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Hello and welcome back to another lecture of this NPTEL course on thermal physics. Now this

week we have started our discussion on specific heat of solids. Now the last lecture we have

discussed about Dulong-Pettit law which is an extension of classical equipartition theorems for

solid. And they are only the thermal vibration of the atoms has been considered for the prime

reason for specific heat.

And also it has been assumed in that law that specific heat does not change as a function of

temperature. So, whatever we have for a solid system whatever specific heat we measure, for

example at room temperature according to Dulong-Petit law that should be valid over the entire

measurable temperature range. But definitely that is not the case, experimentalists have already

found out that high temperature and low temperature.

Specially at low temperature side there are deviations from Dulong-Petit law, the specific heat

decreases from the value at and it is high temperature value. And most importantly it tends to 0

as the temperature goes to 0. So, definitely there was some issue. Then Einstein came up with his

theory of specific  heat  instead  of considering only for  the thermal  vibration  in place  of  the

classical equipartition theory, he applied Planck's theory of quantum of energy.

And he has assumed that all the molecules inside a solid they are vibrating with one unique

frequency called the Einstein frequency. Now his results as we have seen already, he is adequate

in  a  sense  that  it  can  describe  the  general  behavior  of  the  measured  specific  heat  versus

temperature  very  well.  So,  at high  as  in  when  the  temperature  is  high  above  the  Einstein

temperature as the characteristics temperature, then it will level off to this 3R value per mole of

specific heat which is the Dulong-Petit law from the classical equipartition theorem.



And at low temperature it falls off gradually and goes to 0, but then it was found out that the

falling off is far too fast as compared to the experimentally measured value. The experimental

derivation, so the experimental results shows a kind of T cubed behavior at low temperature

regime, whereas Einstein predicted a e to the power minus x when exponentially falling function

at  low temperature.  So,  of  course  there  are  some issues,  now in  today's  lecture  we will  be

discussing the Debye theory of specific heat.

(Refer Slide Time: 03:26)

But before going there we will start with two very simple problems or basically the first two

problems of the week 5 problem set. So, the first problem is, calculate the Einstein's frequency

for the solid for which the Einstein temperature is 230 Kelvin.
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Now this is a very straightforward problem there is nothing tricky about it. We have theta E is

equal to 230 Kelvin, now h nu E by k which is equal to theta E this is a relation for theta E that is

Einstein temperature. And we can slightly rearrange that and write nu E is equal to k theta E by

h. Now all we have to do is we have to put these values simply and we have found out the

frequency of 4.81 into 10 to the power 12 Hertz.

Now this  is  a  very high  frequency,  I  mean this  is  already  in  the  terahertz  range.  Now this

terahertz has frequency although it is very high, it is lower as compared to the optical frequencies

typically when we talk about photons and all we talk about this optical electromagnetic wave we

talk about the optical frequencies. But anyway, this is a frequency range and these are typical

phonon frequencies of vibration in an atomic solid.

Now, the second problem is the first problem was to give you an idea of what is the typical

frequency of vibration we have inside a solid.  And the second problem is application of by

Einstein’s formula, where the Einstein’s temperature has been given which is it should be 157

centigrade Kelvin my mistake, it is 157 Kelvin, compute the value of C v at a temperature of 100

Kelvin using Einstein's formula.

So, the problem is the following with the value of C v is or value of Einstein temperature is given

which is  157 Kelvin and we need to  compute the value of C v at  a given temperature.  So,



remember the Einstein’s formula which is C v is equal to 3R times x square e to the power x e to

the power x minus 1 whole square divided by e to the power x minus 1 whole square. So, all we

have to do is we have to compute the value of x. So, x is equal to theta E by T which is 157

divided by 100 which is 1.57. So, next we; just need to put this value here, so it will be 1.57

square times e to the power 1.57 divided by e to the power 1.57 minus 1 whole square. So, this

factors the entire numerical value of this factor is 0.0817 and times 3R.

So, if I put the value of R the final answer is 20.6 Joules per calorie inverse per mole inverse. So,

that is all we can do from Einstein's theory, so basically we have 1 simple formula, 1 simple

relation and if we know the value of x we can compute C v at any temperature. And we can also

use this relation to compute the value of nu E or theta E whichever is not given to us and vice

versa. The next modification to this specific heat of solid was provided by Debye few years 5, 6,

7 years after Einstein I think 1912.

(Refer Slide Time: 07:23)

That is where the Debye theory came in. So, let us quickly once again revisit the limitations of

Einstein theory. So, basically it underestimates the value of C v at low temperature by large. So,

whatever value is recorded experimentally according to Einstein's theory the value will be much

lesser, so that is the underestimation. And of course it cannot explain the T cubed behavior at

low temperature.



So, the primary cause of these two the failure of Einstein theory lies into the oversimplified

assumption.

Oversimplified assumption that all the; molecules in the atom vibrate with a simultaneous unique

frequency which is definitely not the case. I mean it is a solid and there is a possibility that some

part of it the molecules in one part of solid will vibrate with one frequency another part will

vibrate  with  another  frequency that  possibility  cannot  be  ruled  out.  Depending on the  local

environment and depending on the geometry of the there are many other factors actually. So,

overall  the  assumption  that  all  the  solid  molecules  are  vibrating  simultaneously  with  same

frequency is the vast oversimplification.

(Refer Slide Time: 09:02)

So, in 1912 Debye came up with his theory of specific heat which actually addresses some of

these problems. So, what Debye proposed is instead of considering discrete point masses, he will

treat the solid as an elastic medium. Of course, this also has a downside none of his theories

completely perfect. But at least when we are talking about bulk solids, the elastic medium is

probably a better approximation.

Now, the vibration that is propagating is acoustic type of vibration that means for example the

sound wave is propagating through the solid medium. And he has assumed that this vibration is

not monochromatic,  that means it does not have one frequency but it has a maximum cutoff



frequency.  So,  his  assumption  was  all  the  molecules  are  vibrating  with  different,  different

frequencies.

So, basically it is different groups of molecule that constitutes different parts of the solid. So, one

group vibrates with one frequency another group vibrates with another frequency. So, different

parts have different frequencies and these frequencies are like sound wave that is propagating

through  a  solid  medium.  And  what  he  has  assumed  that  there  is  an  upper  cutoff  for  this

frequency. So, it cannot be above this particular cutoff, which is given by nu m.

Or actually sometimes it is better to write it as nu D just to correlate this strongly with Debye.

So, I will just call it nu D for the rest of the discussion. Now for elastic wave, we know that

another property of an elastic medium is there are two types of waves one is longitudinal wave,

one is the transverse wave and it is not necessary that both these waves will have the same speed.

Actually it is most of the time in a solid we have longitudinal vibration and a transverse vibration

moving with different speeds. So, Debye assume that there is a longitudinal wave with speed C l

and transverse wave with speed C t at l and t stands for longitudinal and transverse respectively.

(Refer Slide Time: 11:44)

Now, one important assumption has been the vibration is not monochromatic, so different parts

will have different vibration frequency. So, whenever that concept comes into the picture, I think

it is important that we understand what is the meaning of density of state. In very soon I will just



correlate this density of state with this vibration frequency. So, one possible definition of density

of state, which is a term which probably we are already familiar from your solid state physics

lecture.

It is actually the fraction of total number of states that occupy a particular energy. So, actually it

is not 1 number of states at a given energy but typically it is defined as the number of state for

example, between E to E plus dE, right. So, the example of one example that I always prefer for

density of state is say if this is the band gap. We have the valence band, we have the conduction

band and this part is band gap.

So, forget about defect states, let us assume that it  is a pure semiconductor system I am just

deviating slightly, to solid state physics now. So, for this we have electrons occupying these

valance  band energy levels  and electrons  occupying this  conduction  band energy levels  and

nothing in between. Now if I try to represent this as energy versus density of state plot, we have

something like this.

So, we have one set of density of state that is for the valence band, one set of density of state that

is for the conduction band and this is the band gap in between, here. So, this is a representative

diagram. Once again I am just drawing two steps here for the valence band and the conduction

band and there are numerous theories available for which predicts the shape of this valence band

and conduction band density of states the shape of this curve.

I am not going into this; I am just trying to give you a concept. So, whenever there is no state, the

density of state is actually zero, whenever there is an above this particular energy the number of

state increases and all of a sudden the density of state becomes nonzero. Similarly below this

particular energy here, the density of state becomes nonzero once again. So, this axis is energy

axis, this axis is density of state that is basically the number of states for a given energy range.

Now usually density of state is denoted by D E or g E and the usual definition is when it is

integrated over all possible energy values D E times dE is gives you the integration of dE gives

you 1. So, that is because we have assumed that D E and g E they are fraction of total energy



states.  Now why it  is  important  in  Debye theory,  because  see  in  Einstein  theory  it  was  all

monochromatic.  In  Einstein's  theory  it  was  and  please  remembers  that  there  is  a  strong

connection in between energy and frequency.

So, when Einstein said that all vibrations are monochromatic that basically means that all atoms

are vibrating with equal energy. When Debye says atoms are vibrating with different energies

but there is a different frequencies but there is an upper cutoff frequency. So, that means the

density  of  state  above  this  cutoff  frequency  will  be  0  and  below  this  cutoff  frequency  all

frequencies in between will have some given number of states. So, that is why the concept of

density of state is important.

(Refer Slide Time: 16:07)

Now I am not going into the details of statistical mechanical treatment of the system here, but

there is something called phase space which can be defined. Once again I just do not want to

complicate it as of now. So, according to the theory of phase space, the number of independent

modes for a given wave that elastic wave that travels with the speed C is given by, so what we

are concerned about?

We are concerned about number of modes that is present in the energy frequency range of nu to

nu plus d nu. And that is equivalent of saying that it is the number of states that is present in the

energy E to E plus D E. Of course there should be some factor conversion factor mostly the h, h



being the Planck's constant. So, these are semi classical semi quantum type of treatment although

we are taking the classical picture of acoustic wave propagating.

We are calculating or basically we are using the concept of quantum phase space here. And for

longitudinal modes, the number of states between energy level nu and nu plus d nu is given by 4

pi nu square d nu C l cubed multiplied by V, that is the please remember X L is not exactly the

density of state, this quantity here is the density of state and we multiply this with V, V being the

volume of the whole space. So, whatever solid we are considering it has a volume V.

So,  X  L  is  here  and  this  is  for  the  longitudinal  wave,  now  what  is  longitudinal  wave?

Longitudinal wave is let us say this black arrow is the direction of wave propagation and this red

dot here represents a molecule or 1 atom in this path of propagation and the vibration of this is

along  the  path,  red  mark  arrow  here  indicates  the  vibration,  so  this  is  longitudinal.  And

longitudinal  wave  can  have  one  mode  only  that  is  along  the  direction  of  propagation,  the

vibration along the direction of propagation.

Now for transverse waves exact same expression, but we have to have a factor of 2, why because

for simple reason the transverse wave can have 2 independent modes of vibration. One is let us

say just for sake of simplicity if I call this z this direction of propagation is z, then I have 1 x-axis

and 1 y-axis arbitrarily chosen, the only criteria is they have to be perpendicular to each other.

So, that is how you choose x and y, no other criteria, but now there has to be 2 independent

modes of a transverse wave, so that is why a factor of 2 is coming here. Now the total number of

independent modes in range nu to nu plus d nu in a volume V.

(Refer Slide Time: 19:25)



Which is once again the density of state multiplied by V actually, it is not exactly density of

state, which is X L plus X T is equal to 4 pi V 1 by C l cubed plus 2 by C t cubed times nu square

d nu, so, basically just adding this one and this one, nothing else. So, only thing that we have not

discussed what is the origin of this particular expression? And let me tell you once again this

comes from the mind Maxwell's Boltzmann statistics.

So, this is the elemental volume in phase space and all, so we are not going into the details here.

Now integrating this g nu d nu over all possible frequencies starting from 0 to nu d, what is the

Debye cutoff frequency should actually give you 3N A, why? For a molar solid N A is the

number of molecules and each molecule can be considered as 3 independent linear harmonic

oscillators. There is actually a small correction, in the last class I talked about energy per density

in while deriving Einstein's theory.

I said something like energy part degrees of freedom, no; it is actually not true it is energy per

independent vibrator. So, the number of independent vibrator is 3N A. So, there is a correction, I

have corrected it in the notes, please have a look. So, it is 0 to nu D, if I integrate it from 0 to nu

D, g nu d nu will give you 3N A and when I substitute for g nu simply by putting this expression

over here, so I get this 0 to nu D 4 pi V 1 plus C l cubed plus 2 by C t cubed nu square d nu. Now

this quantity over here is independent of frequency.



So, it is the characteristics of the solid, V is the volume C l and C t their characteristics of the

solid and can be measured irrespective of course we assume that if there is a transverse wave this

transverse wave will be of whatever frequency the transverse wave will have the same velocity.

Similarly for a longitudinal  wave whatever  may be the frequency of this  vibration the wave

velocity will be the same which is once again some oversimplification to some extent. But these

are material properties nonetheless. And at present we considered them to be independent of nu.

So, what we can do is, we can simply take this out and compute this nu square d nu from 0 to nu

D.

(Refer Slide Time: 22:29)

So, we will just give me a second. So, before we do that, let me quickly focus on this expression

here. So, you see here nu square g nu the density of state, it is actually density of state multiplied

by the total volume, but that is okay, it is just a constant multiplication is actually a function of

nu square. So, g of nu is proportional to nu square.

So, just to give you a representative idea of how Debye theory looks like, you see, if I plot g nu

as a function of nu, it is something like this, there is a constant times nu square. And the total

area under this curve is actually 3N A. Now this curve has 2 contributions one for this area is the

contribution for the longitudinal wave and this is the contribution for the transverse wave.



So, this one is a combination of a longitudinal and transverse component, which I am just trying

to show you graphically. Now later on we will see that or we will discuss that Debye theory is

also not complete of course no theory is complete.  And so the major correction has been to

Debye theory is the Born approximation, which says the same cutoff frequency for longitudinal

and transverse vibration is probably not right. So, we will come back to that later.

(Refer Slide Time: 24:42)

So, now from here, what do we do? We just compute the integration and we get nu D so four

third pi V, this expression times nu D cubed is equal to 3N A. And just writing this will give me

an expression for nu D cubed, what is nu D, nu D cubed is equal to 9 N a divided by 4 pi V 1 by

C l cubed plus 2 by C t cubed. So, this actually gives you a way of measuring the Debye cutoff

frequency experimentally, all we have to do is we have to measure C l and C t for a given solid.

Once we know that, we can always put this in this formula and compute the cutoff frequency for

any given solid. So, once again the average energy per oscillator, please remember in the last

lecture by mistake I have mentioned that average energy per degree of freedom which is not the

case, average energy per oscillator is E bar is equal to h nu divided by e to the power h nu by k b

T minus 1. So, once again the total energy E is equal to 0 to infinity in this case it will not be

infinity.

(Refer Slide Time: 26:12)



Because there is a cutoff frequency which I think I did I have already done that. So, this is just by

mistake, it should be nu D. So, this is nu D total energy is given by E is equal to 0 to nu D E bar

g nu d nu.

(Refer Slide Time: 26:36)

Now this integration has to be computed. So, there is a constant factor over here in G nu and then

we are left with this integration. Now this actually we do not have to keep it in this kind of long

format, what we can do is we can simply use this relation over here. And we can reduce it to

once again small mistake it should be D.

(Refer Slide Time: 27:05)



We can reduce it to 9 N A by nu D cube D sorry it  should be D once again,  so times this

integration. Now this is for the total energy E here, for C v it will be dE dT at constant volume

and the volume term is already included here. So, we can take this as constant, please remember

that  the  volume  is  included  in  nu  D  here,  so  this  is  constant.  So,  the  integration  or  the

differentiation will be whatever inside this integration symbol that is the integrand which are

functions of temperature.

This k b T is a function of temperature e to the power h nu way k b T minus 1 is a function of

temperature. So, finally once we compute the differentiation, so it should be 0 to nu D h square

nu to the power 4 e to the power h nu by k b T divided by this k T square and this quantity. Once

again we write just like in Einstein case, we write x is equal to h nu by k b T and we also define

x D which is h nu D by k b T. Also there is a trick here what we can do is we can write there is a

N A k b, so we also have to write N A k b is equal to R and right.

(Refer Slide Time: 28:53)



So, what we can do is I think there is a mistake I will just correct this, I think this k should go

here something like this because otherwise this relation will not make sense, anyway I can check

that. So, it will be 3 by R this is a correction here it will be x D 3 by R x D cubed from 0 to x D x

to the power 4 e to the power x divided by e to the power x minus 1 whole square dx. Now, so

we have a definite integral in hand.

Now this a definite integral can be evaluated by parts. So, what do we have here? We can do this

integration by parts taking 3R out, what we have finally is this one 12 by x D cubed integration 0

to x T, x cubed e to the power x minus 1 dx minus 3x D divided by e to the power x D minus 1.

Now this function over here, so, we have just taken 3R out, so that we can compare it with the

Dulong-Petit law or Einstein's law for example.

And we can write this as 3R D of x D, where D is a Debye function, also there is a way of

writing this x D as theta D by T where theta x D is equal to theta D by T, this is the relation here.

So, D is called the Debye function and theta D is called the Debye temperature which once again

is a characteristics of a solid, but unlike Einstein temperature which actually well, or Einstein

frequency which is one unique frequency for all the oscillators.

Debye temperature or Debye frequency marks the upper cutoff of phonon vibration. So, we will

talk about the low temperature and high temperature limit from here in the next lecture. So, at



present we have found out that there is a expression for C v in terms of this Debye function. And

next  what  we need to  do is,  we need to  explore  the  low temperature  and high temperature

behavior which we will do in the next lecture and compare it with the experimentally determined

values, thank you.


