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Hello students to the foundation of classical electrodynamics course. So, we are in module 3 

now and module 3 under lecture 55. We will be going to discuss more about the magnetic 

vector potential. So, the discussion will be continued today. 
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So, we have class number 55. So, our discussion on magnetic vector potential will continue. 

So, in the last class we calculated the magnetic vector potential for few cases. So, today we 

will be going to do another thing and that is try to find out the vector potential for a constant 

magnetic field. So, a magnetic field that is given is constant and corresponding to that magnetic 

field if I want to find out the vector potential, so, what should be the form of that that we 

consider. 

 

So, let us consider a uniform magnetic field. So, uniform magnetic field is there �⃗� 0 and we 

considered that this �⃗�  is along the z direction. So, if this is my coordinate system x, y and z. 

So, �⃗�  is along this direction it is uniform. So, we have B0 �̂�. So, that means, �⃗� 0 vector is 

magnitude B0 with �̂� in this direction. Now I need to find out the 𝐴 . So, let us exploit this 

expression that ∇⃗⃗  × 𝐴  is �⃗� . 

 



And so that means the ith component of the �⃗�  is simply ϵijk 𝜕j Ak. So, if I want to find out the x 

component Bx, it should be 𝜕y Az – 𝜕z Ay and that is 0. If I calculate the y component of the �⃗�  

that is 𝜕z Ax – 𝜕x Az that component is also 0 and the Bz component is 𝜕x Ay – 𝜕y Ax and that 

component is non zero and these values B0. So, I have three equations in my hand, three partial 

differential equation in terms of A. 

(Refer Slide Time: 04:40) 

 

So one possible solution is this, let us consider Ax to be 0 with Az to be 0. So, Ax Az 0 and Ay 

= x B0. If I put it you can see that it will go to satisfy because Az is 0, Ax is 0. So, then Ay is x 

B0. So, the first equation I am going to satisfy, second equation are going to satisfy and third 

equation is also going to satisfy because Ay is x B0. So, when you make a derivative here, so 

you will get B0 here and rest of the term will be 0. 

 

So, all the three equations we are going to satisfy. Similarly or I can also construct the solution 

in this way, say Ay and Az is 0 and Ax is -y B0. You can check it that this solution can also 

satisfy these three equations what is given here. Now, if two solutions are there, the linear 

combination of these two solutions is also a possible solution and if you do that, then I can 

have another solution. 
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So, the linear combination of the solution if I make then I can have say a solution like Ax = −
1

2
 

y B0 and Ay = 
1

2
 x B0 and Az = 0, the linear combination of these two equations leads to. A now 

in this case A can simply be written as these components are there. So, it can simply written as 

1

2
 �⃗� 0 × 𝑟 , this is the way you can write and now if I make a curl at both the site then you will 

see that it is satisfying, it is giving you the constant value B0 as a magnetic field. 

 

So, Ai is simply 
1

2
 ϵijk B0j and rk. So, this is my expression for constant magnetic field. I can 

always write A in this way. So, this is one of the solutions for constant magnetic field that I 

can use. If I now check carefully so B is along z direction according to this figure. So, let me 

draw this figure once again. 
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So, I have a coordinate system like this, this is x, this is y and this is z. And if I make a circle 

here and my �⃗�  is along this direction which is B0 �̂�, 𝑟  is this one this is my 𝑟 . Now, what is the 

direction of 𝐴  then? This is �⃗� 0 × 𝑟 . So, it has to be in a tangential direction like this. So, this is 

the tangential direction. So, this should be the direction of 𝐴 . Every time 𝑟  changes, so, this 

direction will be going to change. 

 

So, if I integrate over this circle, as a close line integral, if I calculate this quantity 𝐴  • d𝑙  and 

what I get? This quantity is simply the surface ∫(∇⃗⃗  × 𝐴 ) • d𝑠  and ∇⃗⃗  × 𝐴  is nothing but �⃗� . So, 

surface integral  �⃗�  • d𝑠  and �⃗�  • d𝑠  is nothing but the magnetic flux. This is simply the magnetic 

flux. So, �⃗�  is along the z direction and we can have the magnetic flux here. 

 

And this magnetic flux can be calculated by this expression that if 𝐴  is known, then from that 

exploiting that 𝐴  one can calculate the magnetic flux. So, further we want to calculate another 

case say problem 3 or case 3. 
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Lastly we did it for two cases. So, find out 𝐴  inside and outside solenoid I want to find out 𝐴 . 

So, what happened in the solenoid because this problem we already so this is the solenoid. So, 

suppose I have a cylindrical system and over that we have the wires and this say let me draw 

axis first, maybe I can use different colours? So, inside the solenoid and outside the solenoid 

we need to calculate the magnetic vector potential. 
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So �⃗�  inside the solenoid value of �⃗�  is simply μ0 n I, we calculated this earlier and also we have 

so we just learned one thing that integral 𝐴  • d𝑙  is equal to integration of �⃗�  • d𝑠  the flux. So, 

this is the cross section, let us make a cross section of the solenoid and so this is the radius of 

the solenoid R and we have a section inside the solenoid with r, so r is less than R. So, 𝐴  • d𝑙  

if I calculate because �⃗�  is perpendicular to this plane. 

 

So, 𝐴  is circulating this, this, this, line, whatever the line we are having, so I can calculate this 

quantity 𝐴  • d𝑙 . So, 𝐴  • d𝑙  for this case is simply 𝐴  and it is 2𝜋r that quantity again should be 

equal to the flux ɸB. So, this thing is nothing but the magnetic flux and magnetic flux here �⃗�  • 

d𝑠 , �⃗�  is uniform here. So, that quantity I should write �⃗� , magnetic flux here is simply �⃗� , which 

is μ0nI, which is uniform inside this multiplied by the area, which is 𝜋r2. So, from here I can 

find out the value of 𝐴  very easily. 

 

The value of 𝐴  is simply 
1

2
 μ0 n I and then r, that is the value of the magnetic vector potential. 

What about outside case because this is inside and again this is the cross section we are having. 

So, let us draw the cross section of the solenoid. This is the cross section of the solenoid and 

from here to here we have R and again we have a circular path where we have the value of 𝐴 . 

 

And that now is my r. In this case, r is greater than R. Now again we go to calculate this quantity 

𝐴  • d𝑙 . That value is simply A 2𝜋r and ɸB here this quantity is equal to ɸB magnetic flux. ɸB 

here the amount of magnetic fields μ0nI, which is only in this region not outside multiplied by 



the area but the area is 𝜋R2, because outside that the magnetic field is not there. So, only the 

area here we need to consider is the region, which is said A, this is the region where we have 

the magnetic field. This is the region where we should have only the magnetic field because 

outside there is no magnetic field. So, the area will be this one. 
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And now if I calculate A out of that, so my A then 2𝜋r is μ0 n I then 𝜋R2. So, A from here I 

can calculate so 𝜋 will cancel out and it should be simply 
1

2
 μ0 n I then 

𝑅2

𝑟
. So you can see that 

outside the magnetic field is 0 but the value of magnetic vector potential is non zero. 
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So if I plot these things how the magnetic field magnetic vector potential is changing with 

respect to r, then we have something like this, which is, so it is linearly changing and then 

changing at 1 by r. So, this is when r = R and r is this side and I am plotting magnetic vector 



potential as a function r. This is the way the magnetic vector potential will going to change 

inside the solenoid. 

 

So, now, we will do another important thing and that is the monopole expansion of vector 

potential. So for a charge distribution for static electricity for the charge distribution we 

calculated potential and then we find that the potential can be written in terms of so let me 

quickly remind what we did in electrostatics. 
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So, in electrostatics, what we did, we had a charge distribution and if I want to find out what is 

this charge. So, this is placed in a coordinate system like this, for a small section here I want to 

find out what was the value of the potential here what is ɸ, which is a function of 𝑟  and this is 

from here to here we had 𝑟 ’ and from here to here, we had Л⃗⃗  this was Л. 

 

But the point is when we calculate this we find that this is the contribution of the monopole, it 

is the contribution of the electric dipole, the contribution and so on, the contribution of the 

monopole, dipole then quadrupole and so on. So, the vector potential this is the scalar potential 

for electrostatic field can be expanded in this way. So, that was the multipole expansion we 

had. So, that is the outcome that we figured out. The similar thing we had here. 
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So, here what we do is multipole expansion of vector potential 𝐴 (𝑟 ). So, previously we did it 

for electrostatic and that is the multipole expansion of scalar electrostatic potential and we find 

that the contribution is summation of monopole, dipole and quadrupole. Here we will do the 

similar thing and see that what happens. So, let me again draw. So, in this case there was a 

charge distribution let here we will have a current loop. So, let me draw the coordinate system 

first. So, this is my coordinate system. 
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And I have a current loop like this, this is my current loop and the current is flowing here is I 

suppose the current that is flowing through this is I and this is the origin and I want to find out 

what is the magnetic field produced at some point here, which is say let me draw this here at 

point P what is the amount of magnetic field produces. So, I can have a section here say dl’. 

 



And from here to here this is say 𝑟 ’, this is the vector 𝑟 ’ and this vector from here to here is my 

Л⃗⃗ , this is Л⃗⃗ , which is 𝑟  - 𝑟 ’. So, this is the geometry we are having. So, my 𝐴  is simply at 𝑟  we 

know the expression and that is 
𝜇0 𝐼

4𝜋
 and then it is a closed line, so I should have a ∮

𝑑𝑙′

|𝑟 −𝑟 ′ |
. This 

expression we already defined that when the line current is there how the magnetic vector 

potential can be represented. 
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So, again like in the previous case I need to expand 
1

|𝑟 −𝑟 ′ |
 and we did it earlier. So, if this angle 

is θ then this quantity we did it in the earlier case we are not going to do it here is ∑
(𝑟′)𝑛

𝑟𝑛+1
∞
𝑛=0  

and then Pn (cos θ). That was the expression, maybe I can put θ’ because everything is prime 

frame θ’. And cos θ’ is simply �̂�’ • �̂� and A I can now write as so what is my A finally? 
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So, 𝐴  vector potential is equal to 
𝜇0𝐼

4𝜋
 ∮

(𝑟′)𝑛

𝑟𝑛+1   and then Pn (cos θ’) and dl’. That is the expression 

we have. Now what we do? We just expand one summation I am missing, so it should be sum 

over n from 0 to infinity. So, now what we do that we will just expand for different n values. 

And if you do then I get the first term like 
𝜇0 𝐼

4𝜋
 for n = 0 my first term will be 

1

𝑟
. 

 

Because I can take it outside the integral and integral 0 ∮𝑑𝑙′ plus second term 
𝜇0𝐼

4𝜋
 and then 

1

𝑟2  

∮𝑟′ cos𝜃′  𝑑𝑙′ and so on. Now I can write this term in this way. 
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I can write the first term as 𝐴 monopole + 𝐴 dipole + so on. Now let us find one by one what is the 

meaning of monopole. 
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So, 𝐴 monopole, this is the monopole contribution of the potential that is contributed due to the 

monopole here but we know that for magnetic field there is no magnetic monopole and also 

the expression is suggesting that we have 
𝜇0𝐼

4𝜋𝑟
 and ∮ 𝑑𝑙′ and this is a closed line integral of dl 

and we know that this value has to be 0, this is zero because this quantity should be 0. 

 

So, magnetic monopoly is not there at all. So, that means that contribution should not be 

reflected in calculating the vector potential of 𝐴 . What about the dipole the next important term 

is dipole. 
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So, a dipole term is simply 
𝜇0𝐼

4𝜋𝑟2  and then we have 𝑟 ’ cos θ’ and dl’. This I can simplify 
𝜇0𝐼

4𝜋𝑟2  

and then �̂� • 𝑟 ’ dl’, �̂� • 𝑟 ’ take care of this r’ cos θ’. So, I just replace this in this way. Now I 

will be going to use one identity and that is integration ∮ �̂� • 𝑟 ′  𝑑𝑙′ is equal to -�̂� × ∫𝑑𝑎 ′, 

where 𝑑𝑎 ′ is half. 

 

So, this is area. So, I mean I just write it but I did not prove, so I will be going to prove that 

maybe in the next class, this is a lengthy proof to be very honest and it is not very trivial. So, 

we will be going to do in the next class because today I do not have that much of time. But if I 

consider for the time being that okay this is the way I can represent −𝑟 ’ × d𝑙 ’ and this is the 

area. 
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Then my magnetic dipole potential term contribution of that thing becomes 
𝜇0

4𝜋
 
�⃗⃗⃗�  × 𝑟̂

𝑟2  where my 

m, which we call the magnetic dipole moment very, very important term is simply current into 

area or this into area. So, this is called the magnetic dipole moment. So, this is the way magnetic 

dipole moment is defined. So, electrostatic dipole moment if you remember that was defined 

like P is equal I am just writing in this side. 

 

That was charge multiplied by the distance, that was the way and it is also defined in the integral 

from like r’ and then r’ ρ(r’) dv that is the way also it was defined, but it was charge multiplied 

by the distance. But here it is current multiplied by the area. In electrostatic charge is there and 

in magnetostatic current is there because the static charge give rise to electrostatic and the 

steady current gives rise to the magnetic field. 

 

So, that is why q is here, we have I their distance is there, so q into distance here we have area. 

So, these you need to at least appreciate that how the magnetic dipole and electric dipoles are 

defined. So, in the next class we will be going to discuss more about this proof because I am 

exploiting one identity here, this one but without any proof. So, in the next class we are going 

to prove that which will be a little bit lengthy proof. 

 

So, we will be going to do this proof in the next class to understand how these areas are there 

in the picture. So, with that note I like to conclude here, thank you very much for your attention 

and see you in the next class. 


