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Hello and welcome back to another lecture of this NPTEL course on thermal physics.

Now in the last class we have, last lecture, we have started discussing about radiation,

thermal radiation primarily, and we have already described few general features of

radiation. That is every object above absolute zero which essentially means all the

object that radiates some sort of thermal energy.

And  that  thermal  energy  is  actually  an  electromagnetic  wave.  And  we  have  also

discussed the possible ranges of such wave that it will be of course not as high energy

as  a  gamma ray,  but  definitely  not  as  low energy as  a  microwave.  So it  will  be

somewhere covering the entire visible range near IR range and little bit of UV ranges

as  well.  Of course,  theoretically  speaking,  thermal  radiation  can  have even larger

range.

For example, it can go all the way up to far I mean, really short wavelength region,

sorry yeah really short wavelength high frequency region all the way to microwave

region. So that is why we choose integration limit of zero to infinity when we are

integrating over all possible wavelengths. Also we talked about a concept of black

body. Now what is black body?

Black body is a body which absorbs everything that falls on it and it will it is also an

almost  an ideal  emitter.  So it  will  have the highest  emission power  at  any given

wavelength or any given frequency at  a given temperature of course.  So we have

discussed about all this and also how to realize black body in reality because black

body is pretty much an idealized concept.

We have discussed that, there are different constructions and we will be primarily

focusing on the Ferry’s black body which is actually a cavity, right. Now today let us

continue with little  more theory and then we will  I  mean we can develop a solid



footing on which we will be able to understand many properties of this of thermal

radiation, okay.

(Refer Slide Time: 02:39)

So let  us look into the intensity of thermal  radiation.  Now what do you mean by

intensity of radiation? Intensity is a point, let us assume that there is a point source at

the middle, we call it O. This point source is a source of radiation. Now this source

actually it emits in all the direction uniformly, which is also a nature of a black body

radiation which we call a diffused radiation.

Now a point source by nature is a diffuse radiator. It will irradiate, it will radiate in all

possible directions. That is to say it will radiate everywhere in this 4 pi solid angle,

right. Now total emission from the source in the wavelength range lambda to lambda

plus d lambda in time dt within a small solid angle d omega is dp or actually I should

write yeah delta p is equal to e lambda d lambda dt times d omega.

So this is from the emission the definition of the emissivity or emission power of a

object. Now an elemental area ds if we place this at a distance r on the surface of this

sphere, and we have to place it such that it is in the I mean it is perpendicular to the

radius that is joining this point O and the center of this elemental area ds.

So if we place such an element on the surface of this sphere, so the intensity on ds is

defined as the radiant energy that is falling on that surface per unit area per unit time



is called the intensity. And that intensity will be specific to this particular wavelength

range lambda to lambda plus d lambda, right.

So we can write this as I lambda d lambda which is the intensity of radiation that is

received by this elemental area ds at a distance r from I mean a distance r from the

source and kept  at  a  perpendicular  position to  the line joining the source and the

center of this elemental area is I lambda d lambda is equal to e lambda d lambda dt d

omega divided by dsdt.

Because, we already have, I mean we have to calculate number per second as well.

And also this within this delta P there is a delta t term. So this delta t delta t nicely

cancels out.
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And also if we integrate for this entire solid angle, please we have to integrate over

this entire solid angle or sorry not that. Remember the d omega is equal to ds divided

by r square, right. So that is why if we just substitute d omega is equal to ds by r

square and integrate over all possible wavelength range, then we get I the intensity at

this point where the elemental area is placed.

Which is integration of 0 to infinity I lambda d lambda which is essentially e by r

square e being the emissivity, total emission power of this object. So I is proportional

to 1 over r square for a point source. And this is in general true for any spherical

wave. I think we are already familiar with it.



If you have done an electromagnetism course, there also the same concept has been

taught but in a maybe in a slightly different manner, right. The next concept is energy

density of radiation. Now what is energy density of radiation? Assume a cylinder of

unit cross section at this position once again. Now let us consider ds is equal to 1,

right. Now by definition, energy density is the energy per unit volume.

Now what is the volume that the, so what is the amount of radiation energy that will

be there inside or rather if c is the speed of the EM wave then and u lambda d lambda

is the radiation energy density for this wavelength range lambda to lambda plus d

lambda. Then the amount of radiation falling on an unit surface area per second will

be contained in a cylinder of unit cross section and height c, okay.

So it is basically it is like I should not I do not need to put it at that elemental area, but

let  us say there is  a uniform radiation  coming in from any direction.  Now please

remember that assuming that r is sufficiently long, we can consider the radiation that

is received at this element ds as uniform radiation, okay.

Now that is true because, for example sun is a spherical I mean it is all I mean from

earth we can look at sun as if it is a point source. If not maybe an extended I mean

solid extended source and we are really far away from it.  So we can consider the

sunlight that is coming to us as a uniform radiation and of course, it is not. Because

we  know  that  sunlight  depending  on  which  longitude,  which  latitude  we  live,

depending on that the amount of radiation changes, right.

But for first approximation we can consider that as an uniform radiation, sunlight. So

similarly,  this  point source,  given that  this  point  source is  really  far from ds, that

means, r is considerably long, we can call  it  uniform radiation.  Now any uniform

radiation falling in and falling on an unit surface area that is a is equal to 1. And if I

now draw a cylinder, imaginary cylinder that has a height c, c being the speed of light.

Now this height  we know it  is  a really  large number,  okay.  So that  cylinder  will

contain a certain amount of radiation. Now if we want to calculate radiation energy

density, if we know, I mean given that the wavelength of this radiation is known, and



if  we  know the  radiation  energy  density  for  this  particular  wavelength,  then  the

relation of intensity and radiation will be straightforward.

(Refer Slide Time: 09:41)

So let us have a look. If we have, sorry yeah so in one second, what is the amount of

radiation  falling  in  per  unit  area  is  the  intensity.  Now that  is  the  energy  density

multiplied by c. That means the energy that is contained inside this cylinder, right. So

we can write I lambda d lambda is equal to c times u lambda d lambda. And this is

directly coming from the definition of electromagnetic wave energy density.

Because, you know because this energy density basically gives you the total amount

of sorry amount of radiation per unit volume. And the volume of cylinder that can

contain or rather the amount of radiation that will be falling on an unit surface area

per second will be contained in a cylinder of height c and cross section area unity, if

the radiation energy density is u lambda d lambda.

So that is how this relation comes. Now integrating over all wavelength, we get I is

equal to c times u, which gives you u is equal to I by c for directional wave. Now

please remember this relation is valid for directional beam only, okay. So if we have a

diffused radiation, then we have an altogether different scenario, which we will be

discussing later on.

Now from EM theory, the electromagnetic theory, Maxwell actually proved that for

electromagnetic wave, the pressure of radiation has to be equal to its energy density.



So every radiation  has  a  pressure.  We will  take it  up in  the next  lecture,  how to

calculate the pressure of sunlight on earth. How to calculate you know for example,

we can do that.

We can, if we know the intensity of a directional beam, we can very easily calculate

the associated energy density and also, sorry we can calculate the pressure because of

this relation that u is equivalent to p, right. So that is why Maxwell we are not going

to prove that u is equal to p. So p is equal to u, sorry p is equal to I by c for direction

wave, right.

So the pressure is equal to intensity divided by the velocity of light for a directional

wave. And that gives you a very straightforward tool to compute radiation pressure

under certain circumstances. But that is I mean that might that is not a general case

because as we have already said, this is valid only for a directional beam and inside a

cavity that we have discussed in the previous class, the black body radiation or the

cavity radiation, this is a diffused radiation.

And other  properties  although  these  are  diffused  radiation,  they  are  isotropic  and

homogeneous. But anyway isotropic and homogeneous means the energy density will

be  uniform  at  any  point  inside  this  radiation.  But  still  we  need  to  calculate  the

pressure for those type of radiation, okay.
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So let us focus on diffuse radiation. What is diffused radiation? This has no definite

direction.  So  it  is  not  possible  to  define  intensity.  Intensity  is  possible  to  define

because we can place an object, sorry unit surface area and we can say that the energy

that is incident on this particular surface on this particular surface area in unit time is

the intensity of this radiation. But for diffused light what happens?

Radiation is coming from all possible directions and they are not directional at all,

right? So we cannot really define this intensity, but we can define something called

the  surface  brightness,  which  is  somewhat  equivalent  to  intensity.  Now  what  is

surface brightness? Surface brightness is equal to the emissivity of an imaginary plane

in the field of radiation.

So we will take an example. We will or rather we will take the pictorial description of

this very soon. But for now just understand that surface brightness is a substitute for

intensity in case of diffused radiation. For wavelength range lambda to lambda plus d

lambda,  the  surface  brightness  K  lambda  d  lambda  is  the  emissive  power  of  an

imaginary plane per unit area per unit time per unit solid angle.

And that is very important because this is diffused radiation. So the direction from

which it is coming might also I mean or the rather the span it is through which it is

coming that is defined by this solid angle, right.
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So now if we want to compute the relation between K and u, let us focus on this

particular construction. So this is our cavity. Okay, so I think I will just use this, right.

This is our cavity, this one, right. Now this cavity is at let us say some temperature T.

So that is in thermal equilibrium. So what we do is we place a surface dA.

I mean, I am just drawing it as an open surface, but it could also be a closed surface,

could be a small volume, some object here, which also I mean some volume. But still

it will have some surface area, right? So it can be an open surface, it can be a closed

surface. So just for general purpose, we are just calling it the elemental surface dA.

Only criteria is we consider dA to be small as compared to the area of this cavity.

Now this cavity has radiation filled inside. I mean any cavity at any finite temperature

will  have  a  certain  amount  of  radiation  that  is  present  inside  it.  Now in order  to

compute certain properties of this radiation we have to use, we will be using the same

construction for the rest of the discussion for this class.

So please pay attention to it. So what we do is we assume that there is a imaginary

surface, imaginary sphere that is close enough to this surface, elemental surface dA.

Now let us assume that we have a diffuse radiation. Diffuse radiation means on one

point it is coming from all possible directions. And there is for that fact we cannot

even define the direction from which it is coming from.

Because it is so you know I mean basically it is everywhere. But if we assume, close

to a point  if  we assume a very tiny volume right,  close enough to the surface or

enclosing this surface, enclosing this point if we assume a very tiny volume, then

probably we can assume at least for this small really tiny area between the volume or

between the sphere and the point that any radiation that is coming to that particular

point is coming through the surface of the sphere.

And we can assume that there is an imaginary sphere which is the root cause of every

radiation that is or rather the source itself is from this surface of this imaginary sphere.

And any radiation that is coming through the source is actually on this sphere, right.

So this is a I mean this is only an assumption. But this assumption works surprisingly

well in order to simplify the calculation.



Because  otherwise,  if  we  do  not  make  such  assumption,  we  have  no  means  to

calculate what are the typical, I mean what are the parameters associated with this

radiation. So basically the radiation that is falling on this surface, we are assuming

that they are coming from, not from any not from the cavity, but it is coming only

from the boundary or the wall of this sphere itself, okay.

So this is my assumption. And assuming that this distance is small as compared to the

dimension of the cavity, the dimension of the sphere, this imaginary sphere is small

enough, we can assume those beams to be directional in nature, right. So this is an

imaginary  object,  okay.  So  it  is  an  imaginary  sphere  and  this  red  lines  are  the

imaginary lines of radiation.

These  are  originating  from  the  surface  of  this  imaginary  sphere.  Now  with  this

assumption, and assuming that the surface brightness of this sphere is K, which we

will see later on that these are related to the somehow related to the emissivity of this

wall itself, okay.

We can write, so what we can do is we can consider this elemental surface area ds on

the surface  of  this  imaginary  sphere  which  subtend a  solid  angle  d omega at  the

central point O of this surface, which has a area of dA. And this is at an angle theta

with the normal direction of this surface okay. So this is the geometry of our choice.

Now once we can define this imaginary sphere now we are in a position to define

intensity, although intensity in general cannot be defined for diffused radiation. But

we assume that we are confining ourself within a small area around this elemental

surface dA.

So that is why we can define the intensity and this intensity will be defined as I omega

d omega is equal to K omega d omega times dw yeah, sorry I lambda d lambda is

equal to K lambda d lambda times d omega. Why this d omega? d omega being,

please remember that the surface brightness was defined per unit solid angle as well,

okay.



So this is why it is important to multiply this with this elemental solid angle d omega

so that you can compensate for the solid angle the for a I mean for every unit solid

angle you have to multiply this with this the amount of solid angle it is subtending in

the center of the sphere. Now for directional radiation we can write u lambda is equal

to I lambda by c for all lambda.

That we have already proved, it is a general relation. And we can write for this small

the radiation that is coming from this small area ds on the surface of this sphere, the

energy density at dA, okay. So this is the energy density d of u lambda d lambda at

dA due to this small surface ds is K lambda d lambda d omega by c, right.

(Refer Slide Time: 22:06)

Next is for radiation coming from all directions we have to integrate it over the entire

solid angle. Now for entire solid angle if we integrate, we should get either 4 pi if we

consider this full 4 pi solid angle that means radiation coming from all sides.

Or in certain cases, we can also consider that okay this surface actually has only one I

mean the radiation is coming from only one side and we can consider only the upper

hemisphere, upper hemisphere of this imaginary sphere and this will be 2 pi by c K

lambda d lambda. Once again we have to integrate it over all possible wavelength

ranges as well and we can write u is equal to 4 pi by c times K.

That is for if we integrate it over this entire 4 pi solid angle. That means, radiation is

coming from the top of the surface, from the bottom of the surface. Or what we can



do is, for example if we just decide to take, okay so this is not exactly a  open surface,

but this is part of a closed object that is placed in the middle. If we consider that, then

we have to consider maybe only the upper hemisphere for those type of calculation.

So in that case, we should get 2 pi by c times K. Either way, that is up to u, which

how will you, how are you going to integrate this. But we can get those reference.

(Refer Slide Time: 23:40)

Next is we have to, we will learn a new law, probably not new to you, I mean you

have already  learned  it  during  your  plus  two time,  preparation  for  your  joint  IIT

whatever you have learned this. The ratio of spectral emissive power e lambda to the

spectral absorption power a lambda for a given lambda is the same for all bodies at

the same temperature and that is equal to the emissive power of a perfect black body e

lambda at that temperature.

Sorry, I should not write E lambda here because this will give you confusing, this one

we should write e lambda b for black body, right. So we basically have to prove that

for any object the ratio of e lambda by a lambda is a constant and then we have to

prove that this constant is equal to e lambda or e lambda of a perfect black body,

right. So we follow the same construction.

Basically what do we do, we basically follow the same construction once again. We

assume that we are inside the inside a cavity. Our object in question this pA, this

elemental surface is inside a cavity, which is filled with cavity radiation. And now



what we need to do is we need to compute what is the amount of energy that has been

absorbed by this elemental area.

And what is the amount of energy that has been emitted by this elemental area per

unit time. And then we for thermal equilibrium we just have to compare or equate this

to get a relation between the emissive power and the absorptivity, right. So we follow

the  yeah,  so basically  the  total  emission  energy e  lambda  at,  sorry E subscript  e

superscript lambda which gives you the total emissive power of this particular body in

the wavelength range lambda to lambda plus d lambda.
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That is given by dA, dA being the total area of this body, e lambda d lambda that is

the emissive power of that particular body, right? Then, we have to multiply this with

a cos theta because this is already at an angle theta with this direction. So if we want

to you know the emission that is being made by this body, okay. So it will go in the

perpendicular direction, also it will diffuse in or it will go in other directions as well.

This is not a point object. So that is why we need to have a cos theta factor, which we

will be giving you the angle perpendicular to the normal, sorry angle with respect to

the normal of this particular surface. So for straight propagation theta will be equal to

0 and for oblique propagation we will have different values of theta. So instead of so

basically we have to write dA cos theta and this cos theta goes inside this integral.



Remember that d omega is equal to sine theta d theta d pi. Because, if we simply

integrate d omega over all the possible ranges of theta and phi, we should get 2 pi

sorry 4 pi,  right.  So integrate  sine theta  d theta  for in  the range of 0  to  pi.  And

integrate 2 pi, sorry d phi in the range of 0 to 2 pi, and you will see we will get 4 pi,

right? So this is my elemental solid angle sine theta d theta d phi.

So we write, we multiply this with cos theta and integrate .So 0 to pi cos theta sine

theta d theta and 0 to 2 pi d phi. Once again we are integrating over this entire surface

assuming that radiation is coming, it is also radiating in all possible direction. So my

assumption  is  not  only  it  is  receiving  radiation  in  all  possible  from all  possible

direction, it is also radiating right, it is also radiating in all possible directions, okay.

I am just removing this one because I want to maintain this figure clean, right? Okay.

So if this integration is performed, we get 2 pi dA e lambda d lambda. Now total

incident energy on dA due to ds yeah? So once again we see how much energy is

coming on to it and we have already calculated that will be K lambda, sorry we did

not calculate that, but we have an idea that it will be K lambda d lambda d omega dA

cos theta once again.

Why dA cos theta because the energy that is coming from this particular direction, it

will experience I mean it will be falling on not on the surface, but it is or rather it will

not be perpendicular to the surface, but it will be perpendicular, sorry it will fall at an

angle theta with respect to the surface.  So that is why there is a cost theta factor,

right?

So  once  again  the  absorption  energy  will  be  this  the  incident  energy  and  the

absorption energy there is a factor of a lambda,  right?  So the energy that will  be

absorbed by this surface will be a lambda K lambda d lambda dA cos theta d omega.

And total absorbed energy in this range lambda to lambda plus d lambda which is E

subscript a superscript lambda will be a lambda K lambda d lambda dA cos theta sine

theta d theta d phi integration will be on 0 to pi on theta and 0 to 2 pi on d theta.

(Refer Slide Time: 29:56)



So if we compute this integration, we will see a lambda is equal to 2 pi dA, sorry 2 pi

a lambda K lambda d lambda dA. Now in thermal equilibrium once again as I stated

already this quantity here and this quantity here has to be equal. Now if we equate this

we see dA cancels out 2 pi cancels out leaving behind e lambda d lambda is equal to a

lambda K lambda d lambda. Also d lambda d lambda cancels out.
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So just by equating we get e lambda is equal to a lambda K lambda or e lambda is

equal or e lambda by a lambda which is equal to K lambda. Now what is K lambda?

K lambda is the surface brightness of the imaginary surface in question. So now we

assumed that this elemental area that we are considering, now let us assume that this

is the black body.



Now if this is a black body we have a lambda is equal to 1 and K lambda will be equal

to e lambda of b, right? So we can substitute K lambda for or e lambda of b which is

the emissive power of a perfect black body for k lambda and we can write e lambda

by a lambda is equal to e lambda superscript b. So this is the mathematical form of

Kirchhoff’s law, right.

(Refer Slide Time: 31:24)

Now what are the implications, conclusion that we have from this law? I should not

say conclusion,  actually it  is more of implication.  So this is that says that a good

absorber, and please remember the emissive power of a black body is a constant at a

given temperature. Because all black bodies are identical. So if we take if, we specify

a temperature and yeah black bodies they irradiate at all wavelength.

So  e  lambda  b  which  is  a  function  of  specific  temperature  and  wavelength  is  a

constant.  Please  keep  this  in  mind,  okay.  So  this  is  not  something  that  is  very

arbitrary. Because for all black bodies, these are identical. For all black body radiation

patterns are also identical, we will see that later. So that is why this is a constant and e

lambda by a lambda for any object is a constant.

Please remember in the general discussion for general purpose we do not consider the

surface ds, sorry dA being a black body. So this is a normal object.  Now, so the

conclusion is a good absorber is also a good emitter and vice versa. So that means, if

we have a material which absorbs it pretty well, that means it will also emit radiation,

heat or radiation pretty well.



And that  also  means  that  we cannot  really  boost  one  of  these  properties  without

affecting the other. So if we boost the absorbing power of a surface, the emissive

power  will  also  be boosted automatically.  Now for  a  black  body also the second

important outcome is for a black body a lambda is equal to 1 and e lambda is equal to

e lambda b.

So a black body is the best emitter I mean so that means, from this relation we see if

we put a lambda is equal to 1 right, so this means e lambda will be I mean maximum

right? Because if we put any other quantity here, no actually that is not the good, not a

good logic sorry. But that actually tells you, this equation actually tells you that the

black body is the best possible emitter that you have in hand, right?

So at a given temperature of course. This is counterintuitive because black body is

black. So we do not understand how it emits. But it can be proved by an infrared

camera inside a dark room. So if we, inside a dark room nothing there is no other

radiation coming in and if we have a black body placed inside the room, this will in a

infrared camera this will have the maximum glow as compared to the background.

Or  let  us  say  there  are  other  objects  as  well,  but  the  black  body  will  have  the

maximum glow in an IR camera because it radiates the best, emits the best, okay.
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So  the  last  topic  of  today,  this  is  the  pressure  of  diffused  radiation.  Now  same

construction, once again the same construction. We have this surface. We now want

to compute the pressure on this particular area, particular surface area dA. And once

again what we want to calculate the force of radiation that is coming from this small

area ds and falling on this area dA and the force that is created by this radiation.

Please remember we can for this imaginary sphere being close to the surface, we can

define intensity. If we can define intensity, then we can actually, we can actually write

the force is equal to dA cos theta K lambda d lambda d omega by c, okay. So this is

our, think about it, I am not going into the details of how to come to this particular

expression. But this is very easy.

Now this force, this is this force is falling obliquely on the surface. So let us say this is

the surface, so the force is at an angle, angle theta, right. So what we have to consider

is the perpendicular component of this force. So if this is my surface. So the radiation

is coming at an angle, so we have to only consider the perpendicular component. That

means we have to multiply additionally with the additional cos theta factor here.

So dF perpendicular will be dA cos square theta K lambda d lambda d omega by c. So

pressure due to radiation may be computed as p is equal to 1 over A integration over

this dF perpendicular.
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Where the integration can be performed over the upper hemisphere, or over the entire

4 pi solid angle once again, depending on what you are looking for. So either way, we

get the same result. Because if we compute it over the entire solid angle, we get one

relation here, or if we compute it over only the upper hemisphere, we get another

relation here. But correspondingly, we will see.

So let us now what we did here, we just integrated it over the entire solid angle 4 pi

solid angle, so the limit of theta is 0 to pi, this limit is 0 to 2 pi and integration limit

over lambda is 0 to infinity. So we have K by c two third into 2 pi. So it is 4K pi

divided by 2c. Now you will recall for a similar situation when we integrated over the

entire 4 pi solid angle u was equal to 4 pi K divided by c.

And if we have integrated this one from 0 to pi by 2, we have to use u is equal to 2 pi

K by c, okay. So both ways it will be compensated. Now just by comparison, u and

expression for u and expression for p, sorry p and u, we see for diffused radiation, p is

equal to u by 3. Now this result is a very important result and we will be keep using

this result for the remaining discussion on radiation that will be coming in the next

lecture onwards.

So we will stop here today. Next lecture, so far it has been all theory. Now we have

one more theory to discuss that is, I should not say one more theory, but one more

very important theorem to discuss or law to discuss that is Stefan-Boltzmann law.

Then we will try to treat this cavity radiation or black body radiation as assembly of

ideal gas and we will see if we can calculate the quantities like entropy, free energy,

and the nature of an isothermal or adiabatic change inside this ideal gas assembly. We

will see that in the coming lectures. Thank you.


