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Hello students to the foundation of classical electrodynamics course, founder module 2, today 

we have lecture number 30.  
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And we will be going to discuss about the electrostatic energy that we started in the last class. 

So, today we have class number 30. So, we have already discussed that the energy associated 

with the electrostatic charge when they are bringing from infinite someplace the work done is 

replaced by this form where ɸk is the total potential experienced by the charge qk. So, this 

potential total potential is created by all the other charge except qk. So, that potential going to 

experience by qk and that is the form.  
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For 2 charge particles for the system of 2 charge particles staying two point 𝑟1 and 𝑟2 the charge 

sitting here say q1 and q2 for this system we calculated the potential energy w1 as to be q1 ɸ12 

and that is equal to 
𝑞1𝑞2

4𝜋𝜖0 |�⃗⃗⃗�2−�⃗⃗⃗�1|
 and the half term is not there because we are not taking care of 

another because if you make q2 ɸ21 then it should be you know q2 q1 and 𝑟1 𝑟2 that is the same 

quantity.  

 

I am considering twice so, that is why the half term is not there. So, that is the reason why once 

we calculate energy of the set of charge particles.  
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That is q1 this is for a set of charges q1 q2 q3 and qN there are N charges are there. So, and with 

a position having the position they have the corresponding position say 𝑟1 𝑟2 𝑟N these are their 

position.  
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So, now, for that if we calculate the expression should be something like this it should be half 

this half it ensure that I am not taking account the term twice but i should not be equal to j for 

i j by 4𝜋𝜖0 and 𝑟j - 𝑟i. Another way also it is defined and that is if I do not want to put this half 

term then it should be simply for all pairs, I am adding these things for all pairs and then it 

should be 
𝑞𝑖𝑞𝑗

4𝜋𝜖0 
.  

 

And that quantity and when I write all pairs, so, that means I am taking q1 q2 as a pair. So, I am 

calculating this quantity once not q2 q1, but if you calculate q2 q1 for example, i can take 1, j 

can take 2, also i can take 2, j can take 1, so, that means I am calculating these things twice. 

So, in order to avoid this, that is why I need to make a half here put a half here, but, if I can 

avoid that, this half by just writing I will do the same calculation for all pairs.  

 

So, that means q1 q2 now only behave like one pair, so, only one calculation will be there that 

is 
𝑞1𝑞2

4𝜋𝜖0 |�⃗⃗⃗�2−�⃗⃗⃗�1|
 it should be the same thing if we just interchange 1 and 2, but in that case, I am 

adding twice that is why the half term need to be there. So, we will do 1 problem then things 

will be much clearer.  

(Refer Slide Time: 06:31) 



 
So, now, we will be going to do one thing and that is for a continuous continuum with a charge 

density. So, for a continuous charge distribution and for that case we have a charge density and 

that is ρ, which is a function of r.  

(Refer Slide Time: 07:41) 

 
So, what happened if I have a continuous charge, so far we are dealing with discrete now, for 

a continuous charge distribution where we have the charge density ρ as a function of r. So, this 

is the distribution we are having for some coordinate system and for this charge distribution I 

want to find out the energy. The energy simply will be 
1

2
 ∫

𝜌2(𝑟)𝜌1(𝑟′ )

4𝜋 𝜖0 |𝑟−𝑟′ |
 dv dv’.  

 

This so, if I compare with this equation, which is shown here I just replace everything in terms 

of the charge density ρ. So, then I need to put some volume integral and this volume integral 

will give us the corresponding charges. So, there should be 2 volume integral here. So, now so, 



I can in principle put another line here to make it 2 volume integral one is over v and analysis 

over v’.  

 

So, now, I can find the potential for say ɸ1 at 𝑟 and that is simply 
1

4𝜋 𝜖0 
 integration of ρ1, which 

is placed at 𝑟’ point dv’ by 𝑟-𝑟’. So, now that we know because the potential for a charge 

distribution ρ1 at some point 𝑟 is simply this. So, this we know, so, I have a charge distribution 

here, which is at 𝑟’ point and if they want to find out.  

 

What is the potential at 𝑟, at 𝑟 the potentials should simply comes up to be in this form. So, 

now, if that is the case, so, I can simply you know inside the W if you look carefully I already 

have this term in the W I have ρ1 (𝑟’) then 𝑟 - 𝑟’ and then we have dv’. So, all these term is in 

principle there, so, I can write this W like this.  
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So, this is half I can extract out ρ2, which is say at 𝑟 and then group all this term that I just 

wrote here. So, that is 𝑟1 ρ(𝑟’) then dv’ by 4𝜋𝜖0 then 𝑟 - 𝑟’ bracket close and then for this I 

already have dv. So, this term I just group and these term is nothing but ɸ1 at the point 𝑟.  
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So, my W I can write it as half integration of ρ2 at 𝑟’ point and then the potential ɸ1 at 𝑟 and 

this is over dv. So, that is typically the form of the W. Now, if we look carefully again what 

we have I can write ɸ2, which is say function of 𝑟’ and that potential can also be written in the 

similar fashion integration of ρ2 (𝑟’) dv by 𝑟’ - 𝑟’ and that should be the potential at 𝑟’ in the 

similar way due to the distribution of the charge at some location 𝑟.  

 

So, that means, I can over the volume integral v. So, I can again write my W by taking half 

integral of ρ1, which is at 𝑟’ and then I just group this term, which I just wrote here 
𝜌2(𝑟)𝑑𝑣

4𝜋 𝜖0 |𝑟′ −𝑟|
 

and then dv’. So, this quantity simply comes out to be half of you know ρ1 (𝑟’) and then ɸ2 (𝑟’) 

dv. So, you can see I already have an expression of W here in terms of ρ2 and ɸ1.  

 

And again I am having this is say equation 1 this is say equation 2 so, from 1 and 2, I can write 

in expression like this.  
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So, from 1 and 2 what we get? We simply get integration of ρ2 (𝑟) and ɸ1 (𝑟) dv is simply equal 

to ρ1 (𝑟’) ɸ2 (𝑟’) dv’ so, this is an identity and this identity is called the Green’s reciprocity, 

this is a theorem and this theorem is called the Green’s reciprocity theorem so, what it says let 

me write it down and then briefly explain. So, from the expression we can see that I can have 

2 charge distribution and for 2 charge distribution.  

 

So, suppose I have a charge distribution here and say another charge distribution here, I am 

just drawing 2 different symbols to make sure that 2 different kinds of charts distribution you 

can realize. So, for this case I have this is you know the distribution is ρ. Say, ρ1 and potential 

is ɸ1 and for this case the distribution is ρ2 and potential is ɸ2. So, these are 2 you know 2 

different systems, but here from the Green’s reciprocity theorem.  

 

You can see that at some point 𝑟  whatever the density you are for example, here whatever the 

charge density you are having that multiplication the potential due to the charge distribution of 

the ρ1 at that particular point if I multiply it and integrate it over the volume, the value is exactly 

same, if I do the opposite that means, if I calculate at some point 𝑟’, if I calculate the potential 

due to the charge distribution of the ρ2 and then multiply the potential and multiply the charge 

density at that point and integrate.  

 

So, these are 2 isolated systems 2 different system, but they are related to each other with this 

theorem, which suggests that I mean whatever the value you find here with just multiplication 

of ρ2 and ɸ1 with the integration of making a volume integral, you will get the same thing if 

you do the opposite way. So, let me write it down then things may be clear.  
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So, what I say is this so, potential energy of ρ2 say at point 𝑟 in the field produced by ρ1, which 

is at some point 𝑟’ is equal to the potential energy of ρ1 (𝑟’) in the field produced by ρ2, which 

is at 𝑟. So, the statement is straightforward that whatever the potential energy we have so 

because of the charge distribution of ρ1 and ρ2, the potential energy of created by the charge 

distribution ρ1, energy of the potential energy of ρ2 in the field produced by the ρ1.  

 

So, ρ1 because of the presence of ρ1, if I have a put in a ρ because of the presence of the charge 

distribution ρ1 I have a field and on this field if I put ρ2 then this ρ2 we are going to have some 

potential energy. So, that value is equal to the same thing in opposite way that means, the same 

value is when ρ2 produced the potential energy and ρ1 is experiencing that energy ρ2 is 

producing the field and ρ1 is experiencing that potential energy.  

 

So, that is the meaning of this Green’s reciprocity theorem in other branches also we have these 

kinds of reciprocity theorem this is one of the example we have in electrostatic where this 

theorem is valid. We can make use of this theorem in certain problems 1 just typical problem 

I like to which is difficult to calculate in other way, but very simple when we use this you 

know, this Green’s reciprocity theorem.  
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So, suppose I want to find out the force between 2 non-overlapping spherically symmetric 

charge distribution with total charge Q1 and Q2 so, electrostatic potential if you calculate then 

from that you can also calculate the force so, our strategy is to find out the electrostatic potential 

that is created due to the system.  
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So, the system that means if I have a spherically symmetric charge distribution and they are 

not overlapping so, I have 2 spherically symmetric charge distributions obviously their radius 

is different. So, suppose the charge distribution here is ρ1 and that should be a function of 𝑟. 

So, that means, from here to here whenever you have some r value you will have a charge 

distribution that is ρ1 that is defined. In the similar way, I have a charge distribution here which 

I say ρ2 and say from here to here this is same coordinate is 𝑟’.  

 



So, if I go from here to here at 𝑟’ point I should have a distribution and this is you can see this 

is a function of 𝑟 this is not constant this is a function of 𝑟 and suppose the distance between 

these 2 is 𝑟. So, obviously, r is greater than the summation of the radius of these 2 that is why 

they are not overlapping and the total charge Q is here Q1 and the total charge is this is 

mentioned this is my total charge. So, now, the electrostatic potential let us now check 1 by 1 

what I can get from this. 
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So, the electrostatic potential everywhere outside the distribution ρ2 (𝑟’) so, I want to find out 

the distribution at so, that thing is simple so, I have a charge distribution here this is ρ2 (𝑟’), but 

if I want to find out a point here what is the potential then this potential ɸ2 that is simply the 

total charge divided by here the total charge is Q2 because Q2 is given divided by 4𝜋𝜖0  and 

then the point here to here, which is 𝑟’.  

 

So, that means, as if the total charge is confined to the centre and this point charge is confined 

to the centre here and from here to here. This is r and we know from the Gauss’s law that if I 

have a charge distribution, and if I want to find out the field outside this charge distribution, 

then the field of the potential can be simply like whatever the charge distribution we have and 

considered the charge due to that charge distribution at that origin point and then just simply 

calculate that, so, I am just trying to do that.  

 

So, this quantity is equivalent to ɸ I should write another quantity ɸpoint. So, ɸpoint means, as if 

I compress all the charge to this point and then calculate the potential, which is the same thing. 



Now, this is considering all the total charge is replaced by a point charge at the centre as I 

mentioned, so, that is the potential. So, both the cases you will get the same result.  
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Now, the potential energy of ρ at some point 𝑟 this is the potential energy that ρ1 should 

experience in the field produced by the charge distribution ρ2 the potential energy of ρ1 in the 

field that produced by the charge energy produced by the charge distribution ρ2 can be simply 

written as, VE = ρ1 (𝑟) and then ɸ2 produced by ρ2 at point 𝑟 and dv. Now, according to the 

reciprocity theorem, this can be simply represented by this that ρ produced by ɸ2.  

 

So, ɸ2 is created ɸ2 if I write so, this is ρ2 and then that is at 𝑟 and the potential is ɸ and r dv so, 

this is not I am just simply writing the same thing, so ɸ2 I just replace by these ɸ points. So, 

this has to be not ρ2 this has to be simply 1. So, this is the same thing because that quantity is 

simply replaced by this, which I already mentioned here. Now, I am going to use the reciprocity 

theorem for this equation, and that is here in a different colour I am writing so this is over 

volume.  

 

So, if I use the reciprocity theorem for this, so, now, the point charge density will experience 

the same thing due to ρ1. So, I am writing this ρ1 and dv. So, the potential this is for sorry, this 

is not potential this is point in this point, so, this point potential, I can replace in terms of the ρ, 

which is the charge distribution of point charge Q2.  
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So, ρp is 𝑟 is simply the point this is the charge density for the point charge Q2 try to understand 

once again that I can make this Q2 here distributed having the distribution the charge density 

like this, this is equivalent to I can make this point charge Q2 sitting here this charge distribution 

entire charge Q2 to make a point charge here with the density of this point charge to be ρp this 

is the point charge, charge density for this point charge ρp.  
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So, now ρp what is ρp? Point charge density this is we know from the delta function definition 

this is Q2 δ (𝑟 - �⃗⃗�) because now Q2 is here, Q2 is sitting here so, which is in 𝑟 so, when I shrink 

everything to the point well then my VE simply Q2 integration of because this is here I ρP just 

replaced by Q2 delta function then it should be δ (𝑟 - �⃗⃗�) and then ɸ1 then 𝑟 and then dv so, this 

quantity is Q2 and this integration is all with the delta function. So, simply I can have this value 

as whatever the ɸ1 at �⃗⃗�.  
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So, this quantity simply comes up to be Q2 and the potential due to the distribution of the ρ1 

and that is also having a charge Q1 so, it is 
𝑄1

4𝜋 𝜖0𝑅
 note it that quantity is total charge 

𝑄1

4𝜋𝜖0𝑅
 that 

is the distribution the potential due to the charge distribution here whatever we have. So, that 

is the today I do not have much time to discuss. So, with that note I like to conclude and in the 

next class I will start again this.  

 

The discussion on the electrostatic energy and try to calculate field distribution discrete charge 

and some continuous charge distribution and try to find out mathematically what should be the 

potential energy for that specific charge distribution or that for specific distribution so few 

problem I like to solve in the next class. So, thank you very much for your attention, so see you 

in the next class. 

 


