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Hello and welcome back. So, in this class we will start the discussion with energy equivalent of

temperature then we will look into the energy distribution of Maxwell gases right. 
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So,  let  us  start  we  have  already  defined  the  Boltzmann  constant.  Now what  is  Boltzmann

constant Boltzmann constant is k B is equal to 1.38 into 10 to the power minus 23 joules per

Kelvin. Now you see look at the units here this is joules per Kelvin. So, if I multiply k B with

temperature then the units will be of energy that is in SI units it is it will be expressed in joules.

So, just to put things in perspective let us take T is equal to 300 Kelvin that means k b T will be

equal to 4.14. 

So, if I just multiply 1.38 into 300 we will get 4.14 into 10 to the power minus 21 of joules. Now

this is a tiny bit of energy we see the see the number here this is minus 21. So, in order to

represent this tiny energy in a better manner we have to introduce a new unit that is the electron

volts or we sometimes call it the electron e V okay. What is electron volt electron volt is an unit



in which the energy in joules is divided by the electron charge in coulomb right. 

So, if we introduce if we take this tiny bit of energy which is 4.14 divided into 10 to the power

minus 21 and divided by electron charge which is once again a tiny number what is that this is

1.602 into 10 to the power minus 19 coulomb then we get a number which is again small but at

least  understandable  we  can  have  a  part  we  can  get  a  field  for  this  number  that  will  be

approximately 26 milli electron volt that means 26 into 10 to the power minus 3 electron volt. 

Now this is the temperature scale or this is the energy scale to work with when we are talking

about very small amount of energy. Now what is this energy? So, let us quickly look into it what

this energy means to us. If we just you know try to compute the gap between the first and the

second atomic level of hydrogen that will be 10.2 electron volts. 
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So, what does it mean that means. So, this is the energy levels of hydrogen the first energy level

as we all know is at minus 13.6 electron volt and the second level is minus 3.4 electron volt. So,

the unit  in this  case will  be electron volt  right.  So the gap between the first and the second

excited  level  is  10.2  electron  volt.  Now  this  10.2  electron  volt  if  I  Now  do  a  reverse

transformation I put this use this formula k B T is equal to in electron volt is equal to the energy

divided by coulomb the electric electron charge in Coulomb. 



So, if I just do a reverse conversion of this energy scale 10.2 electron volt into temperature we

get a huge temperature of 7.9 into 10 to the power 4 Kelvin right. Now what does it mean, that

means a electron staying in the ground state of hydrogen goes up to the first excited state if and

only if the temperature of the hydrogen atom becomes 7.9 into 10 to the power 4 Kelvin. Now

this is a huge temperature and we generally do not experience such temperatures in our lab, lab

environment okay in normal circumstances.

But if we go to the solar system for example or any star in which the you know the burning of

hydrogen fuel is taking place hydrogen is being converted into helium. So, that is where this

temperature is realized and the energy of the or the spectrum of the atomic spectrum of atomic

hydrogen present in the solar systems or sorry in the sun or any of the star clearly shows that the

electron is at a higher energy level could be 2 could be 3 and higher.

And  that  is  because  the  temperature  there  is  huge  actually  that  is  how  we  measure  the

temperature of a star looking at the spectrum of hydrogen and other some other elements okay.

Now this is something that is almost once again that is not very intuitive towards us but there is

another thing that is band gap of Silicon. Silicon we all know that that it is an indirect band gap

semiconductor with a band gap of 1.12 electron volt okay. 

Now once again if we convert this into temperature scale it is approximately 13000 Kelvin. Now

that is once again is a very high temperature and we usually do not realize such high temperature

in our normal in our labs or in under normal circumstances okay. So, that is why the any electron

that will be residing in the ground state let us say this is an electron will stay in the ground state

unless and until there is a voltage bias applied across the junction heterojunction and there is no

conduction. 

So, that is why the band gap is plays an important that is why silicon is a semiconductor and not

a conductor. Now in a conductor what happens in a conductor the band gap is of the order of

electron milli  electron volts which is realized 20 room temperature is 26 milli  electron volts.

Now for a semiconductor for a semiconductor the band gap is of the order of one electron volt

which we see is a huge temperature.  So, an electron cannot normally go from the you know



valence band to the conduction band at room temperature.

But in a metal what happens the band gap becomes of the order of few or some milli electron

volt and the electron can freely grow go from for from the via valence band to the conduction

band at even at room temperature and that is why we have free conduction of electron. Now in

the last  class you remember we have discussed about hydrogen spectrum. Now in hydrogen

spectrum sorry the C V of hydrogen and what happens was see a C V of hydrogen gas.

When we calculated we when we looked at the data we have seen that at very low temperature

we have translational only the translational modes are active and it behaves like a monoatomic

gas that is because the vibrational energy levels are so spaced that at very low temperature the

available thermal energy is less than that band gap. So, the vibrational modes are not activated

okay. So, the equipartition theorem whatever we have learned so far it is valid for only those

gases or those solids, for solids we will discuss it later.

For which the available thermal energy is at room temperature is sufficient to excite the system

to its you know what should I say; for example if we want to see the equipartition you know equi

partition theorem at work in a diatomic molecule we have to have we have to take this diatomic

molecule  to a certain  temperature  at  which the rotational  energy levels  are  active below the

temperature it will behave like a monoatomic gas ok. 

So, that is exactly what we see in the atomic hydrogen or the hydrogen molecule C V the the

specific heat. 
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Now let us look into the energy distribution of gas molecules in a Maxwell's Boltzmann or in a

Maxwell velocity distribution. We see that energy e is equal to k T which is half m c square

okay. Now if we take a derivative of this we get dE is equal to m c dc then we can write dc is

equal to dE by m c which is dE by root over 2 mE. So, now we look at the Maxwell velocity

distribution function dN c which is equal to 4 pi NA cubed I am just writing the a explicitly e to

the power -m c square by 2 k d dc square dc. 

Now if we substitute for c square here and here and if we substitute dc with dE by using this

relation what we can get is a number of molecules. So, okay what is dN c? dN c is the number of

molecules in the range of c 2 c plus dc. Now if we do this substitution with basically replace c

with energy and dc with de we get number of molecules between E and E plus dE. Now in order

to do this substitution we have to write dN E is equal to 4 pi NA stays the same. 

Now this quantity to the power m c square by 2 k T is simply e to the power minus e by k T c

square is 2 E by m dE is equal to root over 2 m dc is equal to dE by root over 2 mE and we do

the simplification for example there is an m to the power 3 half here there is a 1 by m here there

is a root m here. So, all these m's are cancelling out nicely. Similarly you know there is a pi to

the power 3 half here there is a pi here. 

So, it all together we if we simplify we get dN E by n is equal to 2 into k T whole to the power



minus 3 by 2 actually I should write this as 1 by kT here 1 by k b T whole to the power 3 by 2 E

by pi whole to the power half e to the power -E by k T dE. Now this gives you the number of

molecules gas molecules  in the energy range of E to E plus dE okay. So, now we have the

Maxwell's energy distribution function and we see that there are 2 parts once again it varies with

e to the power half the this function has 2 parts one part varies with e to the power half here.

And the second part varies with e to the power minus E by k T and as E increases this part falls

off exponentially. So, at very high values of e this part will be dominating for very low values of

E this part will be dominating. So, we try to plot this function dN E by E dN E by N or rather we

just define this as you know define this function as F of E. So, basically dN E by N is equal to F

of E dE.
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And we plot F of E as a function of energy E. So, we see that there are 2 parts the first part is e to

the power it is going up with e to the power half and we have okay I should use a separate color.

So, that it is easy for you to understand. So, it is e to the power half and it looks something like

this and then we have another part which is e to the power minus E by k T at very low values this

part falls off exponentially. 

So,  we have e to  the power minus E by k T once again we are just  drawing it  for a fixed

temperature this is the one. So, overall by adding this blue line and this black line we get this red



line which looks like this right. So, we get the energy distribution curve for Maxwell gases which

is given by this function. Now just like in the previous case we can compute mean energy which

is E bar or in this case okay I should actually write E bar not epsilon.

E bar is equal to integration 0 to infinity E dN E divided by integration 0 to infinity dN E and

once again integration the denominator 0 to infinity dN E will simply give you N. So, this one is

nothing but N the total number of molecules and it will cancel out with the N factor here because

if we write out dN E. So, it will be right where is it yeah. So, dN E is equal to N times this

function right. 

So, N will come out from here and N and N will nicely cancel. So, what will be left it will be 2 2

into 1 over k B T whole to the power 3 half and there will be a factor of 1 over root pi will come

out from here and then we have 0 to infinity e to the power 3 half e to the power minus e by k T. 
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Now this integration we have to substitute x is equal to e by k B T and then this integration takes

the form of course there are some factors here and. So, this cavity will be adjusted and finally

okay. So, this k B T whole to the power 3 half will be adjusted with the factors and finally we

have 0 to infinity x to the power 3 half e to the power minus x dx. Now this one is nothing but

your gamma 5 by 2 and gamma 5 by 2 has a value of 3 root pi by 4 and after simplification we

have E bar once again I should write E here E bar and finally the result is E bar is equal to 3 half



k T. 

So, the mean energy for as obtained from this energy distribution function is 3 half k T which is

exactly what we expect from the equipotential principle. But please remember once again that

equipartition principle is valid if and only if the temperature is sufficient to you know to excite

all possible degrees of freedom of the system. For example hydrogen gas at molecular hydrogen

gas at very low temperature behaves like a monoatomic gas because why rotational degrees of

freedoms are not excited at that temperature.

Similarly at moderate temperature between 200 to 500 degree 500 Kelvin it behaves like a rigid

diatomic  molecule  because  the  vibrational  normal  modes  are  not  excited.  And at  very  high

temperature when the vibrational normal modes become prominent the dissociation takes over

and we cannot really measure all the way up to very high temperature. So, we have to remember

that equipartition theorem although if you or equipartition principle although it is a very nice tool

to work with it has its own limitations in on range of validity.

And we will see that more of that in when we will be discussing the specific heats of specific

heat of solids and we will see that the Dulong Petite law which is valid for some solids at room

temperature are not valid for other solids and there are reasons for it. Then there are theories

which takes into account all the other factors we will see that later on okay. So, now to end this

class we will go back to the problem set week 1 problem set and as promised I have added few

more problems in this problem set after problem 4 I have 5, 6, 7 and 8. 
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So, for the rest of the class we will be solving this 4 problems here okay. So, before we begin let

me quickly tell you there was a confusion in the last class regarding this units of moles and gram

moles actually moles by definition is gram moles okay. So, I got bit confused in between. So, if

we have one moles of water that means 18 grams of water actually and there is an unit called kg

mole which means the mole in kgs. 

So, that is a different unit I mean it is just that instead of 20, 18 grams of water we will have 18

kgs of water. So, gram mole and moles are essentially the same thing okay. So, let us start our

discussion  for  this  problems the first  problem or  rather  the  first  problem of  today's  class  is

problem number 5 which says the average kinetic energy of a molecule of hydrogen at zero

degree centigrade is 5.64 into 10 to the power minus 21 joules and the molar gas constant R is

equal to 8.31 joules per mole inverse per calorie inverse calculate the Avogadro number NA

right. 
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Now to in order to solve this problem we see that at 0 degree centigrade we assume that only the

translational modes are active in a hydrogen molecule okay. So, we have e is equal to 3 half k T

although we know that it is not exactly true but for simplicity we just assume that this is only the

hydro the translational modes. So, we have only e T here which is 3 half k T which is for one

mole it will be or I can just manipulate it by multiplying with NA and divide it with NA and we

can write 3 by 2R by NA times T NA.

Then will be equal to 3 RT divided by 2E. So, just by putting these numbers in we get the value

of the Avogadro number as 6.03 into 10 to the power 23 mole inverse. Of course this value is not

very accurate because the energy itself is not very accurate accurately taken but you can try it

yourself if you take the vibrational modes into consideration for example instead of 3 half kT if

you put 5 of kT you will not get any anything close to this number. 

So, that itself tells you if that at room temperature the vibrational or the sorry rotation rotational

modes are not fully active as of even at room temperature or at zero degree Centigrades ok. So,

for temperature we have put 273 right now. So, for the problem number six we have with what

speed should one mole of oxygen at  300 Kelvin move in order that the translational  kinetic

energy of the center of mass is equal to the total kinetic energy of all its molecules given that

molecular weight of oxygen is 32. 



So, when we are talking about one mole of oxygen we are talking about 32 grams of oxygen.

Now and also there is a hint given that considering only the. So, here we have to consider only

the translational kinetic energy of all its molecule okay. So, the kinetic energy is has 3 degrees of

freedom. So, 1 mole is 32 grams which is 32 into 10 to the power minus 3 kg. So, the kinetic

when we calculate the kinetic energy of the center of mass it is E times E k E kinetic energy is

equal to half m c square is equal to half 32 into 10 to the power minus 5 c square c being the

speed at which the gas assembly moving through space.
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And thermal energy is once again 3 half kT times NA which is 3 half RT. So, by equating this 2

E of k E is equal to E of th we get this relation that c squared is equal to 3 half RT divided by 16.

So, we have 32 half into 32 into 10 to the power -3 grams okay 3 -3 here because 32 grams is 1

10 to the power minus 3 kg. So after simplification we get c squared is equal to 228937.5 meters

per second square velocity square and then c will be simply 478.5 meters per second right. 

Now for the third problem two ideal monoatomic gases at temperature n 1 and n 2 are mixed. So,

that there is no loss of energy if the masses and the number of moles are m 1 m 2 n 1 n 2

respectively calculate the final temperature of the mixture right okay. 
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So, we have the situation here we have n 1 moles of this red molecules at a temperature T 1 n 2

moles of this bloom or black molecules at a temperature T 2 and let us say they are capable kept

at two separate chambers and we have a stock arrangement in the middle. So, the problem the so

basically for mixing what we have to do is we have to remove this top here and then we have to

allow it enough time to equilibrate. 

So, once this equilibriation takes place or before this mixing we have E is equal to 3 half k T

which is equal to n 1 T n 1 or or rather e is equal to rather I should write in this part it will be 3

half k b T because its ideal monoatomic gas times n 1 that is the total kinetic total available

thermal energy. Similarly in this part it will be 3 half k B T times n k B T 1 sorry it will be 3 of k

b T 2 times n 2. So, after mixing it will or rather before mixing the total energy is 3 half k B T

times n 1 T 1 plus n 2 T 2.

After mixing the temperature becomes T the equilibrium temperature. Now if the equilibrium

temperature becomes T then we have E 2 is equal to 3 half k B T times n 1 plus n 2 we have both

the gases at same temperature. So, n 1 moles of the first gas and then 2 moles of the second gas

they are at exactly the same temperature right. So, by equating E 1 and E 2 because there is no

loss of energy in this mixing we can write T is equal to n 1 T 1 plus n 2 T 2 divided by n 1 plus n

2. Now what in interesting point to note that although the masses are given m 1 and m 2 there is

no function of these masses in this in this problem.



And this is obvious because in equipartition theorem we do not go by the energy part or energy

of the individual masses but we consider that there are degrees of freedom and each degree of

freedom contributes half k B T irrespective of the mass of this molecule. So, one mole of gas one

and one mole of gas 2 both at same temperature both will have equal amount of energy thermal

energy available to them irrespective of the masses. 

So, that is why the final expression for temperature has no mass term associated with it okay.

The  last  problem once  again  it  is  about  this  equipartition  partition  theorem carbon  dioxide

molecule can stretch and paint we have discussed it briefly in the last class okay we will do it

once again here. What is the total number of translational rotational and vibrational degrees of

freedom of this molecule. And then on the basis of the equipartition law calculate the molar

specific heat and constant volume at constant volume C v and gamma for CO 2 gas.

The second part I will just leave, leave it to you to calculate because once you know the degrees

of freedom it is absolutely easy to compute C v and gamma because gamma is nothing but C p

by C v C p is equal to C v plus R as we all know at least for ideal gases we have to consider ideal

gas in this case right. 
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So, what are the possible modes of carbon dioxide vibration as I have said there are symmetric



stretching  in  which  these  two  molecules  goes  in  or  out  simultaneously  whereas  the  carbon

molecule stays which is at the center does not move. So, this is the symmetric stretch then we

have the asymmetric stretch in which these two molecules goes in phase and this one goes in the

opposite direction. And in the next cycle this is going sorry yeah this one these two are going in

this direction whereas this one is moving in the right side.

And what happens in this vibration overall the center of mass of this molecule does not move.

So, vibration the definition of vibration is in which the center of mass does not change and once

again we have two degenerate bendings we have discussed because carbon dioxide is a linear

molecule. So, it is a linear molecule right. So, in a linear molecule we can have two symmetric

and anti symmetric stretching and we can have bending which is in-plane or out of the plane. 

So, when this one is going up these two are going down right this and these are going down

when this one is going down yeah inside the board then these 2 are coming out of the board. So,

this is called the bending modes which are degenerate in nature but all in all total vibrational

degrees of freedom there are 1, 2, 3 and 4 different modes of vibration each will contribute 2

degrees of freedom which will contribute half k T of energy each. So, all together there are 4 k B

T of energy from vibration given that all the vibrational modes are active.

Next we have E T which is the translational kinetic energy which is T half k B T we have 3

translation and we have 2 rotation because finally it is a linear molecule also please keep in mind

if it is a non-linear molecule instead of 2 rotations we have all 3 rotations okay. So, for example

if we are talking about water molecule which is a non-linear molecule we can have 3 rotations

and  3  translations.  Translations  on  we understand  but  rotation  also  we have  to  realize  that

because it is a non-linear molecule we can have all 3 rotations independent rotations around 3

axis okay. 

So, but once again for a carbon dioxide molecule it is a linear molecule. So, we can have only 2

rotational normal modes. So, all together we have 4 k B T from here 3 half cavity from here and

half into 2 which is k b t from here. So, the altogether energy possible is 4 plus 1, 5 plus 3 half

which will be 13 by 2 k B T of energy. So, your C v which you can very easily compute will be



13 by 2 R and that the C p will be that div plus R simply and then you can compute the value of

gamma right. 

So, that part I will just leave it to you and this is the end of the discussion about kinetic theory or

the simple kinetic theory of kinetic theory of Maxwell gases. Next lecture onwards we will be

talking about the collision because what happens is we in this part we have only discussed about

the mean translational  velocity  or rms translational  velocity  of the gas assembly or we have

assumed that the system is in thermal equilibrium with all the possible you know movements

taking place that means all  the degrees of freedom in action and we have computed the the

parameters like C v or kinetic energy whatever.

In the next section what we are going to do is we are talk we will consider the inter molecular

collision into account and we will define something called the mean free path of a molecule,

thank you.


