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Hello and welcome back to the last lecture of this NPTEL lecture series on thermal

physics. Now this week we have, so far we have discussed about black body radiation

and we have seen that keeping in mind the similarity between black body radiation

and  an  ideal  gas,  gas  assembly,  if  we  decide  to  treat  black  body  radiation  as  a

thermodynamic system, we can get quantities like entropy.

We can derive or we can you know describe an isothermal and adiabatic process in a

cavity  radiation.  We  can  also  calculate,  compute  all  the  free  energy  or  energy

functions and last but not the least, we can also derive or we can also discuss a phase

transition in a cavity radiation.

Now one aspect of cavity radiation that I have omitted and I initially I thought it is not

very important because we are not going into the details anyway, but then I thought

okay, so better to give a very short perspective on that. And that is the black body

radiation of or the Planck’s law of black body radiation. Now what is Planck’s law?
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If we look into it, if we look into the energy density as a function of wavelength or

frequency, both ways it will look the same, the plot looks something like this. Now

this is these are not strictly speaking these are not the experimental plots. These are

also you know theoretical simulation, but let me tell you the, I mean the matching

between the, you know matching between theory and the or experiment and the theory

that was derived by Planck is pretty remarkable.

So initially, so let us assume for now that this red one for example is a, what you call

the experimental data, which is which it is not. But so initial attempt was to and by the

way, what is cavity radiation, I mean where to measure this energy density? It is not

along the body of the black I mean along the surface of the black body because black

body are typically made the surface are made reflective.

And what is a poor absorber is also called emitter. So we have to concentrate on the

radiation that comes out of this opening, tiny opening of the black body. Now initial,

the early attempt in order to explain the shape of this black body, black body radiation

curve, was given by Rayleigh and Jeans.

So they had a semi I mean classical approach that is to say so that and they could

explain the long wavelength behavior of black body pretty well, black body radiation

pretty well.  But it failed miserably towards the short wavelength range and this is

what is called ultraviolet  catastrophe.  Then came Wien’s displacement law, which

actually  talks  about  the,  you  know  the  location  of  the  maxima  as  a  function  of

temperature.

So according to this law the product of the maximum temperature or the temperature

of the cavity and the maximum of this distribution function is a constant. So if the

temperature falls, because it is a constant, so the value, the maximum value should

shift toward right, okay. So now this things it was you know individual I mean it was

discrete attempts to explain the black body radiation.

But finally, when Planck came up with his rule or his laws of black body radiation, so

basically he came up with the concept of quantized photon energy. Only then he could



actually compute I mean actually work out a theory that can explain this curve with

very good accuracy.

And  it  turns  out  that  in  certain  limits,  it  can  also  give,  I  mean  it  can  also  give

Rayleigh–Jeans law and Wien’s displacement law also comes out of Planck’s theory.

Now this we have I have not discussed primarily because, this type the any discussion

on  quantum mechanics  should  start  from this  point.  So  this  is  primarily  the  old

quantum theory and not much to do with the thermodynamics.

Some statistical mechanics definitely what Planck used in order to explain I mean get

to his results, but primarily yeah some statistical mechanics and quantum theory. So

that is why I have omitted this from our earlier discussion. Anyway, so I thought it is

better to have a quick look at it.
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Now apart from this the last topic, which we are going to cover today is the topic of

you know low temperature physics and third law of thermodynamics. Now what is

third law of thermodynamics,  that  we will  come,  we will  come back to that.  But

before that, let me give you a very brief history of low temperature or we can also call

it the rest to absolute zero.

So here in this at the end of this arrow, we have T is equal to 0, which is the absolute

zero temperature.  So all the temperatures are in Kelvin by the way. So this is the



absolute zero temperature. And let us quickly look into the progression with time with

in the modern history towards this absolute zero.

Now snow or ice or whatever you might call it, the temperature of that, the maximum

temperature  that  we  can  have  in  a  snowy  day  is  somewhere  around  0  degree

centigrade, may be slightly higher, maybe slightly lower, I mean could be lower than

0, but around 0 degree centigrade. But even in a in the cold country, for example

Central  Europe,  Russia,  some  parts  of  US,  also  in  India  the  Himalayas,  the

temperature can go much lower than that.

Now typically, a cold day in Central Russia or you know in the peak of some tall

Himalayan  mountain,  we  can  have  the  temperature  might  go  down  to  -20  or

sometimes even -30 degree centigrade. So let us say we have T is equal to 250 Kelvin.

Now that is naturally occurring. So why I gave 250 Kelvin? So this is probably the

average low temperature that occurs naturally in, that occurs naturally.

Of course we have a record low I guess, record low is somewhere around minus 45

degree centigrade, but that is only a special case. So we are not going into that. Now

1823 Faraday uses and historically speaking human used to I mean people used to mix

different salts with ice in order to produce ice cream and other cold food items.

So people knew that mixing of salt with ice reduces the temperature further below the

freezing point of ice or melting point of ice. Now Faraday used a similar technique.

He used, he could reach all the way down to 208 Kelvin, using a freezing mixture so

that he could liquefy ammonia. That is 1823. 1876, then the okay, it is only a very

brief history.

So there has been lots of development in between times. And you know between 1823

and 1876, the laws of thermodynamics took its shape, especially the second law took

its  shape.  People could understand the working principle  of refrigerators,  working

principle  of  engines.  So  when  Linde  came  up,  what  Claude  and  Linde  did  was

actually they mechanized the procedure of liquefying gases.



It  is  not  only  a  freezing  mixture  anymore,  but  there  are  certain  mechanized

compressor parts and they could liquefy air at around -85 Kelvin. Now at liquid air

temperature is kind of midway between liquid nitrogen and liquid oxygen temperature

to  yeah  these  two  values.  So  it  is  approximately  minus  sorry  85  Kelvin.  It  took

another 20 years, it took another 20 years to go down to liquid hydrogen temperature.

That was developed by James Dewar in 1898 and another 10 years to liquid helium

temperature by Onnes in 1908. So liquid helium temperature is 4.2 Kelvin and very

soon it  was discovered that  if  we pump on a  liquid,  now we have learned phase

transition and we have learned if we reduce the pressure on a liquid, then it will start

boiling at a much lower temperature, right?

So that we have seen, we have done problems and the opposite is also true. If we

pressurize  the  liquid,  it  will  boil  at  a  higher  temperature.  So  immediately  it  was

discovered that if we if people start pumping on liquid helium the temperature can go

down even to 1.2 Kelvin, that is also possible, right?

Then the, but again if the barrier was approximately 1 Kelvin, people could not go

below 1 Kelvin and another like 25 years till William Giauque and other scientists

they came up first initially the concept was given in 1927. Then experimentally it was

described in 1933 the process called adiabatic demagnetization. So the concept is the

following.

We have magnetic salt, paramagnetic salt, which is exposed to a very strong magnetic

field and suddenly and it is already at low temperature approximately around 1 Kelvin

or so that is cooled by liquid helium. And suddenly the magnetic field is withdrawn.

So then what happens, it is equivalent to an adiabatic expansion of the system. So the

magnetic ordering, the magnetic dipoles were already pointing towards the magnetic

field.

Now when the magnetic field is withdrawn, they will be fanning out, they will be

randomly distributed in all directions in the cost of internal energy. And the process

will, this adiabatic demagnetization will reduce the temperature further. And it was



found out  that  it  can  go  down to  0.2  Kelvin.  Another  33  years  till  the  helium-3

dilution refrigerator was first invented in 1966.

I should not call it it was first invented, but using that refrigerator around 1966 it was

possible to achieve a low temperature as low as 300 milli-Kelvin, okay. So that is

pretty low and but it did not stop there. Another 33 years a nuclear demagnetization

method was used on a rhodium metal and it could be cooled all the way down to 100

pico-Kelvin which still is the world record of a lowest, for a lowest temperature of an

object.

Of course, afterwards like that is already like 23 years, okay. So in last 23 years, there

has been many experiments,  many attempts  to reach even closer to absolute zero.

People could go I mean there are occasions where one or two atoms or maybe a small

group of atoms could be taken to a temperature close to 10 pico-Kelvin or so.

But those are  you know we cannot  really  call  it  a  you know cooperative cooling

because that happened only on a very tiny cluster of you know local cooling I would

say, tiny cluster of molecules. So till now 100 pico-Kelvin is the lowest achievable

temperature on a finite size object, right. So that means although we are very close,

scientists are very close to absolute zero, we are still very far.

Like in the scale you see, up to this point the scale was going down in you know 10s

of degrees. So you know from here to here, there is the order of magnitude. And after

this 4.2 Kelvin mark, then immediately after that there is a one like 1 Kelvin is also

around this time. After that it went down to 0.2 Kelvin in like 12 to 25 years. Next 33

years it went down by another two orders of magnitude.

And next 33 years it has all went down by another two orders of, sorry not two it is

more than, milli to pico. So it is, oh it is huge. So minus 3 to minus 12. So nine orders

of magnitude. But this absolute zero is still far, yet we are very close. That, I mean

now we you know the intuition worked a long time, I mean long time before this

temperature was even thought of, right?
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So it was 1906 when the when scientist W. H Nernst was you know measuring the

specific gravity or sorry the specific heat of series of chemical salts. He came up with

the observation and he eventually came up with a theorem called the Nernst’s heat

theorem that says for any isothermal process, for any isothermal process involving

only phases in internal  equilibrium okay, the entropy change tends  to zero as the

temperature approaches absolute zero.

So this is a, so there are many different versions of this. This was definitely not the

first version of this theorem or law, whatever you call it. So initially he gave some

statement, later on it was found out some improvements is needed, there are scopes of

improvement and the eventually the present form which or present acceptable form is

for any isothermal process.

The entropy change goes towards zero as the temperature approaches absolute zero

for the systems or only pure phases in an internal equilibrium, right. Now another few

years down the line Planck modified the statement  slightly and said for any pure

substance the state at T equal to 0 is called, can be called a standard state. Standard

state means, it does not matter how to how we reach there.

But once we reach there, it will be used as an universal reference, right? So he said

that T equal to 0 is a standard state and the entropy of that state is 0. Please note the

condition  that  for  any  pure  substance.  And  it  is  understandable  that  any  pure



substance, I mean it could be what I mean to say by pure substance is, it is not an

element, it is not necessarily an element.

But even if it is a compound, the compound is in its purest possible form. No defects,

no impurities, nothing. And it is understandable that this low temperature only one

possible state of matter exists that is the solid state. So that means what he meant to

say is or what he said is there are other alternative version of this statement that says

for a pure crystalline solid, the state at T equal to 0 is a standard state where entropy is

zero okay.

So I purposefully you know did not use the word crystalline here, because there could

be other systems also which are you know actually statistical mechanics also allows to

observe you know or predict the entropy of other systems close to absolute zero. And

the systems might not be you know solid, which we can think of. It could be a spin

system, it could be an amorphous class.

So we will come to that. We will discuss that towards the end of this lecture. Anyway,

so that was Planck’s statement. And what does it mean?
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Mathematically, it means that limit T tends to 0 S is equal to 0 for any pure substance.

Now there is a subtle difference between what Nernst says, and what Planck says.

Nernst says that the delta S becomes 0 as T goes to 0. So that means the change in

entropy. And Planck says, no it is not the change in entropy we are talking about, it is



the absolute entropy, that goes to 0, of a pure state goes to 0 as we approach absolute

zero, right.

Now this has even more I mean it is a far reaching implication, because for any state,

let  us denote this  by A, so we can write  the entropy, corresponding entropy as S

bracket A. So S(A) and we know that entropy calculation is typically done on any

reversible path. So that means the integration delta Q R, R means reversible, by T has

to be evaluated along any reversible path.

And we can always compute the difference between the initial and the final state. So

S(A) minus S(T=0), which is essentially why Planck’s you know Planck’s theorem,

this is equal to 0. So that means, this is equal to S(A), this is equal to integration 0 to

T delta Q R divided by delta Q R times T. So this means,  this R stands here for

reversible changes. Now this rule is generally applicable with few exceptions.

For  example,  in  amorphous  solids  and  in  half  integer  spins  and  sometimes,  this

statement itself is mentioned as the statement of the third law. But it so happens that

there is a much more general statement of Third Law, which,  from which we can

eventually, you know mathematically derive this particular statement.
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And that is the third law third of, that statement is actually called the third law of

thermodynamics. Please remember the statement I am going to tell you, in some of



the books you will find the Nernst statement and Planck’s statement is also mentioned

as third law.

Now that is fine because you know it can be proved the equivalence of these laws can

also be proved similar to the second law of thermodynamics where we have a Kelvin

Planck  statement  and  one  we  have  a  what  was  it,  Clausius  statement  and  the

equivalence of those can be proved. Now what is the statement?

The statement is, it is impossible by any procedure no matter how idealized, to reduce

any system to absolute zero in a finite number of operations. Now this is a very strong

statement and once again like the first law and the second law, this statement cannot

be proved, okay. So this statement has to be accepted so that we can prove the heat

theorem.

And also there are ways of somehow show that if the heat theorem that means this

particular  statement  is  valid,  then  this  also  indicates  to  this  particular  you  know

statement.  But  I  prefer  to  you know believe  that  this  is  a  much more  you know

comprehensive form of the third law of thermodynamics.

And heat theorem given by Nernst or Planck is only a corollary of this particular

statement, okay. Okay. So this is the one and once again we cannot prove it. We will

not go into the details of how to show the equivalence or rather how to prove Nernst

theorem from this particular statement. If you are interested you can look into any

standard textbook and there are some discussion, certain discussion on this particular

you know particular topic.
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But what we are going to do is, for the remaining of this lecture, we will be talking

about the consequences of this third law. Now what happens to the heat capacity?

Delta S is equal to S of T2 minus S of T 1. That means integration T 1 to T 2 C x dT

by T where C x is the heat capacity. Now x could be p or V or basically anything. I

mean it is not necessarily that one, necessary that one process is either you know

isobaric or isochoric.

It could be any other arbitrary process. It can be you know it can be performed along

an allotrope  or  sorry polytrope  or  any other  path.  But  in  general  we can  for  any

process we can write a heat capacity C x, right? So x could be p or V or could be

anything. But what is important here, now if we focus on the, you know integration,

the mathematical expression for integration and set T 1 is equal to 0.

So that means, S of T 1 goes to 0 according to, so assuming that we have to okay so

here  we have  to  accept  the  I  mean  you know the  what  you call  the  equivalence

between the third law of thermodynamics and you know and Planck’s statement. So

that means according to, we can say according to third law of thermodynamics S of T

1 is equal to 0 as T 1 tends to 0.

So that means, delta S will be simply equal to S of T 2 and for S of T 2 becomes

finite, this integration will be 0 to T 2 some C x dT divided by T, okay. Now in the

lower limit what happens? I mean if we integrate it and if we put the lower limit, then



the  integrand  or  rather  even  before  integration  if  we  just  put  the  limits  in  the

integrand, in the lower limit the integrand will divert.

So this integration cannot be performed. So from pure mathematical consideration

given that S of T 2 has to be a finite quantity, we can say that as T 1 goes to 0 C x or

the  heat  capacity  also  needs  to  go to  0 for  any pure state,  okay.  Because  please

remember the Planck’s statement is valid only for a pure state here, right?

So for any pure state as the temperature goes down both C p and C V, however they

behave okay at higher temperatures, they must approach 0. And this is something that

we  have  already  seen.  Remember  the  Debye  theory  of  Debye  T  cube  law  from

specific  heat  of  solids,  right?  So we have  seen that  at  very  low temperature,  the

specific heat of a solid behaves as if it varies with t cube.

And as T goes to 0 T cube T cube also goes to 0. So we have already seen this is

happening in practice, right.
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Now for the expansion coefficient, the volume expansion coefficient for example, this

is alpha is equal to 1 over V del V del T p and we use the thermodynamic relation that

S del p T is equal to minus del V del T p. We can write alpha is equal to minus 1 over

V del S del p T. But as delta I mean when we go towards absolute zero the isothermal

expansion  coefficient,  isothermal  volume  expansion  coefficient  also  goes  to  0

because, this is a change in entropy.



So delta S as T goes to 0 delta S also goes to 0. So we have alpha going to 0 for any

pure phase. So and interestingly this is not only valid for pure phase but for any object

because only for pure phase this is a absolute necessity. But, in general, if we accept

the heat theorem by Nernst in its original form, then delta S going to 0 delta is equal

to 0 as T tends to 0 for any substance.

So for any substance not only for pure systems, we have alpha goes to 0 as T goes to

0. And without surprise, as for any object C p minus C V is equal to  T V alpha del p

del T V, we can also write as alpha goes to 0 as T goes to 0 that C p minus C V goes

to 0 as T goes to 0, which is also obvious from this. The difference between C p and C

V diminishes as we approach towards low temperature.

And at T equal to 0, the difference should also be equal to 0. So that means, at C p

and C V both should follow, I mean both should converge or confluence at one single

point,  okay.  And  the  value  should  be  equal  to  0.  So  there  is  no  heat  capacity

whatsoever at 0 temperature for any object, right.
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Now what happens to the free energy, energy functions? Energy, I mean there are two

free energy functions H F and G. We see F is equal to U minus TS and G is equal to U

plus pV minus TS.  Now for an isothermal  isobaric  change,  if  that  means change

occurring at constant temperature and constant pressure, we can write delta F is equal

to delta U minus T delta S.



Delta G is equal to delta H minus T delta S where delta H is equal to delta U plus p

delta V. Now in the limit as T goes to 0 delta S also goes to 0. Once again we do not

have to have a pure system for this. For any system T goes to 0 delta S goes to 0. And

we have delta G is equal to delta H and delta F is equal to delta U.

So that means, if we plot the two change in enthalpy and change in Gibbs free energy

in the same plot, we should get a confluence I mean once again it will confluence to a

single point as temperature goes to 0. What happens to delta F?

Delta  will  be  equal  to  delta  U  and  that  should  also  go  to  0  because  as  entropy

approaches 0 at low temperature so the internal energy for at least for a pure system

also should go to 0. Now what happens for impure system? Let us discuss that.
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Now according to statistical mechanics, you remember in lecture 45, we have given

this relation without proving of course because this is the you know proof of this lies

in  the  domain  of  statistical  mechanics,  which  is  beyond the  scope of  this  lecture

series. S is equal to K b ln W where K b is the Boltzmann constant, W is the number

of microstates or configuration of the system in question.

Now if we put S is equal to 0, it gives W is equal to 1. So that means, at absolute zero

there is only one configuration of a pure state possible. Then that makes very, I mean



very much sense because, if we talk about a pure system at absolute zero what is that?

A pure system is a perfect crystal without any defect, without any impurity in it.

I mean, it could be a compound, it need not be a, you know need not be an element,

crystal of an element but it has to be pure and defect free. So in those case if we have

even have 1 billion  number of atoms or molecules  present  in  that  they has to be

arranged, there is only one way they can be arranged so that there is a pure crystal

present. So there is only one unique configuration.

Please remember that at T equal to 0 all the vibrations die, forget about rotation. So

there is  no movement of the molecules,  no movement of this atoms or molecules

whatever, and they are sitting exactly at the place they are supposed to be. So this is a

perfect crystal with only one configuration possible and that is why we get W is equal

to 1. But then what happens for in not so pure systems?

We can have systems, statistical mechanics, I mean from statistical mechanics it can

be shown that there are systems where for example amorphous solids or half integer

spin  system,  even  at  T  equal  to  0,  they  possess  a  good  degree  high  degree  of

degeneracy. They can possess high degree of degeneracy so that W is greater than 1.

That means S will not be equal to 0.

So for those type of systems, even the delta U will not be equal to 0. So delta F you

know that relation delta F is equal to delta U at T equal to 0 is still valid, but for those

non pure systems delta U will not tend to 0 value as the temperature goes to absolute

zero, okay. So there will be some unrelaxed this one unrelaxed Gibbs free energy,

sorry Helmholtz’s free energy or some internal energy.

And also there will be some finite entropy for those types of systems. So this is not a

violation of the third law I would say. But this is something that has to be learned, I

mean that has to be understood only from the perspective of statistical mechanics,

okay. So this actually concludes our discussion on thermal physics. And I do not want

to summarize what we have learned in this last 12 weeks because this summary will

itself take a long time.



But I, all I can hope that you have enjoyed the session as much as I did, enjoyed the

discussion forum as much as I did. And you have, most importantly you have learned

something from the course. That is all I can hope. And finally, I would like to say

thank you to all of you and to the entire NPTEL team for their wonderful effort and

wonderful effort and support. And also I want to thank you for your participation.

Have a good time ahead and goodbye.


