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Application of Ampere’s Law 

 

Hello student to the foundation of classical electrodynamics course. So, under module 3, so we 

have lecture 53 today. And in the previous lecture we discussed about the Ampere's law and in 

today's class we will be going to apply. We are going to apply this law in different cases. 
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So, we have class number 53. 
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And today's topic is few applications of Ampere's law. So, what kind of applications? The very 

first is the magnetic field very straight forward few applications, which is also known to you that 

the magnetic fields at the distance from a long wire that we already calculated using Biot-Savart 

law. So, that thing again we are going to do here with very simple steps. So, suppose we have a 

very long wire, which is carrying a current and that current is I and it will going to produce some 

magnetic field around it. 

 

And this magnetic field at some distance from the core of this fiber, from the center of this fiber, 

so that is the thing I wanted to calculate. So, magnetic fields will produce in this direction that is 

the value of the direction of the magnetic field. And if this distance is given suppose this is s the 

value of the magnetic field over this circle we want to find out and the expression that the equation 

that we are going to use is simply the Ampere's law. 

 

Ampere’s law is suggesting that the closed line integral of �⃗�  • d𝑙 , where this loop whatever the 

loop I draw is essentially the Amperian’s loop = μ0 and current enclosed enc. Now I know that 

inside this loop the amount of current is I. So, here I simply write μ0 I and what is �⃗�  • d𝑙 ? Because 

�⃗�  is constant there will be no change in �⃗� , so it is simply �⃗�  integral of d𝑙 . And then in the right-

hand side I have μ0 I and integral of dl is 2𝜋 and the radius here r. 

 



In this case it is S, so it is B into 2𝜋S that is equal to μ0 I and B, the magnitude of B 
𝜇0𝐼

2𝜋𝑆
. So, this 

is a very well established result that we derive for infinitely long wire. But here just exploiting the 

Ampere's law the derivation becomes very, very simple and no integration and nothing is required, 

so we will get the same result. Now if I want to find out the direction of the magnetic field in the 

vector form. 
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So, the vector form is simply μ0 I this is the amplitude 2𝜋s and you need vector of φ that should 

be the direction because it is revolving around the current carrying wire, so it should be something 

like this. The next thing, the next problem that we do problem 2 is very important and that is the 

magnetic field of a very long solenoid, let us write it. 
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So, I believe all of you are aware of this term solenoid. So, we have say let me draw the solenoid 

suppose and this is the wire is surrounding like this. So, this is a wire is revolving and that is 

essentially my solenoid and I have an axis here, this is the axis of the solenoid like this. So, if I 

now want to calculate the magnetic field inside this long solenoid, then I need to draw the 

Amperian’s loop judiciously. 

 

And if I do that if I choose my Amperian loop like this, so inside over the axis because now it is 

circular, so the magnetic field should pass inside this through the axis of this solenoid. And this is 

my Amperian loop or Ampere's loop. And suppose this is of length l and I am going to exploit this 

expression, which is the Ampere's law that �⃗�  • d𝑙  = μ0 Ienc and what is Ienc that we need to calculate. 

 

But �⃗�  • d𝑙  if I want to calculate, so please check it so when the wire the current is flowing suppose 

the current is flowing in this direction? Say current is flowing in this direction; this is the direction 

of the flow of the current. Now this �⃗�  will only produce inside the solenoid and since it is produced 

inside the solenoid the �⃗�  • d𝑙  when we calculate and there are 4 portion of these loop, this is a 

square loop. 

 

So, this is a square kind of loop, so we have l here and these 2 distances are there but these lengths 

are perpendicular to the production of the magnetic field. So, if I now calculate this closed line 

integral I should have 4 integral and this 4 integral will be BL that is inside and rest of the thing 



should be 0. Why because in one case in couple of cases the �⃗�  is perpendicular because here the 

�⃗�  is perpendicular to the l and here there is no B at all. 

 

So, I will have 3 consecutive zeros for 3 lines, only the line that will contribute here is this one, 

this line. So, let me I like this one, so this is the line over which the magnetic field and dot dl will 

contribute. So, I simply have BL, right-hand side I should have current enclosed, so μ0 is there, I 

current is flowing, and so I should be there. But it should not be only I because the current is 

enclosing by loop, there are few loops are there. In this figure there are 1, 2, 3, 4, 5 loops are there, 

so that we need to take account. 

 

So, I can take account by just multiplying n into L, where n is the number of turns per unit length 

and L is the length. So, n is the number of turns per unit length and nL is the total number of turn, 

so that should be my expression. And then I simply find B = μ0 n I and l, l will going to cancel out, 

so that should be the value. And if I want to find out what is the direction? The direction should 

be along z direction. If this is my say, so if this is my z direction, so this is say z according to the 

flow of the current. So, this is the magnetic field inside. 
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And magnetic field outside I say 0 but we can also demonstrate that. So, for outside let me use. 
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For outside if I calculate, how to calculate this? So, suppose again I have a solenoid like, this is 

my solenoid and I want to find out. So, this is the axis and from the axis, so let me draw the axis 

properly and I draw a loop here, say this is length L. And from this axis this length say is r1 and 

this from here to here this is r2. 
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So, I have integration �⃗�  • d𝑙  = μ0 Ienc. So, from here I can have B at 𝑟 2 - B at 𝑟 1 and multiplied by 

L is 0 as there is no current enclosed. So, one is plus sign one is minus sign because if I complete 

this loop it has to be like this, so one is this side and another this side. In one case if it is plus sign 



and that B is at 𝑟 2 and another is 𝑟 1. Now so this is true this minus this equal to 0, so B at 𝑟 2 = B 

at 𝑟 1 that the condition we are having. 

 

Now for very, very large distance, so this is the condition we are getting. Now but for r tends to 0 

this equation tells me that B is constant because at any r the value seems to be same. Now for r 

tends to infinity is very large, B has to be 0. So, that simply tells me that B, which seems to be 

constant is actually 0, which is again a constant value, 0 is a constant, so it does not depend on r 

and it is a constant and this constant value seems to be 0, why? Because I got this condition from 

the Ampere's law and it suggests that B at 𝑟 2 and B at 𝑟 1 should be same. 

 

So, that means it is essentially a constant value and what is the constant value? I put the boundary 

condition that if r tends to infinity B has to be 0, so B itself 0, so outside I find B is 0. Now the 

next thing is a toroid, so this is a problem 2, now problem 3, case 3. 
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I should have a thing called toroid, so what is toroid? It is just let me draw then you will understand. 

And the toroid is something where we have, so this is roughly the structure of a toroid. And where 

we have this wire and this is the axis of this, so from here to here it is say R. Now if I want to find 

out what is the magnetic field inside this region I make a dotted line there then again I am going 

to use �⃗�  • d𝑙  = μ0 Ienc. 



Now B dl will be 2𝜋 if it is R, so it is R and it should be μ0 N I, N is a total number of turn here. 

So, N has to be total number of turns, so the magnitude of B simply 
𝜇0𝑁𝐼

2𝜋𝑅
. Now also it is written N 

is total number of turn per unit length. Then n then it should be total number of turn divided by 

2𝜋R, so this is nothing but number of turns per length. So, it becomes simply B = μ0 n I, that is the 

simply the magnetic field for a toroid. 

 

It is exactly something like we have for solenoid but in toroid the 2 ends are merged, so it is like a 

donut shaped thing and inside that if you have a magnetic field the value will be something like 

this. Now after having all this let us now start another important topic, another important part of 

the magneto static and that is the concept of magnetic vector potential. 

(Refer Slide Time: 21:43) 

 

And normally it is written as 𝐴 (𝑟 ). So, so far we have the ∇⃗⃗  • B⃗⃗  = 0, so when we have ∇⃗⃗  • B⃗⃗  = 0 

that essentially means that we can construct a vector field such that. So, from here so we can 

construct a vector field say 𝐴 (𝑟 ) such that �⃗�  can be written in this way, �⃗�  as a function of 𝑟  can be 

written as a curl of that vector field. So, this is to some extent the statement that we already had 

when we are discussing about the Helmholtz theorem. 

 

Any vector field can be represented in terms of 𝐴 , so in general any vector field �⃗�  it was shown 

that one can write as scalar field + curl of a vector field, in general. So, for magnetic field I am just 



taking this one because for magnetic field we mentioned that the scalar field, there is no scalar 

field for magnetic field. So, scalar potential is not there, only the vector potential is there. 

 

So, I can write it and if I write it automatically follows the ∇⃗⃗  • B⃗⃗  is 0. Because if I make divergence 

both the side after defining B⃗⃗  in this way, so the ∇⃗⃗  • B⃗⃗  is simply divergence of some quantity, which 

can be written in terms of curl. And we know that divergence of curl of something is identically 0, 

so that follows. So, that means I can always write B⃗⃗  in terms of curl of some field and this field is 

our vector potential. 
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Now from the Helmholtz theorem since we mentioned that using the Helmholtz theorem we can 

have the B⃗⃗  as the curl of that quantity. So, 
𝜇0

4𝜋
 and then ∫

𝐽 (𝑟 ′)

|𝑟 −𝑟 ′ |
 dv’. So, from here I can write that 

A⃗⃗  is simply 
𝜇0

4𝜋
 ∫

𝐽 (𝑟 ′)

|𝑟 −𝑟 ′ |
 dv’. So, if you forget the Helmholtz theorem, so let me quickly remind that 

what was that for magnetic field. 
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So, any vector as I mentioned can be represented in terms of minus of this plus ∇⃗⃗  × A⃗⃗ . Now if I 

want to construct A⃗⃗ , so now it is the given thing is this one, it was given that the divergence of 

these things. For magnetic field it is given and ∇⃗⃗  × G⃗⃗  is if I write in generalized way, so say ∇⃗⃗  • G⃗⃗  

I put it like D and it is C⃗ . So, if these two are known then the point is can I construct my, so here I 

should write G⃗⃗  here, so G⃗⃗  can be always constructed in this way, this is the unknown field and this 

is the recipe. 

 

So, I can always write f in this way 
1

4𝜋
 integration of divergence whatever we had divided by 𝑟 −

𝑟 ′ dv’, D has to be function of 𝑟 ′ that was one thing. And A⃗⃗  this is a scalar potential, and A⃗⃗  I can 

write as 
1

4𝜋
 integration of C⃗  it is a function of 𝑟 ′ and then 𝑟 − 𝑟 ′ dv’, that was the statement of the 

Helmholtz theorem. Now if I tally these 2 side by side for B⃗⃗  what we get? 

 

For B⃗⃗  we had ∇⃗⃗  • B⃗⃗  = 0 and ∇⃗⃗  × B⃗⃗  = μ0 J , that we know. So, if I want to construct B⃗⃗  since the 

divergence is 0, I have to construct my B⃗⃗  in this way, curl of some vector potential A⃗⃗ . If I tally 

here, so I am taking only this part because f is 0 for B⃗⃗ . Now if that is the case I know what is my 

A⃗⃗  and my A⃗⃗  is simply 
1

4𝜋
 integration of ∇⃗⃗  × B⃗⃗ , which is μ0 J , so μ0 I have 

𝐽 (𝑟 ′)

|𝑟 −𝑟 ′|
 dv’. 

 



So, A⃗⃗  is essentially A⃗⃗ , which is a function of r  comes up to be 
𝜇0

4𝜋
 integration of 

𝐽 (𝑟 ′)

|𝑟 −𝑟 ′ |
 dv’, in the 

light of Helmholtz theorem. And that is precisely I wrote here the same thing. So, I know what is 

A⃗⃗  and now before concluding, so this is a very important thing we write that. 
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This is called the vector potential and since it is related to the magnetic field it is also called 

magnetic vector potential. So, that we wrote here the magnetic vector potential. So, now the 

question is okay, I have a vector potential, I know the expression, is it unique? So, I should 

comment here something because this is important. So, the question is, A⃗⃗ , which is at r , is A⃗⃗ (r ) 

unique? 

 

So, can I construct a unique A⃗⃗  to define my vector B⃗⃗ ? Because B⃗⃗  can be defined, B⃗⃗  can be 

constructed from A⃗⃗ , so ∇⃗⃗  × A⃗⃗ . So, if I know A⃗⃗  then eventually from that information I should know 

B⃗⃗ . So, if the B⃗⃗  is given the corresponding A⃗⃗  is unique or not? That is the question. But here we can 

readily see that A⃗⃗  is not unique, the answer here should be A⃗⃗  is not unique, why? 
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Because let us construct a new A⃗⃗ , which we call A⃗⃗ ’, A⃗⃗ ’ is my new vector potential and which is 

related to the old vector potential A⃗⃗  in this way plus I add an arbitrary vector quantity as a 

divergence as a gradient of something like this. So, this is the additional term I add, this is my old 

vector potential, this is my new vector potential, I propose that okay I am proposing a new vector 

potential. 

 

And old vector potential and new vector potential are related to this way by having an additional 

term I just add this quantity with the old vector potential. The question is, should the new vector 

potential produce the same V? And the answer is yes. 
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So, if I want to calculate that I can do it readily, if I do ∇⃗⃗  × A⃗⃗ ’(r ) = I take curl both the side ∇⃗⃗  × A⃗⃗ , 

this is my old vector potential + curl of gradient of some scalar field say χ. Now you can see that 

this quantity is B⃗⃗  because old vector potential can give rise to the value of V and that is the known 

expression. What about this quantity? This is 0 that means I can write my old vector potential give 

rise to the value of B⃗⃗  like this. 

 

And my new vector potential, this is not the old one but new I construct also give rise to the value 

of same B⃗⃗  it is producing. So, that means A⃗⃗ ’ are also produces the same B⃗⃗  that of the old one, which 

is A⃗⃗ . So, today we learnt that what is vector potential, so I will like to conclude here because I do 

not have much time. So, today we understand the vector potential, we define the vector potential. 

 

And we see that the vector potential from the Helmholtz theorem we know what is the value of the 

vector potential that is first thing. Second thing we check that this vector potential is not unique, 

so this vector potential is producing some kind of vector field like ∇⃗⃗  × A⃗⃗  = B⃗⃗ . But this A⃗⃗  whatever 

the A⃗⃗  we are talking about can be manipulated, you can write your own A⃗⃗ , some A⃗⃗  is given and 

that A⃗⃗  is producing the given vector field. 

 

Now you can add another term with that like we did here to show that you make a A⃗⃗ ’ and that A⃗⃗ ’ 

and also producing the same magnetic field. So, that means these A⃗⃗  and A⃗⃗ ’ both are eligible to 



produce the same vector field B⃗⃗ , that means the vector potential is not unique. So, with this note I 

will like to conclude in the next class we see that to some sort of constant we are going to put on 

this vector potential. 

 

And this constant is called the Coulomb gauge and then we try to calculate the vector potential A⃗⃗  

for few cases. So, it is exactly like the electrostatic problem where we find the scalar potential ɸ 

and then calculate the scalar potential for a given distribution of charges. Here also we will do the 

same thing, instead of calculating magnetic field we calculate the vector potential and from that 

you can extract the magnetic field by just making a curl over that. So, with that note I would like 

to conclude here, thank you for your attention and see you in the next class. 


