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Gibb’s Phase Rule and Basics of Second Order Phase Transion.

Hello and welcome back to the last lecture of week 11 of this NPTEL course on thermal physics.

Now in the last class we talked about the second latent equation which is also called Clausius

Clapeyron equation. And today we will complete our discussion on phase transition and for that

we have two important  topics  to  cover  one is  the  Gibb’s  phase rule  which  is  an extremely

important rule in phase transition.

And the second one is the second order phase transition and there is something called Ehrenfest

equation which describes the pressure temperature the locus of second order phase transition

point equilibrium curve along a T-P temperature pressure diagram. So but before that let me start

with the last problem of classroom problems that we of week 11.

(Refer Slide Time: 01:22)

That is the problem where we have to compute the latent the specific heat of saturated ether

vapour from the given data. So for diethyl ether the boiling point is 34.6 degree centigrade under



1 atmosphere pressure and the specific heat of liquid ether at that temperature is 2.3 kilojoules

per kg k. 

So the specific heat is given the boiling point is given the latent heat of evapouration at 35 degree

and 40 degree centigrade are 377.65 kilojoules per kg and 374.72 kilojoules per kg respectively

find the specific heat of saturated ether vapour. So once again it is a liquid vapour transition so

we can use the simplified form of the Clausius Clapeyron equation.
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So let us try start with that so we can say d l d t = l by t + c 2 s - c 1 s. Now c 1 is given as 2.3

kilo joules per kg k dL dT is not given directly. But if you if you look at this problem here the

specific the latent heat of evapouration or specific latent heat of evapouration is supplied at two

temperatures. One is at 35 degree centigrade and one is at 40 degree centigrade and which are

377.65 and 374.72 kilojoules per kg.

So once again we see the latent heat decreases with increasing temperature. So from this we can

actually compute the approximate slope around this boiling point under one atmosphere pressure.

So d L dT will be roughly equal to well not exactly maybe but roughly equal to 374.72 minus

377.65  divided  by  5  which  is  minus  0.585  kilojoules  per  kg  k.  Now L at  34.6  degrees  is

something that we need to find out of course we have L given as at 35 degree centigrade which is

a very close to 34.6 degree centigrade.



So we can use this value directly or else what we can do is we can use this slope in order to find

out what should be the correction to these values but let me tell you this might be a change in the

first decimal place so not worth doing it. So we can simply use L is equal to this value here and

we can take T is equal to 35 degree centigrade which is 308 kelvin so L by T will be this which

is 1.226 kilojoules per kg k.

And if you let me tell you if you do this precise correction so if you use the slope here in order to

compute the latent heat at 34.6 degree centigrade. You might see a change in this instead of 2 6 I

do not remember often but it will be probably 2 8 or something so it is a very tiny change so 6

will be 8 or something so it is ok. Now using this above using this data of l by t and d L d T

which we have calculated here we can calculate C 2 s is equal to C 1 s plus d L dT minus L by T

which is 2.3 minus 0.585 plus 1.226 kilojoules per kg k which is 0.488 kilojoules per kg k.

And please understand that why I have chosen this example this is to show you that the specific

heat here is not negative. So what we have calculated the specific heat around the boiling point

of water at 100 degree centigrade is negative. That is only I mean it once again it cannot be

generalized it  is  only a special  case for water and there are few other substance which also

demonstrate negative specific heat around the boiling point. 

But diethyl ether for example does have a positive specific heat around boiling point. So that

means if  we want to increase the ether  vapour the temperature of ether  vapour by 1 degree

around 34 from 34.6 to 35.6 degree centigrade 488 kilo joules per kg heat has to be supplied

right okay.
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So now let us start our discussion on the Gibbs phase rule so for that first we have to define a

quantity called the chemical potential. Now what is chemical potential? There are many different

you know many accepted definition for chemical potential we will discuss some of those but the

simplest  and  most  easily  understood  definition  is  probably.  That  if  we  have  a  system  in

equilibrium where it is a single let us say there is a single component system in equilibrium

where there is total number of N particles into the system.

Then the chemical potential mu is G by N where g is the Gibb’s total Gibb’s free energy of the

system so that means mu is nothing but Gibb’s energy per particle. So now in a more general

manner if; we have an open system which can exchange particle with the surrounding or maybe

we have a system. Let us say we have we are talking about a system in phase equilibrium single

component system only it is not exactly an open system

But we have  one liquid  and vapour phase in  equilibrium in a  closed  environment.  And the

particles can some particles can go from liquid to vapour phase and some particle can come back

from vapour to liquid phase. At equilibrium this number itself please remember it is a dynamic

equilibrium so that means some liquid particles are going into vapour and exactly that number of

particles are coming back from vapour to liquid right.

So in such cases even this there is a particle exchange if we calculate the for example if we focus

on only the liquid phase it behaves like a single open system it is in equilibrium with its own



vapour so particle exchange is taking place. So for such cases d u or for that fact any free energy

function can be written as a combination of let us say du is equal to T d s minus p d v plus mu d

n right. So this mu is the chemical potential and d n is the number of particle exchange.

So d u also has a mu d n contribution so basically this is the energy or internal energy also mu is

also equal to the internal energy of this per particle. So for single particle system the energy so

basically the mu is energy associated with a single particle of the system so mu can be written as

del u del n with s and v constant. Now for even for a closed system maintaining s and v constant

is not so easy. I mean maintaining v constant is probably but maintaining it adiabatic completely

adiabatic experimentally is not very feasible.

(Refer Slide Time: 09:02)

So we can also define other differential forms so we can write the similar expression for other

free energy function for example we can write d F is equal to minus p dv minus s dT plus mu d N

and mu is equal to del f del n and v t. So maintain I mean so we have to compute the or basically

the specific Helmholtz energy per particle keeping volume and temperature constant. Similarly

we can write mu is equal to del G del N p2 or the phase or Gibb’s free energy per particle

keeping pressure and temperature constant.

Now this is by far the most popular definition of chemical potential because as we have already

discussed almost. I mean many of the chemical processes we are talking about including phase

transition is a constant pressure constant temperature process. So that is why for when we talk



about phase transition and related phenomena we always say mu is equal to del G del N so that

means. 

So basically from this discussion you see that mu is actually the energy per particle so we can

add that to the internal energy of the system we can add that to the Helmholtz energy  of the

system Gibb’s energy of the system also to the enthalpy of the system it does not matter. But the

most popular definition is mu is equal to del G del N at constant pressure and temperature. Now

for a situation for a particular system if we have more than one type of particle, present in a

phase.

So which is basically multi component system let us say we have just liquid phase we have water

and alcohol mixed together some alcohol mixed together. So that gives you a very good example

of a two component liquid phase system. Then for each phase we can write d U p = T d s p + p

stands for the phase. By mistake sorry this should be P because phase is always written with T

not p that has been a mistake so this should be P and right.

I  hope you understand the handwriting is  not that  great  here but you understand what  I  am

saying. So in a multi phase multi component system it was shown that Gibb’s by Gibbs himself

that the chemical potential of each phase of a particular component are equal. So let us say we

have once again going back to the example that we have taken we have alcohol water system in

equilibrium with their own vapour. So we have inside a closed container water alcohol mixture

which is in equilibrium with the vapour.

So we have essentially two components and two different phases now we have liquid phase we

have vapour  phase.  In  liquid  phase we have two components  water  and alcohol  also in  the

vapour phase we have two components water and I mean water vapour and alcohol vapour. Now

what Gibb’s showed us a Gibb’s showed by rigorous mathematical treatment that the chemical

potential of alcohol in vapour phase and chemical potential of alcohol in liquid phase has to be

equal along the phase, boundary.

Similarly chemical potential of water vapour and chemical potential of liquid vapour along the

phase boundary has to be equal. So that means for a single component system we always know

that  the  specific  Gibb’s  energy has  to  be  equal  between 2 phases  right.  Similarly  for  multi



component system it has to be the chemical potential of different phases has to be equal along

the phase boundary for the same component right.
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Now let us consider that in a closed system we have P phases and C components at a fixed

temperature T and P right. Now total number of moles is fixed for a closed system so that means

we cannot add particles from outside. Or we can remove particle from outside but when we have

let us say please remember we have taken example so far only for a water alcohol mixture. 

But if what if we mix water acetone ethyl alcohol methyl, alcohol these four different liquids

together  they  are  absolutely  miserable.  They  will  mix  up  so  that  means  it  will  be  a  four

component two phase system. And if we take the temperature down at some point all of this

water and alcohol and you know acetone they can solidify if we go to low enough temperature.

So we can actually have 4 component 3 phase system right. 

So in general if we have a c component and p phase system right but then what happens you

know if we have a closed system we cannot add more particles from outside or we cannot take

out any particles from outside. So out of this c components with different concentration c minus

1 will be independent of each for each phase right. So for all p phases the total number of such

intrinsic variable that we are talking about intrinsic variable being pressure including pressure

temperature and mole fraction is p into c minus 1 right.



So try to think why mole fraction can be an intrinsic variable and not an extensive variable talk

about mole fraction not the number of mole. So we have P into c minus 1 such independent

variables that is present in a P phase and c component closed system. Also we have on top of this

so  these  components  are  predominantly  I  mean  these variables  are  predominantly  the  mole

fractions of each component in each phase. 

And on top of that we have pressure and temperature so all together we have P time’s c minus 1

plus 2 numbers of intrinsic variables right. Now also there are certain constraints associated with

this system.
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These constraints are Gibb’s by Gibb’s here which says the chemical potential of each phase of a

particular component are equal. So if we have water you know as I said we have water ethanol,

methanol,  acetone  all  mixed  together.  So  for  and  if  they  are  in  2  phases  so  for  2  phase

equilibrium we have 4 such constraint equation right.
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So in general if we have we have 2 phase right. So for one single component let us say for water

we have water vapour and liquid water at equilibrium along the phase boundary so this is one

constraint equation.  So if we have 3 phases there should be 2 constraint equations along the

liquid vapour and solid vapour boundary right. So altogether if we have P phases, we have P

minus 1 such constraint equation for each component. And altogether if we have C number of

components then we have C times P minus 1 such constraint equation present.
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So total  number  of  independent  degrees  of  freedom should  be  the  number  total  number  of

variables total number of constraints. Now what we have seen the total number of variables is P

times C minus 1 plus 2. Whereas the total number of, constraint is C times P plus 1 so we have



sorry P times c minus 1 plus 2 and we have minus C times P minus 1. So if we open the bracket

and simplify  so this  is  the number of  independent  intensive variable  is  called  the degree of

freedom so f is equal to this.
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And if we simplify we get the famous phase rule which is F= C – P + 2. So F is the number of

independent intensive variable, C is the number of components, P is the number of phases. And 2

is a number which comes from the two independent variable two intensive variables pressure and

temperature of the system. Please remember this is valid for a closed system of fixed pressure

and constant pressure and constant temperature.

So this rule was first derived by Gibb’s himself in actually it is not exactly 1878 it is a series of

publication  between  75  and  78  where  he  has  established  this  rules.  And  later  it  was

experimentally  verified  that  this  rule  cannot  be  bypassed  there  has  to  be  this.  And  please

remember the one condition for this rule to apply is there is no chemical reaction taking place

between the different components. 

So we can have let us say liquids dissolved into each other we can have if we add some salt to

that system we are talking about we might have some salt going into the system we can still have

some solid salt remaining. So this type of solution while mixing and mixing is you know this one

is allowed but if we for example add a small amount of lithium metal into this it will vigorously

react with water and that is not allowed so that will not come under phase rule.



So when we talk about phase equilibrium the system has to be in thermodynamic equilibrium

that  means  total  it  will  be  total  thermal  chemical  and  mechanical  equilibrium  with  the

surrounding right. Now for a single component system if we put C = 1 and F = 0 that means we

can F = 0 means there is no degree of freedom. 

So that will give you the maximum number of phases that is possible for a single component

system right. Because if in this case if I put F = 0 and C = 1 we get the maximum value for P and

we get P = 3.
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So that tells you that given that the Gibb’s phase rule is universally valid for any closed system.

For  a  single  component  system we  can  have  a  maximum  of  3  phases  possible  in  a  single

component I mean sorry not possible. I should say maximum of 3 phases coexist not possible of

course there could be more phases possible  but it  should not  coexist  in  a  single component

system.

So that happens around the triple point this means the triple point is uniquely defined. But let us

say we have a certain system where we have allotropes we have discussed in the last class also

briefly I have said.
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So let us take the example of sulphur, in sulphur there are 2 types of solid phases one is rhombic

and one is monoclinic we can go from 1 phase to the other by changing pressure or temperature

or both right. So basically for example if we are in this point and if we increase the pressure from

the, we go into from monoclinic we go into the rhombic phase. Or if we add this or if we added

this  point  we  increase  the  temperature  keeping  the  same  pressure  we  go  from rhombic  to

monoclinic phase.

So in such cases we have C = 1 and P = 4 so we have 2 solid phases rhombic, monoclinic and

then there is a liquid phase there is a gas phase or vapour phase whatever you might call it. But if

we put C = 1 P = 4 we get what F = - 1 but F cannot be equal to less than 0. So that tells you

readily that only 3 phases can coexist at a time and we have a total  of 3 triple points why?

Because at this point the rhombic phase the monoclinic phase and the gas phase coexist.

At this point the rhombic phase sorry the monoclinic phase the gas phase and the liquid phase

coexist. And at this point the rhombic, monoclinic and liquid phase coexists so these are actually

3 different triple points. One is at 95.4 degrees one is at 119 and this one is I think something

around 154 degree centigrade I do not remember often but you can find this anywhere in any

standard textbook have a look. 

Now just to show you the usefulness of this little more discussion on this phase rule I have

chosen 3 points from this phase diagram I have marked them with blue here green here and red



here. Now if we look at the blue point first now in blue point it is inside one liquid phase one

phase. So I mean I could have chosen this blue point instead of here we can choose it here also or

here also here only thing is it is nowhere close to the phase boundary it is deep inside one given

phase. 

Now in this case P = 1 F = 2 because if we put into this equation where is it if we put see C is

always equal to 1 C = 1. If we put P = 1 so 1 - 1 = 0 so f gives you it will give you F = 2. That

means  this  point  is  an  example  of  a  bi-variant  point  where  pressure  and  temperature  are

independently changeable. So you can change either this pressure or the temperature or both and

around this point and you will still be inside this liquid phase only. 

So there is no you know so it the phase rule actually talks about the degree of freedom in a given

phase right. So in this phase inside this liquid deep inside this liquid phase or deep inside this,

gas phase or monoclinic or rhombic space. When you are well within that phase you are free to

change  the  pressure  and  temperature  as  per  your  will  so  both  behaves  as  two  independent

parameters right. 

Now we take the green point where the green point?  Green point is at the liquid gas phase on the

liquid  gas  phase  equilibrium  line.  So  on  that  we  have  two  phases  coexisting  P  =  2  that

immediately tells you F = 1 from the phase rule that means it is a mono variant point. So, where

only 1 degree of freedom there is effectively 1 degree of freedom now if we have to maintain the

2 coexisting phases on the, this point has to be maintained on the phase boundary. 

We already know pressure and temperature they are correlated by the first latent heat equation so

thereby no means independent of each other and that is exactly what is reflected into this F = 1.

Now let us look at the last point that is the red point on this curve which is one of the triple

points. How many phases are there? There are 3 phases from monoclinic gas and liquid that

gives you F = 0 so this is an invariant point where temperature and pressure is fixed. 

So that is why I say for a triple point for a given system. It there could be more than one triple

point but each triple point has a uniquely defined pressure and temperature and that is also given

by the phase rule when we get F = 0. So my suggestion would be I mean we have not discussed



much about the phase rule. But I think we have discussed enough at least for a single component

system so that you can understand the basic application and principle behind the phase rule. 

My suggestion would be please go back take your take any standard textbook or if possible take

more than one textbook and try to read through the relevant chapter so that you will understand it

little better.

(Refer Slide Time: 26:26)

For the last topic of this week's lecture we take second order phase transition and let me tell you

why the second order phase transition is necessary at all. So it has been found experimentally

there  are  certain  classes  of  phase  transition  in  thermodynamics.  For  example  Ferro  to

paramagnetic; transition at Curie point or superconductive to resistive transition at critical point.

Or let us say the super fluid transition that takes place around the liquid vapour critical point.

This  transition  around  I  mean  across  this  transition  the  specific  Gibb’s  energy  and its  first

derivatives remain continuous. Now what are these first derivatives we are talking about we are

talking about pressure the specific volume and specific entropy. So in a first order phase, transfer

typical first order phase transition that we have discussed so far. We have either of specific I

mean  both  of  specific  volume  and  specific  entropy  around  this  across  this  phase  transition

becomes discontinuous. So we have around the phase transition we have g 1 = g 2.
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And now for a for this particular class of transition which we are discussing here we have g 1 = g

2 and del g 1 del Tp is equal to del g 2 it should be 2 actually del g 2 del Tp which means delta S

= 0. And del g 1 del pt is equal to del g 2 del pt which means delta v = 0. Now for this, such

transition now for a first order transition the Clapeyron equation we have d p d t = delta S by

delta v. But in this case it becomes a in a coming into a 0 by 0 form which makes no sense I

mean it is not defined then we have to apply some other rule.

So this rule is called the equation that we get is called the Ehrnefest equation. Now along the

second order phase boundary specific entropy and specific volume of 2 coexisting phases are

equal. So that means S 1 = S 2 and v 1 = v 2. Now this gives you so from this first relation we

get d s1 = d S2 similarly dv 1 = d v 2. Please remember we all already have d g1 I mean g 1 = g

2 that means dg 1 = dg 2. And we have applied that property already in order to compute the first

order phase the Clapeyron equation in the first latent heat equation.
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And actually also the second latent heat equation because secondary equation also starts from

the, you know the basic equation where dp dT = l by T v 2 - 1 right. So we have d s 1 = d s 2

now writing s is as a function of temperature and pressure. We get d del S 1 del T p dT + del S 1

del p t dT = del s 2 del  T p d p + del S 2 del p T dp. D sorry this should be d T my mistake it

should be d T right.

Now multiplying both sides by T and rearranging we get t del S 1 del T p - t del S 2 del T p d T =

T del S 2 del p T - del S 1 del p T d p. From Maxwell's relation we know s del s del p t = - del v

del T p which is equal to - of v times 1 by v del v del T p = - v alpha. And we identify this T del s

del T p = c p we can write del p c p 1 - c p 2 times d T = T times v alpha to minus alpha 1 d p

which because v 1 = v 2.
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Now we can rearrange and get d p d T = c p 2 – c p 1 divided by T v times alpha 2 - alpha 1.

Now this S here this is for I mean this is nothing to do, with saturated. This is there because we

got this relation from keeping entropies of 2 phases or using the relation d S 1 = d S 2. So this s

here is the indication that we got this d p d T relation by entropy. 

I mean it could be misleading but just to I mean it is not actually necessary. We can just remove

this from here but it is just says entropy of these 2 phases are equal. Similarly by using d v 1 is

equal to d v 2. Once again we can write v is equal to v of p and T and from there we can write d

v = – v, v times minus k T dp plus v dT. Where k t is the isothermal compressibility so writing

for both phases and rearranging we get another relation.
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That is this time v remains i mean we use the equality of volume in both phases that dp dt is

equal  to  alpha 2 minus alpha 1 k T square minus k T 1.  So these equations  are  called  the

Ehrenfest equation and this is the equation that describes the phase boundary of a second order

phase transition. Now this, equations we from this equations we see that we get the slope of this

transition curve in terms of the quantity.

Like compressibility and expansion coefficient or C p or for example here we get from C p in

terms of C p all these quantities these are actually second derivative of the Gibb’s free energy.

And all this quantity they actually diverge along a first order phase transition. But for the second

order phase transition they become discontinuous across a second order  phase transition but

never diverge. 

So the difference of alpha 2 minus alpha 1 or c p 1 minus c p 2 is defined for a second order

phase transition which is actually in defined for a first order transition.
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Now so these are the equations we are not going into the details of a second order transition but

it  will  be  interesting  to  see  what  happens  to  the  other  chemical  potentials  or  other

thermodynamic potential  function. So for first order we see delta g = g 1 – g 2 between the

specific energy of two phases which is equal to 0. But delta f is equal to minus p delta v which is

not equal to 0 because delta v is not equal to 0.

Delta h is equal to t delta s which is actually l the latent heat which is once again not equal to 0

for a first order transition. And delta u = T d s – p d v that means l minus p delta v which is once

again a combination of this and this and definitely not equal to 0. So now when we look at the

second order transition we anyway we have d g delta g is equal to 0. But delta f which is p delta

v and please remember in a second order phase transition there is no discontinuity in specific

volume.

So this is equal to 0 delta h is equal to T delta s which is equal to 0 that means no latent heat

involved in a second order phase transition that is a very important result. And delta u is equal to

T delta s minus p delta v once again equal to 0. So all the energy functions are continuous across

a second order phase transition and also it can be shown that the first derivative of this energy

functions are also continuous across the second order phase transition.

Where it shows discontinuity across the first order transition now I am leaving that to you to

prove or see whether the first derivatives are of this energy functions are continuous or not. Just



to give you a hint you can actually express delta v and delta s in terms of first derivatives of

certain energy function. Similarly you can do that and that will definitely tell you that the first

derivative of because delta s is equal to 0 and delta v is equal to 0 in a second order transition.

That tells  you the first derivatives of certain energy functions must be continuous across the

second order phase transition. So that concludes our discussion on phase transition and we have

learned about certain aspects of we focus primarily on first order phase transition but also we

have discussed in brief the second order phase transition. The most important result for second

order phase transition is probably what we have discussed is there is no latent heat involved in

here.

And also we have seen what happens to the thermodynamic potentials across a first order and a

second  order  phase  transition.  So  that  concludes  this  week's  lecture  next  week  we  will  be

focusing  primarily  on  you know that  is  the  last  week of  the  lecture  series  and we will  be

primarily focusing on the radiation till then thank you. 


