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Hello student, to the foundation of classical electrodynamics course. So, we are in module 3. 

And under module 3, today we have lecture number 51, where we try to understand some 

application of the Biot-Savart law. 
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So, today we have class number 51 and today’s topic is applications of Biot-Savart law. So, 

formally the Biot-Savart law, in the last class we have written that at some point r the magnetic 

field can be written in this way. The amount of magnetic field due to the current carrying wire 

is written in this way, 
𝑑𝑙′  × 𝑟̂

𝑟2 . That is the mathematical form of the Biot-Savart law in general. 

And also we wrote the Biot-Savart law in terms of the current density by exploiting the 

Helmholtz theorem. So, we will be going to use that later. 
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So, let us first do the problem say 1 or case 1. So, the magnetic field what we do that here, the 

magnetic field produced by a long straight wire carrying a steady current I. 
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So, suppose I have a very long wire like this. And I want to find out the magnetic field some 

point here. And the steady current I is flowing that gives us the magnetic field. So, what should 

be the magnetic field here that is the problem, very standard problem? So, let us take this 

distance from here to here as s. And let us consider small segment here dl and from here to here 

this is say 𝑟. 

 

So, this angle I will be requiring that so say α and from here so if this is origin say o, so from 

here to here the length is so say this is 𝑑𝑙′ and 𝑙 is 𝑙′. So, this is the source point, so that is why 

always we represent it in prime. So, this angle also we will be requiring so, let us put this angle 



as θ. So, this is the geometry. So, we want to find out what is the amount of magnetic field at 

this point this is the question mark. 

 

So, already we wrote down the amount of magnetic field that can be produced and based on 

the Biot-Savart law the value, I am writing it once again is μ0I, I is a steady current, so, I can 

safely put it outside the integral and then 
𝑑𝑙 ′ × 𝑟̂

𝑟2 . So, that is the thing. So, you can see clearly, 

that if I integrate over dl then this every point the r, this distance r will also be going to change. 

 

So, to solve this problem what we need to do is to try to find out the relationship between l and 

r and then just simply integrate from minus infinity to plus infinity this length. So, before that 

let us execute, what is 𝑑𝑙  × �̂�, which is simply 𝑑𝑙′  and the angle between these two and we 

know that angle is α. And if you look carefully this α is related to θ. 

 

So, this is 90 degree. So, that means I can simply write 𝑑𝑙′ cos θ, because here from this 

geometry I have α = θ + 
𝜋

2
. This is 90 degree, so this plus this should be equal to this α. 
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Then 
1

𝑟2  is simply 
𝑐𝑜𝑠2 𝜃

𝑠2 , because this length is s from here to here it is s, this angle is θ. So, this 

I can write in terms of θ 1 variable and this constant, s is constant. So, that should be my so 𝑙′, 

again I can simply write as s into tan θ, which gives me 𝑑𝑙′  to be 
𝑠

𝑐𝑜𝑠2 𝜃
 dθ. Everything is now 

in my hand dl I write in terms of θ, 
1

𝑟2  I write in terms of θ and 𝑑𝑙  × �̂� is also I write in terms 



of θ and 𝑑𝑙′. So, here 𝑑𝑙′ I write in terms of θ cos θ is there, here 
1

𝑟2  I write in terms of θ and 

also dl is written in terms of θ. So, everything is in terms of θ. 
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So, now I just put this value. So, �⃗⃗� simply 
𝜇0𝐼

4𝜋
 and let us try to find out for two θ say, θ1 to θ2 

these two range and then we put the condition with so, now we have 
𝑐𝑜𝑠2 𝜃

𝑠2  and then we have 

𝑠

𝑐𝑜𝑠2 𝜃
, so, cos2 θ seems to be cancelling out and cos θ dθ. Let us check, how it is there. Because 

I have 
𝜇0𝐼

4𝜋
 outside, d𝑙 × 𝑟 I just write cos θ multiplied by dl’. 

 

So, this is eventually, dl is 
𝑠

𝑐𝑜𝑠2 𝜃
 and then I have a cos θ sitting here. And 

1

Л2  is 
𝑐𝑜𝑠2 𝜃

𝑠2  so, that I 

put here. And then d𝑙 × 𝑟 is 
𝑠

𝑐𝑜𝑠2 𝜃
 multiplied by cos2 θ. So, this I write here. 
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So, eventually cos2 θ is cancelling out here and s1, s is also cancelling out, so simply I have a 

s, which is constant. So, I can take it outside. So, it is 
𝜇0𝐼

4𝜋𝑠
 integration θ1, θ2 and then cos θ dθ. 
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And this integration is very much doable one. So, 
𝜇0𝐼

4𝜋𝑠
 and I have sin θ2 - sin θ1. So, what is sin 

θ2, sin θ1 and what is the picture quickly if I understand. 
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Then this is my wire and this is the magnetic field. So, I can have a length from say here to 

here with these 2 angles. So, this is the steady current I is flowing. Suppose, this is my θ1 and 

this is my θ2. 
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So, now for infinite wire what happened? For infinite wire, this limit θ1 will be simply goes to 

−
𝜋

2
 and θ2 goes to 

𝜋

2
, because I go to minus negative side and plus side. Then if I put these 2 

values there I simply get my �⃗⃗� as 
𝜇0𝐼

4𝜋𝑠
 then multiplied by (1 + 1). And also I put the vector sign, 

so vector should be the direction of the φ, because it is revolving. So, it is revolving. 

 

So, I will get finally the value 
𝜇0𝐼

2𝜋𝑠
 with �̂�. So, that should be the value of the �⃗⃗� at that point 

here, because it is revolving. So, once we have the current wire along this direction the 



magnetic field will be revolving around this, in this direction. So, this is my current and this is 

the corresponding magnetic field that we are producing. So, this is one problem, very standard 

problem. 
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Let us now do another problem; problem 2 or case 2. In case 2, it is saying that determine the 

magnetic field �⃗⃗�, due to a circular current loop at an arbitrary point on the axis of the symmetry. 

So, now we are supposed to find out the magnetic field. 
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Suppose, this is the current carrying loop and this is the axis of symmetry and we need to find 

out because the current is flowing here, so we need to find out. Suppose a small section is here. 

So, let me join this. If I given from here to here so, at this location I want to find out the 

magnetic field. So, this is the location �⃗⃗� I need to find out. 



 

Suppose this is r as usual and this is z. Over z from here to here this length is z, which is fixed. 

This radius is say a and this angle whatever the angle is making is a Ψ. We want to be required 

this. And this length as I mentioned is dl’. So, again we are going to exploit the Biot-Savart 

expression, let me write it down first. So, �⃗⃗� is 
𝜇0𝐼

4𝜋
 integration d𝑙′ × 

Л̂

Л2  that is the form of the 

magnetic field. 

 

One should get this amount of magnetic field there. So, from the symmetry, let us exploit this. 

So, dl’, this is a dφ and then �̂�. The line element in polar coordinates simply and then Л2 is 

simply a2 + z2. So, you can see that this Л the magnitude of Л is not going to change, whatever 

the point you have over this loop, the value of Л2 will not going to change. 

 

So, �⃗⃗� then simply 
𝜇0𝐼

4𝜋
 that is already there and then I need to integrate over this entire so that 

means, this φ should go to 0 to 2𝜋 and it is a dφ then �̂� × 
Л̂

Л2 , which means, it is a2 + z2. 
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Now what is Л̂? Л̂ is −𝜌 cos Ψ + �̂� sin Ψ. So, I can divide the Л̂, so if I draw here, so Л̂ should 

be along this direction. So, this is my Л̂. So, I can divide this Л̂ in two components. One is say 

this one; this is the z component of the Л̂. So, I should say r vector z and another component is 

this one, which is the ρ component of Л̂. 

 



This is ρ component and this is. So, if this is Ψ, this angle; so this angle has to be Ψ and then 

the ρ component will have cos with a negative sign, because it is in opposite direction of 

whatever the ρ we measure and rest of the part is z. So, then the �̂� × Л̂ is simply �̂� cross this 

quantity, which is - of 𝜌 cos Ψ + �̂� sin Ψ. And now we know, so let me write it down here. 

 

Our whole knowledge will now, I need to use and that is 𝜌 × �̂� is my �̂� and �̂� × �̂� is 𝜌. So, that 

we know and that will be going to use here. And if I do, I will get �̂� �̂� × 𝜌 is �̂�. So, 𝜌 × �̂� is �̂�, 

but �̂� × �̂� is -�̂�, so this - z is going to absorb, so �̂�, then cos Ψ + 𝜌 and then sin Ψ. 

 

So, if I calculate d�⃗⃗� at z then it is simply μ0 I and then I have a here. So, a I take it outside, 

whole divided by 4𝜋 that is also there a2 + z2 and we have �̂� cos Ψ + 𝜌 sin Ψ and then dφ over 

the φ I am going to integrate. Now 𝜌 in terms of φ if I write, because this is the value and then 

I need to integrate over φ but, ρ should have some value. 
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So, let me draw it here, too so how so this is the coordinate. So, this is my x and this is my y 

and z is perpendicular to that and ρ I am calculating from here to here this is my ρ. It is a 𝜌 if 

this is making an angle φ. So, then the 𝜌 should have �̂� cos φ + �̂� sin φ. And then my �⃗⃗�, once 

we know that my �⃗⃗� at point z is μ0 I a and then �̂� because, I want to just find out the z 

component. 

 

The rest of the component will be going to cancel out. So, I should not bother about the rest of 

the component at all, which is this one divided by 4𝜋 (a2 + z2) and then we have a cos Ψ here 



and then I integrate from 0 to 2𝜋 dφ. And the rest of the part I am not going to consider, because 

it will simply cancel out. And even if you do the integral then so this is the first part. 
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The second part if you just let me add, you will find that this value will be 0 under that limit. 

So, μ0 I a and then the next part is sin Ψ and I have 4𝜋(a2 + z2) and inside the integral now 0 

to 2𝜋. I have two term like �̂� cos φ + �̂� sin φ over dφ. But this is even if you go the integral 

from 0 to 𝜋, so this component will eventually cancel out. So, this will get 0 in this limit. 
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So, that makes and also cos Ψ is simply 
𝑎

(𝑎2+𝑧2 )
1

2⁄ . So, that makes simply �⃗⃗�(z) = μ0 I, I have 2 

a here, so 
𝑎2

2(𝑎2+𝑧2)
3

2⁄  because, I just write cos θ cos Ψ here. So, this cos Ψ I just write. And also 

this integration gives us 2𝜋, so this 2𝜋 and this 4𝜋 will give me 2 μ0 I 1 a2 is there. 



 

So, I just put a2 and that should be in the direction of �̂� that is all. So, that should be the value 

of the magnetic field over here. So, if I look carefully. So, this is the loop and I try to find out 

the magnetic field somewhere here over the axis. So, I take this section, this is the length and 

if I divide the magnetic field here into 2 parts. Say one part will be along this direction and 

another part will be around this direction. 

 

So, this direction will cancel out, because of the symmetry. This will cancel out. So, I will only 

have this magnetic field along this direction for the current that is flowing here I. Now if z = 0 

that means, what about the magnetic field here. 
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So, for z = 0, I have �⃗⃗� at z = 0 = μ0 a very simplified expression I divided by so z = 0, 1 a you 

are going to cancel it, 2 a and the direction will be along z direction. 
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So, when we have a circle here current carrying loops. Having a circle with radius a, the 

magnetic field will be perpendicular to the plane and the value should be μ0 I. So, I is the 

amount of current that is carrying through this wire divided by 2a. So, if I decrease the value 

of a the magnetic field will be going to increase. 

(Refer Slide Time: 28:19) 

 

Let us go on the next problem. The problem is 3 and a part of this problem, we have done in 

the first in I think last class. That is the force on parallel wires. 
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So, suppose I have 2 parallel wires. One is this, another is this. So, the current is flowing like 

this. This is 1, this is 2. So, current is here it is I1 and the current flow here is I2. So, when the 

current is flowing in I2, I have a magnetic field so this wire will going to experience a magnetic 

field in the upward direction. So, this is the notation I use for upward direction and this value 

is say �⃗⃗�2, which is due to the current that is flowing through the wire 2. 

 

In the similar way for the current that is flowing in 1, the magnetic field that is experienced by 

current this loop. This current carrying wire 2 is along the downward and that is �⃗⃗�1. So, now 

the force between these I want to calculate. The current is flowing, both the cases in the 

identical direction. So, there should be some force like this �⃗�1 and this is say �⃗�2. 
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So, the expression of the force I have already calculated. And the value is the force on wire 2 

is simply �⃗�2 is equal to integration of I2 d𝑙2 × �⃗⃗�1. And �⃗⃗�1 is a magnetic field due to the current 

I1 in wire 1, at the position of d𝑙2. So, that is why I write so any position d𝑙2, this is the amount 

of force that the wire will going to experience, because of the �⃗⃗�1. So, �⃗⃗�1 if I calculate, this is 

how much 
𝜇0𝐼1

2𝜋𝑑
 ɸ̂1. This I already calculated today. That what about a very long wire or 

infinitely extended wire what should be the magnetic field? 

 

So, I have already calculated this expression. So, I am just using this expression 
𝜇0𝐼

2𝜋
. The point 

where I want to find out the magnetic field here I am just writing that one 
𝜇0𝐼1

2𝜋𝑑
 here. So, and 

that is when I can write it as when the length of the wire is very, very greater than the location 

where try to find out the magnetic field. So, infinitely extended wire or length of the wire is 

very long compared to the distance, where I try to find out the magnetic field. 
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So, �⃗�2 if I calculate then it simply becomes μ0 I1 I2, because I2 I can take outside divided by 

2𝜋d, d is a constant that is a distance between 2 wires. And then d𝑙2 × ɸ̂1. Now d𝑙2 × ɸ̂1 this is 

simply so d𝑙  is so this is 1 where 2 say and dl is along this direction. 
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So, this is my d𝑙, d𝑙 is also along this direction and what about the ɸ̂1. The ɸ̂1 is along 

downward. So, this is the direction of ɸ̂1 downward. So, if that is the case then d𝑙2 × ɸ̂1 should 

be along this direction. And that is if I write this is �̂�21 and dl2. So, this is the unit vector along 

2 to 1. So, what is �̂�21? Let me write clearly. So, �̂�21 lies in the plane of the wire and points from 

wire 2 from towards wire 1. This one, wire 1 is here and it is this direction. 
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So, �⃗�2 I simply write here �⃗�2 is 
𝜇0 𝐼1 𝐼2

2𝜋𝑑
 and �̂�21 and then dl2 and if I integrate over this entire 

length. So, it should be 
𝜇0𝐼1 𝐼2

2𝜋𝑑
 and then l �̂�21. 

(Refer Slide Time: 36:17) 



 

Similarly, for �⃗�1 you can see that everything will same except. So, I will have 
𝜇0𝐼1 𝐼2

2𝜋𝑑
 magnitude 

wise it is same, length l and then �̂�21, that will be the difference. So, one is in this direction, 

another is another direction. So, that means we have an attraction. If they are moving in 

opposite direction, so in the first day in the last class I guess, we show this figure and we 

mention that we are going to calculate rigorously. 

 

So, this is the calculation, where you find out. How the force between 2 wires are there. So, 

today my time is up. So, I like to conclude here in today's class. So, today we have a very 

straightforward 3 examples or 3 applications of Biot-Savart law. So, I suggest the students 

please check different books and there may be some other interesting problems or you need to 

calculate the magnetic field for a given geometry. Some geometry is there, that based on that 

you need to calculate the value of the magnetic field, for a given point. 

 

But the procedure will be same you need to just integrate you need to judicially calculate the 

relationship between the parameters and then that is all. In the next class, we will continue with 

the magneto-static and try to understand more about the Ampere's law and this kind of things 

and maybe some application of the Ampere's law. So, with that note I will conclude here. Thank 

you very much for your attention and see you in the next class. 


