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Gradient, Divergence and Curl (A recap), Vector Identities 

 

Hello students to the foundation of classical electrodynamics course. So, today we have lecture 

number 12 and today we will make a small recap of gradient, divergence and curl operator and the 

related theories that we have developed in last few classes and also like to prove few important 

vector identities.  
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So, let us start the class. So, today we have class number 12. So, as I mentioned today I will have 

a recap so, the first thing we should mention that this is del operator (∇⃗⃗ ). We define this ∇⃗⃗  in 

Cartesian coordinate system in this way. This is a vector operator and it is defined in this way. And 

this is a vector operator.  
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Now, the next thing how to operate these things over some function, so, we mentioned that T, 

which is a function of x y z it is a scalar field. Now, I can operate these things over that this operator 

is operating over this T (x y z) and give rise to something like i 
𝜕𝑇

𝜕𝑥
 + j 

𝜕𝑇

𝜕𝑦
 + k 

𝜕𝑇

𝜕𝑧
. It will operate and 

give us this.  

(Refer Slide Time: 03:19) 

 

Now, this quantity is a vector quantity and what does it mean? What is the meaning of that thing? 

So, these things eventually tell us that this is the direction basically this is points in the direction 

of maximum increment of the scalar field. So, T is a scalar field, which is changing over x y z and 



I am putting this operator over that scalar field that basically gives us the direction along which it 

is changing in the maximum way. 
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Now, the next important thing is this quantity is eventually this. And these things I can write as dT 

that is all. So, if I write this ∇⃗⃗ T • d𝑟  in this form, then the next thing I can write is if I want to 

calculate do the integral line integral because it is essentially give us a line integral where ∇⃗⃗ T • d𝑟  

so, this is a line integral. So, that eventually means that I am making a line integral of this thing 

dT, which gives me a simple result T (b) – T (a), so, that is path independent. 
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Now, in after writing this we can extend the idea and make a closed line integral for the same 

quantity and when I write a closed line integral, it should be simply 0 that is a very important 

information that we should note. So, that is whatever we have learned about this is a gist of this ∇⃗⃗  

and how it operates over a scalar field and what is the working principle and working mechanism 

everything is shown here.  
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Now, the next thing I mentioned that what is a form of this operator in other coordinate system. 

So, at ρ φ z you can see the operator looks different. Unlike the scalar, unlike the Cartesian 

coordinate it is showing something like this. This is the form of this vector, form of this vector 

operator over it as a function of in cylindrical coordinate system. What about the spherical 

coordinate system? In spherical coordinate system, I should write it r then θ and then φ. 

 

And the operator reads like this then 𝜃 
1

𝑟
 
𝜕

𝜕𝜃
 + 𝜑̂ 

1

𝑟 𝑠𝑖𝑛 𝜃
 
𝜕

𝜕𝜑
 and we derived this how one can transform 

from this to this, this is the original Cartesian coordinate and from Cartesian coordinate I derived 

and few classes ago that how to you know convert these things to here. In the same way, you can 

convert that by using the relationship between x y z and r θ φ you can derive that it is coming like 

this. 

 



Later we will see that for curvilinear coordinate system we can generalize this and try to understand 

that how should be the general expression. After that the next thing we learn is, this is 1 and this 

is 2. 
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And that is the divergence of a vector field. And what was that how it operates? The operator ∇⃗⃗  is 

same, but now the operation mechanism is like I am working A dot product kind of things and 

what is the outcome here? Outcome is  
𝜕𝐴𝑥

𝜕𝑥
 + 

𝜕𝐴𝑦

𝜕𝑦
 + 

𝜕𝐴𝑧

𝜕𝑧
 and this quantity is a scalar quantity where 

A is having a component A is a vector field should have a component like this. The next thing is 

what it measures, what is the meaning of these things? If I have a quantity like this what is the 

physical meaning of that will also explain this stuff.  

 

So, it basically measures how much the vector field A spreads out from a given point. So, with this 

divergence we basically find out that for a given point how this vector field is spreading out how 

much.  
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The next very important thing we learn, very important theorem we learn and that is the divergence 

theorem. This divergence theorem the statement of this theorem is like that if I have a volume 

integral of the divergence of A then that value is the total flux over the surface that is enclosing 

the entire volume. So, this surface is in enclosing the entire volumes. So, I am calculating a volume 

integral here so, that means I should have a volume. So, this surface should be such that it is 

enclosing the entire volume then this identity holds.  
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Well, what is the physical meaning? That physical meaning that this is the total flux. So, total flux 

is same as divergence over volume, total flux is divergence over volume. The next thing we 



mentioned is also having some significance and that is 3 is called Laplacian operator. What was 

Laplacian operator?  
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The Laplacian operator was something like this, this is a scalar operator and it defines like a second 

order partial derivative of x, y and z, which like sum of it. And how it one can consider these things 

as a first I am having a scalar function and first make the gradient of the scalar function φ and you 

are getting a vector and then if you make a divergence of that thing, so, what you are getting is 

simply the Laplacian of that function.  

 

So, first you are making the gradient and then you are getting a vector quantity that vector quantity 

if you want to find out how diverge it is, so, we are now making a divergence and you are getting 

this and this simply gives us this stuff.  
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And also this operator can operate over a vector field that is very interesting. So, this operator can 

operate over a vector field and we can have the form the right-hand side like this. So, this is a 

scalar operator it can operate over a scalar field as well as on a vector field. This is the way one 

can define. So, the next thing we discussed was this is the third point, fourth point rather that the 

curl of a vector field. 
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The curl of a vector field so, how I calculate the curl of a vector field? So, this is my operator. 

Now, instead of having divergence I am taking curl that means, I am making a cross product, which 

results this shorthand notation of partial derivative and then Ax Ay Az bracket close. So, this mind 



it, this is a vector quantity and component-wise if I want to find out what is this. So, the ith 

component of this is simply Ɛijk 
𝜕𝐴𝑘

𝜕𝑥𝑗
 so, that is the way we can define.  
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So, x component if I want to find out what is the x component is simply gives us this. Also there 

is a very important theorem that is associated with this curl stuff and that is the Stokes theorem. 

What is the statement of the Stokes theorem? The Stokes theorem tells us if I have a curl and then 

from this curl if I calculate the surface integration of a given surface whatever the result I get that 

should be identical with this quantity where we calculate the closed line integral and this closed 

line is encircling this surface.  

 

So, that was the statement. And what is the physical meaning I must mention that also what is the 

physical meaning of these things what is physically what it measures it basically measures the 

curliness or twist of the vector field A at some given point. So, this is all over the recap in last 

couple of classes whatever we have done, so, I make it in a single class so that you can appreciate 

that how ∇⃗⃗  is there. 

 

And how it operates over the scalar field giving a something called the gradient and then how you 

calculate the divergence for a given vector field and what is the meaning of divergence, what is 

the important theorem related to divergence, which is the Gauss's theorem or divergence theorem, 



which tells us that if you calculate the volume integral for a divergence that should be identical to 

the closed surface integral.  

 

And the surface should be such that it is enclosing the entire volume over which you are calculating 

the volume integral, then the Laplacian operator is a very important operator in later part of the 

course, these operators will come very frequently. Then curl of a vector field how you can calculate 

the twist, twist nature of a vector, a vector field is a field that is evolving over the space and for a 

given point if you want to find out how curly it is, how twisted it is then you can calculate this curl 

and if it is a nonzero value that means, these vector field is twisted there.  

 

And then the Stokes theorem suggests that if you calculate the curl and then make a surface 

integral, then that value should be identical if you have the vector field and calculate the line 

integrals, but the line should be such that it is encircling the given surface over which you are 

doing the surface integral. So, this is overall the recap I wanted to do quickly today.  
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Now, the next part of the class I will going to prove some vector very important vector identity 

and that we should be very careful of. So, the first vector identity I like to show is this. So, I want 

to calculate the curl of a gradient of some vector what should be the value. So, I know this is a 

vector quantity, this is a vector quantity the gradient, which is giving us the direction. Now, if I 



want to find out the curl of that thing, you will see this is identically 0 always you will be going to 

get 0.  

 

So, how you prove what is the proof that I will be going to do here quickly by using these symbols 

useful Levi-Civita symbols that we know. So, let us try to find out first the ith element of this 

vector because at the end of the day this gives us a vector quantity. So, ith component if I want to 

find so, how you write it in terms of Ɛ, it is Ɛijk and then 𝜕j and whatever we have here the kth 

component I should write it. That is the way and this is the derivative with respect to this j.  

 

So, here then further I can write it Ɛijk these things and these things what is φ and what is the kth 

component of the φ? It is simply 
𝜕𝜑

𝜕𝑘
 simply that. So, the kth component is k is 1 2 3. So, that means 

x y z so, the x component is 
𝜕𝜑

𝜕𝑥
, y component is 

𝜕𝜑

𝜕𝑦
, z component is 

𝜕𝜑

𝜕𝑧
, so, instead of writing xyz 

if I write k it should be 
𝜕𝜑

𝜕𝑘
. So, then it is 𝜕𝑘𝜑 that we are having. So, now, what I do is here how 

many indices are there, you can see that j k and j k are repeated index. I am writing in an Einstein 

notation.  
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So, if these 2 are repeated index then if I expand this, so, one thing is ijk 𝜕j 𝜕kφ that is one and 

another thing I should write and that thing is another option is ikj and then φ k 𝜕k 𝜕jφ. Now, we 

know that Ɛijk it is 1 but Ɛikj = -1. So, this we know so, we can write in the next line that this is Ɛijk, 



I do not need to write because I am now putting the value. So, Ɛijk is not required anymore, because 

I am going to put this value.  

 

So, this is eventually 𝜕j 𝜕kφ and here we have a minus sign because this is -1 𝜕k 𝜕jφ. Now, you 

can see that this operator what is the meaning of 𝜕j 𝜕k this means, I am having the operator in this 

form if j is x and k is y. So, it is eventually 
𝜕2

𝜕𝑥 𝜕𝑦
, but I know that this is also equivalent to 

𝜕2

𝜕𝑦 𝜕𝑥
 so, 

these things are same. So, since these and these are same these operator over φ and this operator 

over φ same, so, I can have simply this equal to 0.  

 

As 𝜕j 𝜕k = 𝜕k 𝜕j I am making the partial operation but I have changed the order, but even if I change 

the order, then it is commutative. So, at the end of the day we will get the same result and this 

gives us 0. So, that means, we always have this is in general.  
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So, we should note that we always have the curl of a gradient of a scalar field to be 0, this is a 

vector identity, this identically 0 without any condition for all the cases this is 0. So, that is the 

first identity I like to prove. Now the second one second identity, the second identity is if I want 

to find out the gradient of a curl of a vector field then what should I get the right-hand side? So, I 

find an A curl first. So, divergence of a curl of a vector, so, this is A vector it gives rise to a vector 

field.  

 



Now, I try to find out what should be the divergence of this quantity and again you can see that 

this is identically 0 always we will get this is 0. How to prove that?  
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So, let us start with the expression. So, the expression is saying that divergence I need to calculate 

and this is curl. So, this quantity if I write I should write 𝜕i and ∇⃗⃗  × 𝐴  and i because this is a 

divergence. This is a divergence operator both the cases it should be i. Now, I expand this 𝜕i how 

I expand this ith component because we know that curl this is Ɛ ith component Ɛijk 𝜕j Ak. So, that 

I will be going to use Ɛijk 𝜕j Ak. So, this I can write this Ɛijk 𝜕i 𝜕j Ak.  

 

And now, I will play with that you can see that how many combinations are there ijk, ijk this is a 

repetitive so, that many combinations you can have.  
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So, now, you need to you know start putting the value, so, the first value should be the first value 

should be say 123. Then 𝜕1 𝜕2, then A3 + Ɛ132 then 𝜕1 𝜕3 A2 then + Ɛ213 𝜕2 𝜕1 A3 + Ɛ231 then 𝜕2 𝜕3 

A1 and finally, we have Ɛ312 and then 𝜕3 𝜕1 A2 + Ɛ321 𝜕3 𝜕2 A1. So, for each value you have a value 

with the negative and if you calculate you will find this is identical is 0. 

 

For each, for example Ɛ123 is here and Ɛ321 is here and sorry, Ɛ123 is there Ɛ213 is there. So, these 2 

will cancel out because these are the negative of this one. In a similar way, 123 A2 is here, then 

321 A2 is there. So, these 3, these 2 will be going to cancel out. So, I am just showing that this 

thing will cancel out with this one. This thing will cancel out with this one and this thing will 

cancel out with this one to give rise to a 0 value. Finally, this is my last, today’s last identity that I 

am going to prove but very important identity. 
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This is the third identity I am going to prove. And it is saying that what is the value curl cross A I 

need to prove that. And the result first let me write. This is a very famous identity, and you should 

remember this identity, because this will be going to help us a lot in future. And this is the identity, 

I am just blindly writing. I will prove that later. So, this is curl vector quantity. And I will then 

calculate the curl over that. So, at the end of the day, whatever I am getting is a vector quantity, 

right-hand side what I am getting this is a scalar quantity.  

 

But I am taking the gradient of that thing. So, this should be a vector and this is the Laplacian 

operator operating on a vector field. So that should also give you the vector. So, right-hand side 

and left-hand side both will give us both give the vector quantity. So that means at least this is fine.  
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Now, I am going to prove this stuff quickly. So, [∇⃗⃗  × (∇⃗⃗  × 𝐴 )] ith component, if I calculate then 

it should be simply Ɛijk and then 𝜕j and kth component of this quantity, if I elaborate it should be 

Ɛijk 𝜕j, this quantity is how much 𝜕j sorry this quantity is Ɛk and then I need to put 2 new lm and 

then 𝜕l Am. Now, I will put this together Ɛijk, I put this Ɛ where Ɛklm, then it is 𝜕j 𝜕l Am. So, now I 

use this relation Ɛijk is equivalent to Ɛkij so, that I am going to use here. 
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So, after that, I can write it this Ɛijk I replace to kij because both are same then Ɛklm then 𝜕j 𝜕l Am 

as usual now, why I write this because in both cases if I write this in a k form, then I can use this 

form delta identity and that is 𝛿il 𝛿jm - 𝛿jl sorry 𝛿im 𝛿 this one to this tells one im and 𝛿jl, then 𝜕j 𝜕l 



Am whatever is here. Now, these things I need to be careful. So, when i = l then it is non-vanishing 

and j = m then it is non-vanishing.  

 

So, keeping that I can write it 𝛿jl become i so, it is 𝜕i and then Aj because m = j so, then only it is 

non-vanishing −𝜕j because when j is l = j then it is non-vanishing then 𝜕l, so I should write it as 𝜕j 

and m i so write it is i. So, this quantity now, if you look carefully, this is I can write it 𝜕i 𝜕j and 

then Aj minus this is double so, I simply write 𝜕𝑗
2Ai. Now, this quantity is very interesting and I 

can write it, please check it, I am not going to do the elaborate thing here you can take it as a 

homework.  

 

Then the gradient of this quantity and ith component is simply this one and minus this is simply 

the ∇2A and the ith component.  
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So, eventually I prove whatever I wanted to prove that ∇⃗⃗  × (∇⃗⃗  × 𝐴 ) the left-hand side is 

equivalent to this is the ∇⃗⃗  (∇⃗⃗  •  𝐴 ) −∇2𝐴  this is the thing I wanted to prove, and very important 

identity I want you to please practice this proof check very carefully whatever is done today's class 

and try to do by your own. So, with this note I like to conclude because I do not have much time 

today. So, thank you for your attention and see you in the next class. 


