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Magnetic Vector Potential 

 

Hello student to the foundation of classical electrodynamics course. Under module 3, today we 

have lecture number 54. And today we will be going to discuss more about the magnetic vector 

potential that we started in the last class. 
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So, today we have class number 54 and our topic today is magnetic vector potential. We will 

continue this discussion that we started last class. 
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So, we know that the ∇⃗⃗  • B⃗⃗  = 0. Since ∇⃗⃗  • B⃗⃗  = 0 from that we can write B⃗⃗  as a curl of a vector 

function say A⃗⃗ . 
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And this vector function A⃗⃗  is termed as magnetic vector potential. Now this magnetic vector 

potential because if you go back to again the Helmholtz theorem, I have done this several time that 

∇⃗⃗  • B⃗⃗  = 0 and ∇⃗⃗  × B⃗⃗  is μ0 J . If these 2 information are known then I can able to write B⃗⃗  as a function 

of A⃗⃗ . In this way where ∇⃗⃗  × A⃗⃗  gives me the B⃗⃗ , where A⃗⃗  can be determined as according to the 

Helmholtz theorem as 
1

4𝜋
 integration and divided by r  - r ’. 

 



And here I should use the expression of ∇⃗⃗  × B⃗⃗  in prime frame beta to write B⃗⃗  as a function of r ’ 

with dv’. And from that I can simply write that this quantity is 
1

4𝜋
 μ0 I can take outside because 

curl cross these things is nothing but μ0 J . So, it should be like ∫
𝐽 (𝑟 ′)

|𝑟 −𝑟 ′|
 dv’, so this we derive last 

day. Next the question was the uniqueness of A⃗⃗ ; next the thing that we discuss that is A⃗⃗ , the vector 

function that we are talking about is unique? And the answer is No. 
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Because you can form a vector function A⃗⃗ ’ suppose A⃗⃗  is given, A⃗⃗  as a function of is given and you 

can construct another function A⃗⃗ ’(r ) using the given function A⃗⃗  in this way that gradient of a scalar 

field r . Then A⃗⃗  and A⃗⃗ ’ both leads to the same B⃗⃗ , so from here we can write that ∇⃗⃗  × A⃗⃗  will give the  

B⃗⃗  and that is the same quantity that ∇⃗⃗  × A⃗⃗ ’. So, this will give rise to 1 B⃗⃗  and this will again give 

rise to the same B⃗⃗ , where A⃗⃗  and A⃗⃗ ’ are different quantity. That was the discussion we had in the 

last class, I quickly recap. Now today we will be going to impose certain constraint, so that is the 

thing. 
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So, now we impose a constraint on the vector potential and that constraint is called the Coulomb 

Gauge, so what is the meaning of constraint? I will discuss. So, that constraint is eventually the 

Coulomb Gauge this is called Coulomb Gauge constant. So, what is that constraint? The constant 

is the ∇⃗⃗  • A⃗⃗  has to be 0 that is the constraint that I impose; it is not necessarily that the vector 

potential that is given for which I am going to calculate the magnetic field should have this 

property. 

 

That if I make a divergence of over that vector potential it gives to 0 but we put a constraint over 

that, that we want that A⃗⃗  in such a way that if I make a divergence over A⃗⃗ , it should be 0. Now as 

I mentioned it is not always true that this is not always a valid constant. So, suppose the ∇⃗⃗  • A⃗⃗  is 

not equal to 0 because the Coulomb gauge constraint we need to put but A⃗⃗  is given for which the 

divergence is not equal to 0. 

 

That means simply the A⃗⃗  is not satisfying this equation, whatever the equation we are having it is 

not satisfying. But we know that there is no such uniqueness over A⃗⃗ , I can construct my A⃗⃗  in a 

different way that I discussed in the last day, today also I mention it. So, what we do that since it 

is not equal to 0. 
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Then we can make it 0, we can have another A⃗⃗ ’ obviously that A⃗⃗ ’ can also produce the same B⃗⃗ , 

this is my new vector potential and that is this we know, by mathematical form this is the form. 

And demand that I construct A⃗⃗ ’ in such a way that we demand that the ∇⃗⃗  • A⃗⃗  is 0. So, if ∇⃗⃗  • A⃗⃗  is 0 

from this equation what I can see that. 
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If I make the ∇⃗⃗  • A⃗⃗  both the side and keep this equal to 0 then eventually we have ∇⃗⃗  • A⃗⃗  plus 

divergence of right-hand side I am just writing χ = 0 or ∇2χ is a vector field is equal to minus of 

this. So, that in order to make ∇⃗⃗  • A⃗⃗ ’ 0 what we need to do is that the χ should satisfy this equation. 

And this is nothing but the Poisson equation this is whose solution is known. 



 

So, let me write it down once again, so that means the χ, which we have a freedom to choose 

should satisfy this Poisson equation in order to hold the Coulomb gauge. So, it is like it should 

satisfy this equation and this is equivalent to. Now if I want to write it an equivalent equation here, 

so this is equivalent to an electrostatic, which is a known equation, so let me write it down and 

then we will go to compare this. 

 

So, in electrostatic we already had an equation like this. Let me write it properly square this is 

equal to −
𝜌

𝜖0
, that is our usual Poisson equation in that for the potential that we had for electrostatic. 

And whose solution is known and the solution ɸ was 
1

4𝜋𝜖0
 then integration of 

𝜌 𝑑𝑣′

Л
 . Here also since 

the solution is this, this is a volume integral, so these 2 equations are identical, so I can readily 

have the solution. 

 

And the solution for χ is simply if I want to find out the solution here I can write this, this is nothing 

but 
1

4𝜋
 and then integration of this quantity over Л dv’. So, under Coulomb gauge these I can 

satisfy, I can prepare my, I can construct my A⃗⃗ ’ in such a way that it satisfies this equation, which 

is the condition for Coulomb gauge. And in order to satisfy this equation I need to choose my my 

scalar field χ in such a way that this is the solution, this is the way I need to choose. 

 

Because this ∇⃗⃗  • A⃗⃗ , which is non-zero is given, so these things is given, this is given. So, exploiting 

that information I can construct the thing. So, this is given and this is not 0 that is the condition we 

start with, that suppose these things is not 0, so this is not 0 some value is there, so that thing I will 

put here, plug it and then find out my χ. And then I construct A⃗⃗ ’ that should satisfy the Coulomb 

gauge. Now if the Coulomb gauge is there what we get? Let us check what should be the expression 

of A⃗⃗  then. 
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So, under Coulomb gauge what we have? We have ∇⃗⃗  • A⃗⃗  is 0. 
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From this information I can have ∇⃗⃗  × B⃗⃗  = μ0 J  and then ∇⃗⃗  × B⃗⃗  I am making curl of both the side 

that I should write this is A⃗⃗ , I do not want to make curl of both the side now. 
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So, from this equation I write because B⃗⃗  is ∇⃗⃗  × A⃗⃗  and I just replace B⃗⃗  here and that thing should be 

μ0 J . Now ∇⃗⃗  × A⃗⃗  we know this is a very famous identity, we did it during the vector calculus and it 

is simply the −∇2A⃗⃗  + ∇⃗⃗  (∇⃗⃗  • A⃗⃗ ) and that thing should be equal to μ0 J . Now here we had this 

condition ∇⃗⃗  • A⃗⃗ , which should be 0 under Coulomb gauge. So, this should be 0, so then we simply 

have a vector Poisson equation. 
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Which is ∇2A⃗⃗ , which is a vector quantity = - μ0 J , this is nothing but a Poisson equation but vector 

vectorial form, so this is a vector Poisson equation. So, now from that if I want to extract the value 

of the A⃗⃗ , the solution is simply 
𝜇0

4𝜋
 because this solution is already there written, the solution of the 



Poisson equation. And then 
𝐽 (𝑟 ′)𝑑𝑣′

|𝑟 −𝑟 ′ |
, this is some volume integral over the entire volume v and that 

thing for volume current density. 

 

So, for surface and line current density we can also have an expression in some places we may 

require that. So, for line and surface current we can have A⃗⃗  is 
𝜇0

4𝜋
 then ∫

𝐼  𝑑𝑙′

|𝑟 −𝑟 ′|
. And I can if for a 

steady current we know that then I can take I outside, so this is simply 
𝜇0 𝐼

4𝜋
 and then ∫

 𝑑𝑙′

|𝑟 −𝑟 ′|
, so this 

is for line current. 

 

And for surface current the vector potential can be written like 
𝜇0

4𝜋
 integration surface current 

density 
�⃗⃗�  𝑑𝑎′

|𝑟 −𝑟 ′|
, so that will be over surface that will be over line. And previously the expression is 

over volume, so these are the 3 forms for different current density or different current line, surface 

and volume current and that is the expression for the vector potential 𝐴 . Now after having that let 

us now calculate few cases, where, how to calculate the current density for different cases, how to 

calculate the vector potential? 
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So, calculation of vector potential 𝐴  in a few simple cases we are going to calculate. 
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So, the first thing, for the first case we calculate is a straight current carrying wire. So, let me draw 

the current carrying wire first. Suppose I have a straight wire like this and the current that is flowing 

through is I and I want to say find out the vector potential at some point here as a distance 𝑟 . 

Because some magnetic field should be here because of the flowing of the current through this 

wire and as a result we should have some vector potential 𝐴 , so that we are going to calculate. 

 

So, from here to here this is say 𝑟  and from here to here, so this is d𝑙  section and the length is say 

-L to +L and this is our origin. So, I can use this expression my 𝐴  should be at 𝑟  should be 
𝜇0𝐼

4𝜋
 

integration -L to +L and then the current is flowing along this direction and that is say if this is z 

direction, so 
𝑧̂ 𝑑𝑧

(𝑟2+𝑧2)
1

2⁄
. 

 

So, r2 z2 is simply this one and since it is z direction, so simply we have d𝑙  vector is �̂� dz considering 

the wire is over this z axis. So, I simply now evaluate this integral, that is all and if I do this then 

this is �̂�. Then 
𝜇0𝐼

4𝜋
 and it should be ln because this is we know (z + √𝑟2 + 𝑧2) and evaluated at -L 

to +L. So, if I evaluate that. 

 



So, my 𝐴  should be 𝐴  is �̂� 
𝜇0 𝐼

4𝜋
 and this is simply ln I just put the value of this boundary value, so it 

should be 
𝐿+√𝑟2+ 𝐿2

−𝐿+√𝑟2+ 𝐿2
L + √𝑟2 + 𝑧2, that is the value. Now if the wire is very, very long, so for a 

very long wire the condition simply when 
𝑟

𝐿
 this ratio is very, very less than 1. 

 

That means I try to find out the vector potential as a distance 𝑟  but that distance should be much, 

much smaller than the distance of the length of the wire itself, so that is the condition here. And if 

I put this condition under the limit that this is very, very small we can simplify the expression a 

bit, we can approximate the expression a bit. 
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So, 𝐴  is simply �̂�, then 
𝜇0𝐼

4𝜋
 and then I have ln and take L common so it should be (1 + (1 + 

𝑟2

𝐿2
))1/2 

and in a denominator we have (-1 + (1 + 
𝑟2

𝐿2
))1/2. And then we make a binomial series kind of 

expansion of this quantity that simply leads to �̂� 
𝜇0𝐼

4𝜋
 and then ln [

2+ 
1

2
 
𝑚2

𝐿2

1

2
 
𝑟2

𝐿2

]. 

 

Please note I cannot neglect 
𝑟2

𝐿2
 then we cannot do this. Because then we have an undetermined 

quantity, so we need to just make a binomial expansion here. 

(Refer Slide Time: 29:51) 



 

And then further simplification leads to �̂� 
𝜇0𝐼

4𝜋
 and then ln (

4𝐿2

𝑟2  + 1), just divide everything. And that 

is again simplify as �̂� 
𝜇0𝐼

2𝜋
 and ln (2 

𝐿

𝑟
) because 

𝐿

𝑟
 is much, much greater than 1. So, I can neglect this 

1 and I can simply write this as 𝐴2 and this 2 can come out and we are going to get this. Now this 

is the expression we are getting, finally my 𝐴  should be this one. 

 

Now if I want to extract my �⃗�  out of this 𝐴 , so what should be my �⃗� ? My �⃗�  is ∇⃗⃗  × 𝐴  and 𝐴  is 

there, so I can simply have if I execute it 
1

𝑟
 because mind it 𝐴  is in polar coordinates I need to write 

everything in polar coordinate or in cylindrical coordinate at least. So, it should be �̂� then r �̂� and 

�̂� in cylindrical coordinates. So, I need to exploit this at r φ z because 𝐴  is in this way, written in 

this way, so this is 𝜕r, this is 𝜕φ and this is 𝜕z and we have 0 0 and Az. 

 

Because only z component is there, which is a function of 𝑟 , that is all because this is only the 

direction of the 𝐴  is along z. Now this value most of the terms are 0. So, only we have if I execute 

−�̂� 
𝜕𝐴𝑧

𝜕𝑟
 and that if I execute because Az I know this is the quantity and if I make a derivative with 

respect to r. 
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Then simply I have −�̂� 
𝜕

𝜕𝑟
 and whatever the Az I am having I am writing this 

𝜇0𝐼

2𝜋
 then ln 

2𝐿

𝑟
 and 

this value is simply �̂� 
𝜇0 𝐼

2𝜋𝑟
. So, this is the value I have because if I write so this I can write it as ln 

2L - ln r, so ln 2L is a constant, so this will going to cancel out and ln r should be 1 by r and this 

negative sign is going to absorb here, so that is why I will be going to get this result. 

 

But if you look carefully this result we already have, so this is a known result because we already 

derived in earlier class that what should be the magnetic field for a wire infinitely extended wire 

or very long wire. And the result was 
𝜇0 𝐼

2𝜋
, the length, the distance that is r, so this result again we 

derive but this time in a different way, this time we are not using the Biot-Savart law, we are not 

using the Ampere's law. 

 

We just use this expression to figure out �⃗�  and here 𝐴  is the value that we basically calculated 

here. So, this is the way we calculate 𝐴  and from that we calculate �⃗� , so let us do another problem. 
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So, problem 2 we calculate find 𝐴  inside a long cylinder carrying a current density 𝐽 . So, long 

cylinder is there and it is carrying a current density 𝐽  and I want to find out. So, that is the cylinder, 

suppose this is the axis and the radius is say 𝐴  and the current density that is given. So, suppose 

this is 𝐽 , so I need to find out the value of 𝐴  that is the vector potential. So, ∇⃗⃗  × �⃗�  is μ0 J  and ∇⃗⃗  × B⃗⃗  

is called of is I just put this is simply μ0 J , I am writing the Poisson equation once again. 

 

So, that leads to 𝐴  = - μ0 J  under this Coulomb gauge where ∇⃗⃗  • 𝐴  is 0 under Coulomb gauge. So, 

now J  is J �̂� and that basically leads to because J  and 𝐴  are should be same direction here from this 

equation that we understand. 
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So, the 𝐴  should be having no x component, no y component only the z component and that is Az. 

Because from this equation we can say that 𝐴  and J  should be in same direction. Now using the 

cylindrical coordinate, so I am exploiting this equation in cylindrical coordinate what we can get 

is this. So, 
1

𝜌
 and then 

𝜕

𝜕𝜌
 and then Az 𝜕𝜌 should be -μ0 J . 

 

I am just writing only the ρ part because other components are not there. So, I have then 
𝜕

𝜕𝜌
 and 

then ρ 
𝜕𝐴𝑧

𝜕𝜌
 = - μ0 J ρ or ρ 𝜕𝐴𝑧, a partial differential equation we are solving now it should be -μ0 J 

𝜌2

2
 and then + C, C is integration constant. Further, 𝜕𝐴𝑧  our aim is to find out 

𝜕𝐴𝑧

𝜕𝜌
 = - μ0 J 1 ρ will 

going to cancel out, so 
𝜌

2
 + 

𝐶

𝜌
. 

 

Again if I integrate then Az simply comes out to be minus of 1 by say 4 and μ0 then J, then ρ2 then 

+ C ln ρ + D. Now C and D are constant, which can be evaluated by exploiting the boundary 

condition. And the boundary conditions suggest that we have a ln ρ term that means if I want to 

find out something in the axis then ρ tends to 0. So, under ρ tends to 0, Az should be finite but here 

we can see that this term can have a undefined quantity. 
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So, that means the C is 0, so when ρ is less than a the ln ρ term should vanish or ρ tends to 0, this 

terms will vanish. Under that condition I can write that Az, which is a function of ρ should be - of 

1

4
 then μ0 J ρ2 + D, ρ is less than equal to A inside that I want to find. Now what is J? J is the amount 

of current flow per area here, so I should write 
𝐼

𝜋𝑎2 , a is given in the problem because the radius is 

a that is known. 

 

So, in terms of that I can simply have Az to be - μ0 
𝐼

4𝜋𝑎2 , I just replace J here and then ρ2 plus the 

constant D. If I write and without, so plus some constant D. From that expression I can also figure 

out my B, B(ρ) = −
𝜕𝐴𝑧

𝜕𝜌
 �̂�. And that quantity simply become μ0 

𝐼

2𝜋
 μ0 

𝜌

𝑎2 �̂� for ρ less than equal to 

a. 

 

So, I figure out my a, I also figure out from A, I also figure out the magnetic field for this 

cylindrical system, which carries a current I. So, this is the way, so I just give 2 different examples 

to find out A, now I should stop because I do not have that much of time to continue. So, in the 

next class what we do that we will discuss more about the magnetic vector potential and then try 

to understand if a current carrying wire is placed, then how it is producing some magnetic vector 

potential. 

 



And again like scalar potential we can have a multiple expansion and how the dipole momentum, 

magnetic dipole moments come appear etcetera. So, with that note I like to conclude here, so please 

try to practice few problems regarding calculating the magnetic field through A. So, first you need 

to calculate A the way I discussed so far a given system having the symmetry, use the symmetry 

and find out the value of the magnetic vector potential. And then from that calculate the value of 

the magnetic field B. So, thank you very much; see you in the next class. 


