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Hello and welcome to the last lecture of week 8 of this NPTEL course on thermal physics.

Now, in this week, we have defined cyclic process, we have defined heating engine, we have

defined refrigerator  and finally,  also we have defined or we have stated the 2 alternative

statements of second law of thermodynamics proved their equivalents. We have stated Carnot

stated  and proved  Carnot  theorem.  And lastly,  we  started  in  the  last  lecture,  we  started

discussing  Clausius  relations.  Now, we have  seen that  for  a  reversible  cycle,  the  overall

integral dQ by T over an reversible cycle remains 0.
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Now, in today's lecture, we will start by looking at the same relation from the perspective of

an irreversible cycle. Now, for an irreversible engine, let us consider an irreversible engine

because irreversible engine works with operates in irreversible cycles. We have eta E is being

the efficiency of the reversible engine. So, we have eta E less than eta C.. So, 1 by Q 2 by Q 1

for the reversible process is less than 1 minus Q 2 by Q 1 which is the right hand side is for a

reversible process we can equate it with 1 minus T 2 by T 1.

Now, if we simplify the above relation we get Q 2 irreversible divided by Q 1 irreversible is

greater than T 2 by T 1 which gives you Q 1 irreversible by T 1 minus Q 2 reversible by T 2



less than 0. Now, once again we need to correct for the sign of Q 2 because in this case Q 2 is

the  heat  going  out  of  the  system  and  the  convention  that  we  have  decided  to  follow

throughout the course of this lecture series that work done on the system is negative, work

done by the system is positive.

Similarly, heat going into the system is positive well whereas, the heat that is coming out of

the system is negative. So, going by that convention, Q 2 is negative. So, we can correct for

the sign of this Q 2 and we can write Q 1 by T 1 plus Q 2 by T 2 for an irreversible process

that superscript irr stands for the irreversible process is less than 0. Then this is just for a

simple 2 step irreversible process. Now, as in case of a reversible cycle, we have seen that

any arbitrary reversible cycle can be broken into an infinite many numbers of consecrated

Carnot cycle.

For each of those Carnot cycle the relation Q 1 by T 1 plus Q 2 by T 2 plus 0 that holds so, as

a whole in a similar manner if we now divide an arbitrary irreversible cycle over a large

number of such irreversible cycles working between 2 temperatures T 1 and T 2.
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Then finally, we can write Q i by T i less than 0 for any number of such irreversible cycles.

Now, in the limit  when each of these processes are infinitesimal  and the temperatures of

interest  temperature  T is  are  really  close to  each other.  So,  it  is  like  an  almost  uniform

variation, continuous variation of temperature in that limit, we can write over an irreversible

cycle the integral dQ by T is less than 0. Now, in the previously we have got that for a

reversible cycle dQ by T is equal to 0.



So we can combine these 2 results and we can write in general for any cyclic process, the

integral dQ by T is less than or equal to 0 where the equal sign holds for reversible cycle.

Whereas when it is a non reversible cycle, the inequality side holds. And this relation is the

famous Clausius theorem or sometimes referred as the Clausius inequality as well. Now, so

far we have been discussing the general  nature of the cyclic  processes,  we have got two

relations which are combined into 1 relation in here for case of general cyclic process.
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Now, we will take 1 step forward and we will define, so, we will just do a quick problem on

this and then we will go on from there.
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So, let us look at problem number 10. A heat engine receives 100 Joules of heat from the hot

reservoir maintained at 1000 Kelvin in 3 different modes of operation, it rejects 50 Joules, 75

Joules and 25 Joules of heat respectively, to the cold reservoir kept at 500 Kelvin. Investigate

the feasibility of these cycles. Now, of course, we can do one thing we can check whether

what  are  the  efficiencies  of  each  of  these  three  of  the  engine  in  these  three  modes  of

operation. And we can compare that with an ideal reversible engine operating between these

two temperatures that is 1000 Kelvin and 500 Kelvin.

And we can say whether this process is feasible or not, but we can do the same thing using

this Clausius relation here, because according to the Clausius relation, dQ by T will be equal

to 0 for a reversible cycle has to be less than 0 for any other irreversible cycle. So, you see,

for the first case, we have 3 cases A, B and C, in all 3 cases the temperatures 1000 and 500,

1500, 100 Joules is the input in 3 cases, output is 50, 75 and 25.

Now, if we compute for the same two temperatures, if we compute the efficiency of an ideal

reversible Carnot engine, it should be 1 minus T 2 by T 1 that is 1 minus 500 by 1000 that

means, 1 minus half that is 0.5. So, of course, we can do it in both ways. So, we will just to

demonstrate that both are actually equivalent techniques, what we are going to do is we are

going to write eta is equal to or eta C is equal to 0.5. This is for all 3 cases I mean eta C is

irrespective of whether we have an reversible engine or not eta C is the idealized case.

Now, for the first case, what do we get, what is the efficiency here? 100 Joules taken 50

Joules rejected. So, 1 minus Q 2 by Q 1 that is 1 minus 50 by 100 once again is 0.5. So, eta 1

is equal to once again 0.5. So, this is an ideal case. So, it is theoretically possible physically

might not be possible, but we do not care at this point because we are just verifying whether

this inequality holds or not.

And without surprise, we see dQ by T if we compute for this process, this will be 100 by

1000 - 50 by 100, which will be equal to 0 because this is a reversible process, the efficiency

of this engine is exactly equal to the Carnot engine. Now, for the second process, 75 Joules is

being rejected and 100 Joules being absorbed. So, 1 minus Q 2 by Q 1 is equal to 1 minus 75

by 100. So, 1 minus 3 by 4, which is 4 minus 3 by 4 that is 1 by 4.



So, eta 2 I will just write it here, eta 2 will be 0.25. Of course, this is less than eta C. So, in

this case this is equal eta C, in this case it is less than eta C and this process is possible. So,

any engine that has an efficiency less than the Carnot engine is allowed. And of course, once

we calculate dQ by T it is 100 by 1000 minus 75 by 500, computing this we get sorry there

should be a minus sign here I missed it. So, it is 0.1 minus 0.15, so it is –0.05 Joules per

Kelvin.

And we see both this Clausius inequality also holds the Carnot theorem also holds, we do not

have any problem. Now, for the last case, we have 100 Joules being absorbed, 25 joules being

rejected that means 75 Joules is in use for work. So, the efficiency is 1 minus 25 by 100 that

is 1 minus 1 by 4 that is 3 by 4 that is 0.75. Now, eta 3, which is 0.75 is greater than eta C

which is not possible by Carnac theorem.

Now, if we look at the Clausius inequality, you see, integral dQ by T is 100 by 1000 minus

25 by 100 this is 0.1 minus 0.05. So, 0.05 Joules per K, which is not in agreement with the

Clausius inequality. And this is without surprise we see when the Clausius inequality does

not hold the Carnot theorem is also being violated. So, this third case is not possible both by

Clausius inequality and by Carnot theorem whichever way you want to call it.

And this is not surprising, because both are alternative statements of or both are the direct

consequence of the second law of thermodynamics.  And actually  Clausius  inequality  has

been  derived,  keeping  the  Carnot  theorem  in  mind  that  an  irreversible  engine  has  an

efficiency less than any reversible engine. So, there is no contradiction here. And we see this

is Clausius inequality as of now gives us only another way of verifying whether an engine is

following the second law of thermodynamics or not.
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But we can take it 1 step forward from here or actually, it is a huge step forward, when we are

going to define something called the entropy and we will use this Clausius inequality in order

to find out some very interesting and very universal properties of this quantity entropy. Now,

let us just consider 2 states; 1 and 2 in this PV indicator diagram. And, between these 2 states,

we are free to choose, free to construct any number of reversible paths, I mean, it is a night I

mean again a point choice of 1 the state 1 and 2 are arbitrary and choices of A, B and C, these

3 reversible paths are also arbitrary.

Now, what we can do is we can construct 3 different cycles using this actually 1, 2, 3, we can

do more than that, but let us consider these 3 cycles, 1 is 1 A, 2 B 1. So, that means, this

cycle, the second 1 is 1 A, 2 C 1 that is this cycle and the third one is 1 B 2 C 1 that was this

cycle. So, of course, we can also consider another cycle here A, B. So, we have considered

this, we have considered this and we have considered this. I think these are the 3 possibilities

we have of course, the reverse cycle and the forward cycle is identical.

Now, from the first cycle, which is 1 A 2 B, please remember all these three are reversible

cycles. So, going by the Clausius inequality or Clausius theorem, this equality sign will hold

here and in all three cases the close integral dQ by T has to be equal to 0. Now, if we apply

this theorem on 1 A the first cycle 1 A 2 B. That means, this cycle here, we get integration 1

to 2 allow A dQ by T + integration 2 to 1 along B dQ by T is equal to 0.
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And what we can do is we can simply take this one to this side with a negative sign because

in  a  definite  integral,  if  the  limits  are  i  to  f  and if  we put  a  minus  sign  the  limits  will

interchange and we will have f to i. So, we can do that and simple manipulation will give you

integration  1  to  2  over  A dQ by  T  is  equal  to  integration  1  2  over  B  dQ by  T.  Now

considering reversible  cycle,  1 A 2 C. Now if  we consider  this  cycle  over  here,  we can

construct in a similar manner integration 1 to 2 along A dQ by T is equal to integration 1 to 2

along C dQ by T.

Here we are only using the reversible property of the cycles and nothing else and of course,

we are using Clausius theorem and nothing else. Similarly, for the cycle 1 B 2 C that means,

this cycle over here, we can construct a similar we follow the similar construction and get 1

by 2 along B dQ by T is 1 by 2 along C dQ by T. So, what do we see? We see dQ over here it

is written with a d that means it is an imperfect integral. So, it depends on the path; that we

have discussed in details why and why it is depend on the path and all.

But once we divide this quantity by the temperature and integrate this via strike a perfect

differential, because you see the primary property of perfect differential is it does not depend

on the path of integral. So, basically this quantity dQ by T behaves like a state function.
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So, what we see is we can actually construct any number of reversible path and we can take

construct  any number  of  such  reversible  cycles  of  course,  if  we just  take  2  step  cycles

between 1 to 2 and 2 to 1. We can take arbitrarily any number of such cycles and we can

prove that for any reversible path connecting between 1 and 2 the integration 1 to 2 dQ by T

remains constant. So, that means, this integrant dQ by T behaves like a state function, we

have like a differential of a state function and we can write this as dQ by T is equal to ds

along any reversible path.

So, finally, we can write integration 1 to 2 dQ by T, which is actually integration 1 to 2 ds is

equal to delta S that is S 2 minus S 1 along any reversible path. This quantity f is called the

entropy. Now, typically  it is you know you say that okay I will  write E for entropy, but

unfortunately E has been taken by energy already before this concept of entropy has come

into picture. So, the letter S has been chosen and this is also the primary work of one of the

fundamental works of Clausius to describe entropy and to determine the few characteristic

properties of entropy.
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Now, the SI units of entropy as we see the quantity ds is equal to dQ by T here, so the SI unit

will be Joules per Kelvin. Now, let us consider entropy. So, far the definition of entropy is on

a reversible process. So, ds is equal to dQ by T, please remember ds is equal to dQ by T only

along a reversible path, the integration can be computed only along a reversible path; being a

state function we can connect any number of such, we can construct any number of paths or

any arbitrary reversible path, it does not matter the integration dQ by T between the first state

point 1 to 2 will be equal to delta s.

So, it is not a path dependent function anywhere. All we have to do is we have to find a

suitable path along which we can compute the integration and so, basically what I meant to

say is if we know the initial state and the final state, all we have to do is we have to connect

those with a reversible path along which we can compute the integration.  So, it does not

matter whether the actual processes followed that path or not.

As long as the initial and the final states are known, we can always perform this integration

along any non reversible path. We will come to that once again when we will be discussing

examples. At present it is just a theoretical concept, we will build on that very soon. Now, let

us consider what happens in an irreversible cycle. Now, let us as you once again 1, two state

points let us call it i and f, in this case, initial and final.

And we take a cycle this is a reversible cycle and by construction there are two parts. So, the

cycle is i, A, f, B i. The path A is a reversible path, whereas the path B is an irreversible path

which  is  given  by this  saw-tooth  type  of  structure.  Now,  as  this  is  part  of  the  cycle  is



irreversible, let it be a very tiny part, but once there is an irreversible portion in this cycle, the

Clausius  inequality  holds  and  we  can  write  the  close  integration  of  dQ  by  T  over  this

particular path particular cycle has to be less than 0, which implies i to f along A dQ by T

plus f to i along B dQ by T is less than or or less than 0.

And the dimension of entropy is given as Joules per Kelvin. Now, so far we have discussed

about reversible paths. Now, let us talk about irreversible, what happens in an entropy change

during an irreversible cycle. So, let us consider two state points 1 and 2 and let us say there is

a reversible path A between these two points and another reversible path B between these two

points. Now, the cycle 1 A 2 B 1 this actually is irreversible cycle because of this irreversible

path D which is given as a saw-tooth here.

Now, for this irreversible cycle we can write close integral dQ by T is less than 0, because

even if we have a tiny bit irreversible part in a cycle this makes the entire cycle irreversible.

So, we have integration dQ by T less than 0. Implying we can break it into 2 parts along A we

can write 1 to 2 dQ Q reversible by T plus along B 2 to 1 Q reversible by 2. Now Q reversible

by  T  is  precisely  the  entropy  difference  and  instead  of  A we  can  choose  any  arbitrary

reversible path that is okay, that is absolutely okay. But finally, this gives you the entropy

difference between point 2 and point 1.
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So, we can write this as S 2 minus S 1 plus dQ reversible by T from 2 to 1 integrated along B

and this whole thing is less than 0. Now, if we rearrange this we can take S 1 to this side, S 2

to this  side and we get  this  relation  is  S 1 minus S 2 is  greater  than integration  2 to  1



irreversible divided by T. So, and as the choice of point 1 and 2 are pretty arbitrary, we can

get similar relations for example, in the reverse pathway also if we instead of going from 1 to

2 first.

If we decide to go from 1 to 2 through this irreversible path and come back to this reversible

path, we get a similar relation that will be like S 2 minus S 1 is integration 1 to 2 Q reversible

by T. Please do not try to put in a negative sign on both sides and say that okay. So, if this is

true, then what we can do is we can multiply it with negative sign and write S 2 minus S 1

will be integration will be less than integration 1 to 2 reversible by T.

Do not do that, because we do not know which way the heat flows, but every time you do it

on a complete cycle without manipulating the sign, we will get a relation of this form, what is

important is if we have S 1 here, we should have 1 in the upper limit of this integral, if we

have S 2 here, we should have 2 in the lower limit of this of the right hand side integrals. So,

instead of writing 1 2 etcetera if we simply write i and f for my initial and the final state, then

the general relation which will come out of this type of closed cycle integration will be S f

minus S i is greater than equal to integration i to f dQ by T, where this equality sign holds

strictly for a reversible path connecting i f and or i and f.

Now, also please keep in mind that the choice of i and f has been totally arbitrary, we have

demonstrated here using this diagram, we could take any two state point we can take any

reversible path connecting those we can take any reversible path connecting those. So, also

we can take them infinite close to each other. In that case, the integration becomes irrelevant.

So, we do not even have to write the integration.

So, the most general relation that we can think of from this type of mathematical construction

is dS is greater than equal to dQ by T. Now, the 2 relations that we have derived here, these

are 2 alternative statements of Clausius theorem or Clausius inequality as of now, we do not

have a physical significance of this relations,  but very soon actually precisely in the next

lecture, we will go in more details about entropy change and we will see that these relations

actually help us defining the entropic principle.
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So, now, let us summarize on what have we learned about entropy so far. First of all ds delta

s is equal to integration are greater than equal to integration i to f dQ by T which we have just

proved where the equality holds for the reversible path. Secondly, it is a static function that is

the integral  is path independent.  Now, thirdly for adiabatic process dQ is equal to 0. So,

obviously ds which is dQ by T is equal to 0. So, I should have written ds because DS it means

the same thing, but, basically it means S is equal to constant, delta is equal to 0 that means, ds

is equal to 0 means S = constant.

And that is why an adiabatic process is often called an isentropic process. Now, for infinity

symbol process ds is greater than equal to dQ by T. Once again the equality holds only for the

reversible path. So, we can use this relation and for a reversible process we can write dQ

reversible or delta Q reversible is equal to Tds. So, the first law of thermodynamics takes the

mathematical form Tds = du + dw, where the process is along a reversible path.

And also  please  keep in  mind that  entropy that  we have  defined  is  extensive  parameter

because if we divide the system let us say the total entropy of the system, of course, total

entropy cannot  be measured which we will  discuss once again.  But,  we can measure the

entropy change like internal energy we can see measured the change in internal energy, but

not the total internal energy of the system except for ideal gases maybe. But, once again if we

divide the system into 2 the entropy will also be divided among 2 half.

So, it is an extensive property of the system with and for each expensive parameter there has

to be an intensive parameter to combination of which will have the dimension of energy as



entropy has an units of Joules per Kelvin. Temperature is the intensity parameter of interest

and the product TDS has the dimension of energy. So, we see here this Tds here, this has the

dimension of tendency. Tds also has other significance, we will very soon encounter or next

week we will be discussing about Tds equations, there we will have more discussion on this

particular parameter.
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So,  now,  let  us  compute  entropy  change  in  some  common  processes.  For  example,  a

reversible temperature change for an object of mass m and specific heat capacity C, if we

write delta s, if the temperature changes from T 1 to T 2, the entropy change is simply dQ by

T integration from T 1 to T 2 and writing dQ as mC dT, what we can do is we can write this

as mC dT by T T 1 T 2.

Now  mass  is  the  constant  and  as  long  as  the  heat  capacity  C  does  not  change  with

temperature, we can integrate this, we can take this out of the integration and we can get delta

s is equal to mC ln T 2 by T 1. Once again keeping this constant over a very wide range of

temperature is not a good assumption; we have already seen that for solid the specific heat

especially at low temperature specific heat varies with the temperature, but even for a limited

temperature range it is probably okay.

Now, next comes the another simple process of phase change. Now, what is phase change?

Phase change is when an object goes from solid to liquid or liquid to gas or vice versa. So,

that  is  called  a  phase  change.  And each phase transition  given pressure  takes  place  at  a

constant temperature.
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And there is always a latent heat L associated with each phase change which gives us the

entropy change delta s is equal to mL divided by T, where L is the latent heat per unit mass,

m is the mass and T is the temperature of the phase transition. Now, exchange of exchange of

heat with ease in this case, we have taken 2 deservers A and B at temperature T 1 and T 2

respectively. And let us assume we are being heat reservoir taking or giving or going small

amount of heat dQ does not affect the temperature of this object.

So, A is giving a small amount of heat to B because T is at a higher temperature, it is a

spontaneous irreversible process. Once again, we cannot really integrate this because it is an

irreversible process. But, for small changes, we really do not need to integrate we can simply

write delta S A is equal to minus delta Q by T 1 because dQ heat is going out of the system

then it becomes negative. So, entropy change becomes negative and delta S B is equal to

delta Q by T 2, where dQ heat enters the system delta B and the entropy increases.

So, the total change in entropy is delta S A plus delta S B which is delta Q times 1 over T 2

minus 1 over T 1. Now as T 1 is greater than T 2, 1 over T 2 minus 1 over T 1 as well as delta

Q is greater than 0, so this entire product is also greater than 0. Now this is also a very, very

good example that entropy increases a irreversible process, we will have more of that in the

next lecture when we will be talking about entropy principle.
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But the remaining time of today’s lecture let us quickly solve a problem.
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So, the last problem of today’s lecture is we have m grams of water at temperature T 1; it is

isobarically and adiabatically mixed with an equal mass of water at temperature T 2. Now

show that the change in entropy in the process is 2m C p ln T average root over of T 1 by T 2.

Where, T average is T 1 plus T 2 by 2. So, T average happens to be the final temperature of

the mixture because equal amount of masses of water at different temperatures are mixed. So,

that the final temperature has to be T 1 plus T 2 by 2.

We do not need even pen and paper for that we understand that this will happen. So, what we

have to do is we need to compute the temperature or entropy change for each of this objects

given that the temperature has changed. And of course this mixing we will see later on that



this is the totally spontaneous process and this is the totally irreversible process we cannot

integrate along any reversible path.

So, what we have to do is we know the final path or we know the final state of the system

final temperature of the system we have to assume that the temperature change has been

reversible. So, that is why what we have to do is we simple use this relation here instead of C

we replace it with C p because suppose it is isobaric and reversible change. Of course it might

not be a reversible change or slightly it is not but we have to assume that.

So, delta S 1 will be m C p ln T average by T 1, delta S 2 will be m C p ln T average by T 2.

And all together we have delta S is equal to delta S 1 plus delta S 2 which will be m C p ln T

average by T 1 times T average by T 2 because ln A plus B is equal to ln A times d. So, this

is the multiplication here. So, we have m C p ln T average square by T 1 T 2. We write the

denominator as root over of T 1 T 2 whole square we take 2 in front of this ln function and

the final result is 2 m C p ln T average root over of T 1 T 2.

So, that is where we stop today, that is where we finish this week’s lecture and this week has

been a  very  fruitful  week for  us,  we have  learned  about  cylindrical  processes,  we have

learned about entropy, we have learned about heat engines, we have learned about Clausius

theorem,  we  have  learned  about  the  two  different  statements  of  the  second  law  of

thermodynamics and so we will stop here and in the next week we will start from here, we

will discuss something about the entropy principle and slowly and slowly we will go into

other internal combustion engine and related phenomenon, till then thank you.


