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Hello and welcome back to week 8 lecture series of this NPTEL course on thermal physics. Now

this week we will be primarily discussing heat engines and related thermodynamic processes. So,

before we go into the cyclic process where which is very important for this week’s lecture. Let

me start once again by reviewing or revisiting adiabatic process.
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Now for an ideal gas the adiabatic process is described by pv to the power gamma is equal to

constant which is a special case of a polytropic process with delta q is equal to 0. Also when we

consider ideal gas 1 mole of ideal gas we have pv is equal to RT. So, we can rearrange this

equation, so let me just quickly do this go through these steps here. So, we have pv to the power

gamma is equal to constant but once again pv is equal to RT.

So, rearranging this equation we can either eliminate we can once eliminate pressure in terms of

over replace pressure in terms of temperature or we can replace volume in terms of temperature.

And we get to these two new relations one is T v to the power gamma minus 1 is equal to



constant and the other one is T to the power gamma p to the power 1 minus gamma is equal to

constant.
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Now up to here this is only mathematical manipulation but let me tell you this relations will be

extremely useful when will  be doing several calculations  on different  cyclic  processes. Now

what is cyclic process? I will come back in a moment. Now also one thing we can do is we can

start with this original equation which is pv to the power gamma is equal to constant and we can

take a differential for an adiabatic process.

Now I have just put a suffix adia that that is represent that del p del v is taken for an adiabatic

process. That means we are taking differentiation of this relation and this gives us minus gamma

times p divided by v. So, typically we have to put the constant quantity here, now it so happens

that in an adiabatic process the quantity which remains constant we have not defined that as of

now.

We will come back to that may be towards the end of this week's lecture. Anyway, so what we

care about is the slope dp dv is the slope in this pv indicator diagram for an adiabatic process.

And compare this with an isothermal process which is minus p by v the slope of course there is a

factor of gamma and typically gamma is great for any gas assembly the gamma is greater than 1.

So, the slope of an adiabatic process is more than that of an isothermal process.



And I think we have discussed it already, we have made this statement already, now here we

have proved it formally. So, if we just start from this initial point mark by this red dot here and if

we go through an isothermal path or an adiabatic path in the same indicator diagram the adiabatic

path will be steeper as compared to the isothermal path because there is a factor of gamma in the

slope.
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Now let  us quickly look into another application of this adiabatic process or the equation of

adiabatic process which is called the adiabatic lapse rate. Now what is that? Let us assume that

this line here is the earth surface, now the air which is in contact with the earth surface it gets

heated up. Because sunlight is falling on the earth surface the earth surface absorbs the sunlight

and if the temperature goes up the surface of the earth becomes hot.

So, the air that is in immediate contact with the surface becomes hot and it goes up, as it goes up

it expands and this expansion can be approximated by an adiabatic expansion which is in true

sense  we  will  see  later  on  that  the  actual  measured  values  are  slightly  deviated  from this

prediction when we predict a pure adiabatic expansion, which is obvious. But as a first principle

calculation  let  us just  take this  process  of  cooling off  by thermal  expansion as an adiabatic

process.



Now when that happens, the air becomes cool here and then once again it comes down and

comes back towards earth's surface and the circulation goes on. I think we are all familiar with

this process, all we have to do here we need to calculate an expression for temperature change as

a function of height from the earth's surface. So, in order to do that we take this relation.
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So, we start from here T to the power gamma p to the power 1 minus gamma is equal to constant.

And we take log of this relation which is gamma ln T minus gamma minus 1 ln p is ln k, k is a

constant. Now if we differentiate this relation we get the right hand side becomes 0 immediately

because this is a constant, so we get dT by T is equal to minus gamma is equal to 1 divided by

gamma ln dp by p is equal to 0. Now all we have to do is instead of now we want it in terms of

height, so instead of pressure we just use p is equal to minus h rho g. As h is the height from the

earth's surface and as we go up the pressure decreases that is why there is a minus sign, rho is the

average density of air and g is the acceleration due to gravity.

(Refer Slide Time: 06:40)



Now if we substitute that and also we have to keep in mind and we assume here that air is a ideal

gas which is once again it is only an approximation. But for low density cases of course any gas

behaves like an ideal gas in the low density limit. So, we have pv = RT. Now v we can simply

write as M by rho where M is the molar mass or molecular weight and rho is the density. Now

for air we can always define an average molecular weight we know the composition of air, it

fluctuates a bit but it more or less remains same.

And please remember this calculations are only approximate, so we can define M and if we put p

= RT rho divided by M as we have done here. So, this equation the right hand side, so dp will be

is equal to minus rho g times dh and so dp by p will be minus rho g times dh divided by rho RT

times M, M goes up here. So, rho, rho cancels out and we have g M divided by RT times dh. So,

now this once again dp by p is equal to what? dp by p is equal to gamma divided by gamma

minus 1 dT by T.

So, we have basically gamma times gamma divided by gamma minus 1 dT by T is equal to

minus g M by RT dh. So, I am sorry this is not very conveniently written probably I should just

take it down here, it will be more easy, I will do it, I will do this correction. And finally we get

dT dh is  equal  to minus gamma minus 1 divided by gamma g M by R which is  called  the

adiabatic lapse rate, this gives you the change in temperature as a function of h.



And negative sign indicates that as we go up in height temperature decreases just like pressure,

as we go up the pressure decreases. Now here also it is kind of a linear relation and see the sorry

this should be M here, my mistake. So, you see the beauty of this technique is rho cancels, so we

do not have to worry about the density because the density changes as we go up as we know that

air becomes lighter and lighter. So, the density changes with cancellation of rho in this part we

have just got rid of that problem here, all  we have to worry about is the average molecular

weight.

(Refer Slide Time: 09:38)

Now for air the average molecular gamma we can take as 1.4, g is well known, M is 0.029 kg per

mole that is the average molecular weight and of course R is the universal gas constant. If we put

this number in here in this expression we get dT dh = -9.78 into 10 to the power minus 3 Kelvin

per meter inverse. So, that means if we go up by 1 kilometer which is 10 to the power 3 meters

then  you  see  the  temperature  change  should  be  approximately  10  Kelvin,  so  9.78  of

approximately 10 Kelvin.

But in reality we generally get at average temperature change between 5 to 6.5 Kelvin which is

understandable because we have made so many approximations. First of all with this process is

not strictly adiabatic, secondly we have considered air as an ideal gas which might be a good

approximation at heights where the air is really thin. But at least towards the close to the ground



where the air is pretty dense, close the pressure is approximately 1 atmosphere this might not be

a good approximation.

But anyway this is the real life experimental data and we see that in stratosphere above let us say

10 kilometers that there is a deviation. But in this part in the troposphere which is close to the

earth's surface. The law is more or less followed except for the very close within first few meters

of the or maybe first  50 meters of the ground level,  there is a inversion point and this  is  a

phenomena that is known as the inverted temperature inversion.

So, that is not very common, especially if we can experience this in a cold night when there is no

wind flow we can sometimes realize that top floor of a high rise building is warmer as compared

to the ground floor. So, that is a slightly different situation but typically except for this end part

for most part all the way in the troposphere atmosphere. The adiabatic equation of adiabatic lapse

rate is more or less followed although the value which is theoretically predicted is higher as

compared to what we have measured experimentally, anyway. So, this is about adiabatic process

the relations and the adiabatic lapse rate.
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Now let us focus on the cyclic process. Now cyclic process is going to be very important for this

week's lecture. Why and what is the significance of cyclic process? We will come back in the



next lecture. But today we will discuss about cyclic process it is what is the definition of a cyclic

process and of course we look into some key aspect of a cyclic process.

(Refer Slide Time: 12:48)

Now cyclic process as the name suggest is a process in which if we draw this in that process if

we draw the state points in an indicator diagram. So, we have one point at 1, the second point at

2, so what we can do is we can go from 1 to 2 in many different ways. We can either take path A

and B or we can take path A prime and comeback by path B prime or we can take path C and

come back by the same path.

I mean there are many ways there are infinite number of possible ways in which we can go from

point 1 to point 2 and come back. So, but the idea is when we come back and please remember

all these processes are considered quasi-static. So, once we complete the process or we start from

1 and come back to the point 1 by visiting point 2, this process is called a cyclic process when

the initial and the final state is the same.

Now  in  general  I  have  just  given  you  2  state  points  which  are  connected  by  possible

combinations of paths or basically we take sets of 2 paths of different one in forward direction,

one in the reverse direction let it be A, B, let it be A prime, B prime but they form the complete

circle. But in general there could be any number of state points, we can have points like these

only thing is and.



So, if we have n points we need to have at least n paths which are connecting this n points and

the whole idea of a cyclic process is we start from point 1 go through all these n points fine, but

we finally come back to point 1. So, if we do that that is the only criteria of a cyclic process that

we start and end at the same state point. Now what happens is if we just go by path C and we

follow path C while going from 1 to 2 and come back in the same path then what happens?

C, work done during this process, so please remember this is the pv indicator diagram and we are

talking about a hydrostatic system which is some kind of a gaseous system enclosed and the

process we are talking about is quasi-static. So, the work done the area under this curve if I just

draw 1 curve here. If we just draw 1 curve here and 1 curve here, so let us say if we talk about

path A, this area under this curve here will give you the work done.

Similarly while returning if we take path B, so this area marked by red will give you the work

done. So, definitely if we take path A and come back by path B there will be a net work done

either by the system or on the system, I hope you understand. So, that is true for any path except

for case where we are following the same path while  coming back and going back, I  mean

coming to point 2 and going back to point 1 that is the path C in this case.

Only in that case the work done while coming from 1 to 2 and while going back from 2 to 1 is

exactly the same and the system does not perform any work at the end or no work is performed

on the system. But all other cases when the path of incoming path and outgoing path is not the

same, there have to be a net work done either on the system or by the system. So, for example

when we are taking path A and then the work done is less as compared to when we are taking

path B when we are going back, so the work has to be done by the system. So, we will come

back to that in more details.

And of course one thing you have to keep in mind as we are going back to the same state point in

the end of a cycle the net change in internal energy which is delta u is always 0 in a cyclic

process. Because out of delta U delta Q and delta W, only delta U is a state function, the 3

parameters we deal with in the first law of thermodynamics out of that only delta U is a state



function.  So,  irrespective  of  whichever  path  we take  and even if  we have  not  talked  about

dissipative forces here. But even if there are dissipative forces present in a cyclic process as long

as the process is truly cyclic that means the initial and the final state points are the same we have

delta U = 0.

(Refer Slide Time: 18:16)

So, let us take an example of a cyclic process then we will understand it little better. So, let us

assume that we have n moles of ideal gas enclosed in a piston cylinder arrangement. We start

from point A and we have 3 state points point A, we go to point B, from there we go to point C

and then finally we come back to point A. So, it is a valid cyclic process because we are going

back in a circle.

I mean we could have come from A to C, C to B and B to A also it would have been a cyclic

process. But what I am trying to tell you that finally ABC or ACB whichever we where we look

at it  is  a cyclic  process.  Now what are these paths? AB is  the isothermal  expansion from a

volume V 1 to a volume 2V 1. So, the volume becomes double, whatever the initial volume it

becomes double.

Path B to C is a isobaric compression, so keeping the pressure same we go back to the original

volume. And we will see later on that the temperature has to be reduced by a factor of 2 because

the pressure is reduced by a factor of 2. And then finally point C to A is basically an isochoric



heating. Here the volume is the same, only we have to increase the pressure and the best way of

doing it keeping the same volume is by hitting the system.

So, the temperature goes up and the pressure also goes back to it is original value. Now in the

cycle what we need to compute is the total work done which is given by delta W ABC and total

heat transferred during this process which is given by delta Q ABC. So, delta W ABC we can

break it down into 3 parts which is W AB, W BC and W CA. So, these are 3 segments of this

path and we have to compute the work done.

Similarly for total heat transfer there are 3 segments and we have to compute the work done W Q

AB, Q BC and Q CA. So, let us start with the work done 1 and we first compute W AB which is

isothermal expansion from A to B and we have discussed it in the previous week’s lecture which

is W AB is equal to nRT ln V 2 by V 1 and in this case V 2 is equal to 2V 1, so it is simply nRT

ln 2. Now for the isobaric compression, it is even simpler, it will be simply whatever the value of

p we have not indicated that whatever the value of p of point B and point C the same actually.
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That times delta V which is V 1 minus 2V 1 because the volume is compressed, so it is minus pV

1 and because it is a n moles of ideal gas we have minus nRT C. T c being the temperature of

point C, I am just indicated it by this one because the volume V 1 corresponds to this point C

here. So, minus pV 1 will be equal to minus nRT c. Now V c by T c is equal to V B by T B



which gives T c is equal to T B by 2 T B being the temperature of point B and please remember

it is the initial process AB is an isotherm.

So, let the temperature of A becomes T, so the temperature of B is also T, so temperature of C

has to be T by 2. So, W BC is equal to minus n R T by 2 and W CA is equal to 0 because it is a

isochoric process in which there is no change in volume. So, as delta V = 0, we have the W AC =

0. Now for the heat transfer, now for a isothermal process as the temperature does not change,

there is no change in the internal energy. And we have W AB or Q AB = W AB, sorry I should

not put delta here I have not used delta for this segments, so Q AB is equal to W AB is equal to n

R T ln 2.

And please remember this is a positive definite quantity n R T this is all positive, ln 2 is also

positive. So, the heat as per the convention we have already discussed while discussing first law

the heat goes in, this is very important, the heat is actually going in to this system here. Now Q

BC, Q BC is the temperature or that is the heat that is needed for going from point B to point C.

And  as  we  see  here  the  volume  decreases  keeping  the  pressure  constant,  so  heat  must  be

negative. So, heat must be taken out from the system and exactly what we get here, so it is a

constant pressure process, so it is n C p delta T which is minus n C p T by 2.

Because change in temperature delta T is equal to minus T by 2 and here the heat comes out. So,

if I just indicate this by an arrow like this, this arrow actually tells you that the heat is coming out

of the system. And finally the last process CA which is once again heat going in because here the

temperature increases keeping the volume constant and the pressure increases. So, it is a constant

volume process so we have n C v delta T which is n C v T by 2 and the heat here goes in. So,

what we see and now if I compute the total of delta W ABC and delta Q ABC what do we see?
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We see delta W ABC is equal to n R T ln 2 minus half and delta Q ABC is equal to n R T ln 2

minus n R T by 2 C p minus C v which is once again R. So, n R T ln 2 minus half, so what we

see is delta W ABC that means total work done in this cyclic process is equal to total heat that is

exchanged during this cyclic process and this is absolutely obvious. Because finally delta U ABC

is equal to 0, it has to be as we have already discussed it is a state function, so delta U ABC has

to be equal to 0.

Now as the work performed during the cycle is equivalent to heat that is exchanged during a

cycle. If we simply compute the input heat and the output heat, so then we can by the difference

of that we can compute the net work. Because heat, so what we see is total heat is equal to total

work done. So, whatever heat that goes in and whatever heat that comes out the difference if that

is positive that means the system has done some positive work that means work is done by the

system.

And if that is negative then the work is done on the system which will be negative. So, the net

work output from that system during a cycle will be defined as Q input minus Q output. Now in

this case Q input is equal to n R T ln 2 plus n C v T by 2. So, the addition of this one and this one

and Q output is equal to minus n C p T by 2. So, we will take it up in the next lecture from here.
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Now for the remaining few minutes of today's lecture let me show you some problems on these

adiabatic processes or at the relations we have derived during at the beginning of the class. So, at

present I have only 2 problems, in this problem set as the lecture progresses we will have more

and more problems, so let us solve this first 2 problems. Air at STP is compressed suddenly to

half it is volume, calculate the change in it is temperature by taking gamma is equal to 1.4.
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So, V 2 is equal to V 1 by 2 air is compressed to half it is volume, T 1 at STP which is 0 degree

centigrade which is 273 Kelvin, gamma is equal to 1.4. So, we have volume and temperature, so

we choose the first relation which is or rather I should not call it the first relation, this relation



where it is the relation of temperature and volume, so we get TV to the power gamma minus 1 is

equal to constant.

So, we have T 1 V 1 gamma minus 1 is equal to T 2 V 2 gamma minus 1, so T 2 is equal to T 1

V 1 divided by V 2 gamma minus 1, so basically 273 into 2 to the power 1.4 minus 1 that is 0.4,

we  have  260.22  Kelvin.  The  second  and  the  last  problem  for  today's  lecture  1  mole  of

monoatomic ideal gas at 27 degree Centigrades is adiabatically compressed from atmospheric

pressure to 50 atmosphere pressure. Calculate the resulting difference in temperature.

So, initially it is at 27 degree centigrade, so we have T 1 is equal to 300 Kelvin, gamma is equal

to 5 by 3 for a monoatomic ideal gas p 1 is equal to 1 atmosphere, p 2 is equal to 50 atmosphere.

Here it is a relation between pressure and temperature that we should choose and we have T to

the power gamma, p to the power 1 minus gamma is equal to constant.
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So, p 2 by p 1 whole to the power gamma minus 1 is equal to T 2 by T 1 whole to the power

gamma and we have T 2 to the power 5 by 3 is equal to 50 whole to the power 0.5 times 300

whole to the power 5 by 3. So, if we rearrange we get T 2 is equal to 50 whole to the power 2 by

5 into 300 which is 1434.5 Kelvin, so the difference will be 1134.5 Kelvin. So, this concludes

this  week's  lecture and sorry not  this  week today's  lecture.  And in the next  lecture  we will



continue from with the cyclic process and we will define something called the efficiency of a

cyclic process, till then thank you.


