the energy conservation. So, that means in order to generate some EMF we need to do some 

work. That means we need to throw this magnet, against the magnetic field that is produced by 

the cause of the rate of change of this magnetic flux inside this wire. 

 

Inside this wire what happened, there will be a current and that current can produce a magnetic 

field itself. And the direction of the magnetic field should be such that it opposes the motion 

of this magnet. So, that means we need to do some kind of work that is the physical significance 

of having this negative sign. 

(Refer Slide Time: 08:30) 



 

Well for a closed path, so, now let us do some mathematical stuff here. So, for a closed path, 

so the EMF that is generated I can write because, this is a path is closed that whatever the 

electric field integrated over the line. And this is over the closed path c and what about the 

flux? My flux ɸB, rather magnetic flux is integration of �⃗�  • d𝑠  magnetic field into area. This is 

over the surface. 

 

Now according to this law I have �⃗�  • d𝑙 , it is EMF, which is equal to −
𝑑

𝑑𝑡
. Let us consider this 

proportionality constant to be unity. Then it should be the surface integral of �⃗�  • d𝑠 . I am 

writing everything in the mathematical. So, this is also mathematical form, but writing in terms 

of electric and magnetic field. So, you can see that, there is already a relationship of the electric 

and magnetic field. That is the first time we are having this relationship. 
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So, this I can write using the Stoke’s law like ∇⃗⃗  × �⃗�  and then dot d𝑠  over this surface integral 

that the close circle is enclosing this surface and the right-hand side I have the surface integral 

−
𝑑�⃗� 

𝑑𝑡
 • d𝑠 . So, this is true for any kind of surface, any kind of loop. 
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So, I can write from this expression. I can write a very important equation that ∇⃗⃗  × �⃗�  = −
𝑑�⃗� 

𝑑𝑡
. 

Mind it in electrostatic, we find that ∇⃗⃗  × �⃗�  was 0, but here this is not the case. We find that ∇⃗⃗  

× �⃗�  is not zero. This is 
𝑑�⃗� 

𝑑𝑡
, but here we have something extra and that is the corresponding 

magnetic field. So, this gives rise to a new law and that is the famous Faraday's law. 
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So, as I mentioned that for static electricity, so let me put this again here. For static electricity, 

what we get is ∇⃗⃗  × �⃗�  to be 0 that was our expression for static electric field. And now so that 

and because of that what we get that �⃗�  can be written in terms of a potential and that potential 

is −∇⃗⃗ ɸ. This is a scalar potential scalar and I can write E⃗⃗  in terms of the scalar potential with 

the gradient of that scalar potential with the negative sign and that is the way we define E⃗⃗ . 

 

Now from Faraday's law what we get? That ∇⃗⃗  × �⃗�  is no longer zero rather it is −
𝑑�⃗� 

𝑑𝑡
 and that is 

again −
𝑑�⃗� 

𝑑𝑡
, I can write in terms of the vector potential 𝐴 , so it is ∇⃗⃗  × 𝐴 , as �⃗�  can always be 

written in terms of A⃗⃗  like ∇⃗⃗  × 𝐴 . A⃗⃗  is a vector potential. So, that gives us ∇⃗⃗  × (�⃗�  + 
𝑑𝐴 

𝑑𝑡
) that to 

be 0. So, previously we had ∇⃗⃗  × �⃗�  = 0. 

 

Now we are having an expression, where it says that ∇⃗⃗  × (�⃗�  + 
𝑑𝐴 

𝑑𝑡
) = 0. So, now I can write that 

�⃗�  + 
𝑑𝐴 

𝑑𝑡
 t to gradient of some scalar field. So, that means that gives that leads to an expression. 
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So, these things can leads to an expression that �⃗�  + 
𝑑𝐴 

𝑑𝑡
 this quantity, now can be written as a 

gradient of a scalar field ɸ. 
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And then the electric field �⃗� , now modified previously for electrostatic I have ∇⃗⃗ ɸ. Now when 

we have the magnetostatic I mean the magnetic field here. So, it gives me another term like 

this. So, now �⃗�  is constructed not only scalar potential, but also a vector potential. So, 

previously we know that it can all only produces from a scalar potential, but in general this is 

the expression of the �⃗�  in terms of scalar potential ɸ and the vector potential 𝐴 . Now let us try 

to find out few values, I mean if you do some few examples to understand this, whatever the 

discussion we had so far. 
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So, the example is an infinitely long straight wire carries a slowly varying current I(t). The 

question is determined the electric field as a function of the distance s from the wire. So, this 

is a problem very straightforward problem. So, let us try to understand this problem. 
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Suppose, I am having a current carrying wire here infinitely extended current carrying wire and 

then the current that is flowing through this wire I that varies slowly with respect to time. So, 

if that is the case what happens? It produces a magnetic field here and that magnetic field also 

should vary with respect to time. And we know what is the amount of magnetic field is going 

to produce at some distance. 

 

So, let us first have a loop here a rectangular kind of loop with say length l and from here to 

here say distance is say s0 and from here to here it is s. The B that is produced at some point 



we know let me do it here. At some point here the B that is produced is 
𝜇0 𝐼

2𝜋
. If this is r, then it 

is r. So, the question is what should be the amount of the electric field there not the magnetic 

field. 

 

So, we can we need to extract the information of the electric field from the expression where 

we have the relationship with �⃗�  and �⃗� , so, that is the problem here. So, we know what is the 

magnetic field here and also the relationship with the electric field and magnetic field and that 

relationship if I exploit here. So, it is ∮ �⃗�  • 𝑑𝑙  so the loop is already there. 

 

So, whatever the EMF effect will going to generate, because of the change minus of the change 

of the flux. And here we should write �⃗�  • d𝑎  or d𝑠 . Let us write d𝑎  because, s we are already 

going to use. So, the electric field that is produced here if I just simply integrate this close line 

integral. So, the electric field at the point s0. This is a dot product so perpendicular direction 

will simply cancel out. 

 

And the electric field at s and the length is l, so it is multiplied by l. On the other hand, I should 

have −
𝑑

𝑑𝑡
 and the value of the �⃗�  is this one. Here so let me write it. This is μ0 I that is a function 

of t and then 2𝜋. Say since, we are having a distance s. So, we need to calculate the distance at 

s. So, the function of s, so, I should put it as s and then surface da. 
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So, what we have here, then so this quantity if I write. So, μ0 is constant it can come out. Then 

what else the area, so da is the area. So, area is length into distance length. So, l into s. So, that 



means I have 
𝜇0 𝐼

2𝜋
, which should be here and the rate of change of current that also I can take 

outside the integral. Inside the integral I have 
1

𝑠
 and the area is l into da small amount of area if 

I take here like a small amount of area at a distance. 

 

So, from here to here is s and this is the area s is a variable here. So, this is the area and this is 

my ds. So, it should be simply ds, the area here is ds multiplied by, so, what is the area? da here 

is ds multiplied by the length l, this length. Now if I simply integrate then I am going to get the 

result. So, it should be −
𝜇0𝐼

2𝜋
 and then 

𝑑𝐼

𝑑𝑡
 and it seems to be a log function. 

 

So, I should have simply ln s - ln s0 the reference distance. So, in the left-hand side I have [E(s0) 

– E(s)] l and in the right-hand side I have this quantity. So, eventually this ln (s0) and E(s) E at 

s0 it is I can put it in a constant. And I can simply write the variation E as a function of s, should 

be simply l going to cancel out. So, I can have simply 
𝜇0

2𝜋
 and then the change of the current, 

the explicit form of the current how it going to change is not given. 

 

So, I simply have this. And then I have ln s and a constant K. And E will be along z direction. 

So, let us put in this way, where K is a constant. K is something, which is constant. So, this is 

the way one can calculate by exploiting this Faraday's law the electric field. Another example 

I can give another very straight forward example. 

(Refer Slide Time: 26:04) 

 

Like to find the EMF induced in rotational loop in a fixed magnetic field. So, a very common 

problem. 
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So, suppose I have so what is the definition? What is the problem? The problem is I have a 

magnetic field here fixed magnetic field, but I am having a ring here, which is rotating. Suppose 

this is the axis through which it is rotating, it is rotating in this way. So, it is rotating and this 

is the amount of the B. So, when it rotates what happened? That every time there is a change 

in the flux is rotating with respect to time. 

 

Suppose, it is rotating with a angular frequency ω. So, when it is rotating what happened? That 

every time there is a constant change of the area that leads to constant change of the flux and 

that is why EMF will going to generate. So, if this is my B at any moment, the area of the say 

this is the direction of the area at any instant. And this is area vector �̂� and this angle at that 

moment is θ and that instant it is ωt, because ω is angular frequency. 
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So, the ɸB for that system ɸB the magnetic flux will be �⃗�  • d𝑠 . So, that means it is �⃗�  • �̂� ds. So, 

�⃗�  • �̂� ds is simply the angle between �̂� and �⃗�  is ωt. So, it should be B and then it is cos ωt. So, 

this then multiplied by ds. So, if I want to find out what is my total then I need to integrate over 

this entire surface. So, it should be B multiplied by the surface say s and cos ωt. So, what should 

be the value of the EMF? 
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The EMF we know it should be minus of del total flux del t. So, I should have an expression 

like B s and then sin ωt. So, there will be a sinusoidal variation of the electric field. Next another 

problem I can consider before ending let us consider that as well. 
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And that is the EMF induced in a stationary loop in a time varying magnetic field. A similar 

problem but, here only thing is that previously the loop was rotating and now the magnetic 

field is changing with respect to time. 
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So, again so the loop if I draw is this. And I now have my magnetic field and that is a function 

of time that makes the flux as a function of time. So, this is the initial problem we have. We 

had suppose the electric field is generated in this way and the current is generated in this way. 

So, the EMF that we should have is −
𝜕ɸ

𝜕𝑡
 and that thing simply −

𝜕

𝜕𝑡
 ∫ �⃗� •  𝑑𝑠 . 

 

So, s is the area, which is not changing. So, I simply have −
𝜕𝐵

𝜕𝑡
 multiplied by the total area s. 

Now if the explicit form is given. Suppose, B as a function of t is given as some B0 and 



sinusoidal function say sin ωt. Then I can really find that the EMF that is generated is simply - 

B0 ω s and then cos ωt. So, these few are very, very simple and straight forward problem. 

 

May be if I have some time I will like to do few more problem in the tutorial mode that we are 

planning. So, here today we are going to discuss about the electromagnetic induction. And the 

next class we will continue our topic, continue our discussion on electromagnetic induction. 

So, we will discuss about the self inductance and mutual inductance etcetera. So, with that note 

I like to conclude here. Thank you very much for your attention and see you in the next class.  


